基于声场空间分布特征的机械故障诊断方法及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代工业的发展使得机械设备的状态监测与故障诊断越来越受到重视,传统的故障诊断技术面临着新的挑战。目前故障诊断主要基于振动信号的测试与分析,但振动传感器在某些设备上或工况环境中安装不便,使得振动故障诊断方法的应用受到限制。结构振动与辐射噪声有着紧密联系,机械噪声蕴含着丰富的机械状态信息,噪声信号也能像振动信号一样进行机械设备的状态监测与故障诊断。声学诊断技术具有非接触测量、不影响设备运行、操作简单便捷等优点,可部分地代替振动信号作为故障诊断的补充手段。传统声学诊断技术主要基于单通道测试与分析,只能得到机械局部的声学特征随时间或频率的变化规律,也不易选择测点位置,而且声信号易受干扰和污染。声学故障诊断技术虽具有很大发展潜力,但当测点位置选择不当,局部的声学特征对故障不敏感时诊断效果就会受到影响,特别是在相干工况下,故障源的声信号如果被干扰源的声信号淹没,则传统声学诊断方法将不再适用,基于单通道声信号所提取的故障特征不能稳定地反映机械本身的运行状态,很大程度上影响了诊断效果。
     声成像技术通过传声器阵列获取测量面处的声信号,按照相应重建算法进行声源反演,可重建结构表面的声场分布并预测整个辐射声场,将重建声场的整体信息用于故障诊断,能克服传统声学诊断中局部诊断的缺陷,也可避免测点选择难的问题,这为新型声学故障诊断技术的发展创造了条件。基于整个重建面上的声学信息显然比基于单点测试的声信号所含有的故障信息要丰富,后者只具备一个或几个局部测点的声学信息,而前者还获得了整个声场的分布信息,从空间上体现了潜藏在声场分布中的故障模式,从所重建的声场信息中挖掘出的声场空间分布特征必然较常规声学诊断方法所提取的特征更全面也更稳定。在较强的干扰噪声环境下,即使局部单通道声信号并不稳定,但整体上声场的空间分布模式能保持较好的稳定性。
     机器运行时会产生辐射声场,不同的运行状态具有不同模式的声场分布,因此,若能有效挖掘机器在不同故障状态下辐射声场的分布模式规律,提取对故障模式敏感的特征量,将比传统基于单通道信号分析的声学诊断能更有效更可靠地诊断机械故障。鉴于这一思想,本文提出了基于声场空间分布特征的故障特征提取方法,应用图像处理技术从声像图中提取反映声场空间分布特性的纹理特征,揭示机械在不同运行状态下声场的分布规律;并在此基础上,提出了基于声场空间分布特征的机械故障诊断方法,分别发展了适于中高频分析的基于远场波束形成声成像的故障诊断方法和适于中低频分析的基于近场声全息声成像的故障诊断方法。数值仿真和实验研究证实了机器设备在不同运行状态下,声像图中的纹理信息反映了相应辐射声场的空间分布特性,能够揭示机器的不同故障模式状态而进行故障诊断。基于声场空间分布特征的机械故障诊断方法有效综合了阵列测量、声成像、图像处理、特征提取、模式识别等多学科研究成果,能对机械设备辐射声场可视化的同时,挖掘出潜藏于声场中的故障模式特征,有效进行故障诊断。滚动轴承和齿轮箱的故障诊断实验研究进一步验证了方法的有效性和实用性,干扰噪声的影响研究进一步体现了方法的优越性,这一新型的声学诊断方法不仅拓展了声成像技术的应用范围,也为声学故障诊断提供了新的思路和选择,促进了故障诊断技术的发展及其在实践中的应用。本文的具体研究内容如下:
     (1)综述了机械故障诊断技术的发展概况,特别是声学故障诊断与智能诊断;概述了声成像技术的发展,并对目前常用的波束形成和近场声全息技术进行了总结。
     (2)分析了机械设备辐射声场的产生,对结构声辐射问题进行了数学描述;推导了平面近场声全息的基本公式,总结了近场声全息在实际应用中的参数选择问题;介绍了波束形成的基本原理,总结了参数选择问题;研究了几种典型的纹理分析方法,用于提取声场空间分布特征,并对支持向量机模式识别作了研究介绍。
     (3)提出了基于声场空间分布信息的特征提取与机械故障诊断方法,并发展了适于中高频分析的基于远场波束形成声成像的故障诊断方法和适于中低频分析的基于近场声全息声成像的故障诊断方法,分别进行了具体研究。
     (4)在对声成像技术和特征提取方法的研究基础上,提出了基于NAH声成像和Hist+GLGCM特征提取的机械故障诊断方法,并应用于滚动轴承与齿轮箱的故障诊断,对其分别搭建故障诊断实验台,进行多类故障诊断实验研究,并与传统声学诊断方法进行对比,还考察了干扰噪声对声成像和诊断结果的影响。
     (5)研究了齿轮箱啮合频率及其边频处的声像图特性,考察了不同特征频率对诊断结果的影响,总结了基于声成像的齿轮箱故障诊断在特征频率选择上的问题,指出边频处的声场分布模式不稳定,不适于故障模式的辨识。
     (6)研究了不同灰度量化级和各纹理特征提取方法的诊断性能,给出了灰度量化级的选取原则,并总结了各特征提取方法在声场空间分布特征提取上的特点,给出了在故障诊断应用中的具体建议。
     (7)研究了声成像技术在机械故障诊断测试系统中的应用,在虚拟仪器平台下设计了基于声成像的故障诊断测试系统通用平台,开发了系统原理样机,齿轮箱故障诊断应用实例验证了其有效性。
The development of modern industry makes condition monitoring and fault diagnosisof machinery more and more significant, and the traditional fault diagnosis technology isfacing new challenges. Currenly, fault diagnosis is mainly based on measurement andanalysis of vibration signal, whereas vibration sensors can not be installed conveniently onsome equipment or in some conditions, which makes the application of vibration-basedfault diagnosis get limitation. There is close contact between structural vibration and itsradiated noise. Mechanical noise contains abundant state information, and noise signal candiagnose equipment fault like vibration signal. Acoustic-based diagnosis (ABD) has theadvantage of non-contact measurement, not affecting equipment operation, operatingquickly and easily, which can partially substitute for vibration signal as a supplementarymeans for fault diagnosis. The traditional ABD based on single-channel testing andanalysis can only get local acoustic characteristics with the changes of time or frequency. Itis not easy to choose proper measuring points and the acoustic signal is easilycontaminated. ABD has great potential, but when inappropriate measuring points arechosen or local acoustic characteristics are not sensitive to fault pattern, diagnosis resultswill be affected. Especially in coherent condition, acoustic signal from fault sources issubmerged by that from interference sources, the ABD will no longer apply. The reason isthat fault features based on single-channel acoustic signal can not stablely reflect theoperational status of machinary, which can affect diagnosis results to a large extent.
     Acoustic imaging techniques can get sound signal at the measuring surface through themicrophone array. It can reconstruct sound field distribution of structure surfaces andpredict the radiated sound field by corresponding reconstruction algorithms. The scheme ofapplying overall information of reconstructed sound field can overcome the limitations intraditional ABD, which creates a condition for the development of new ABD technique.Clearly, Acoustic information from entire reconstruction sound field can contain more faultpatter information than acoustic information based on single point. The latter has only oneor a few local points of acoustic information, while the former get the distributioninformation of entire sound field, which can spatially reflect failure pattern hidden in soundfield. Spatial distribution featrues extracted from the reconstructed sound field are surelymore comprehensive and more stable than that extracted from the conventional ABD. Withstrong interference noise, even if a local single-channel acoustic signal is not stable, but, onthe whole, the spatial distribution pattern of sound field is able to maintain good stability.
     Running machines can generate radiated sound field, and different operating stateshave different patterns of sound field distribution. Therefore, if the radiation sound fielddistribution pattern can be effectively minied from different states, and the features sensitive to patterns can be extracted, the fault diagnosis will be more efficient and reliablecomparing to the traditional ABD based on single channel signal analysis. In view of thisidea, a feature extraction method based on sound field spatial distribution characteristics isproposed, which extractes textural features from acoustic images to reveal distribution lawof sound field for different machinery operating conditions. Based on this thought, a faultdiagnosis scheme based on space distribution characteristics of sound field is proposed.Then, specifically, a fault diagnosis scheme suitable for medium-high frequency analysisbased on far-field beamforming acoustic images is developed, and a fault diagnosis schemesuitable for medium-low frequency analysis based on near-field acoustic holographyacoustic images is developed. Numerical simulation and experimental research confirmthat in different equipment operating conditions, the textural information can reflect thecorresponding space distribution characteristics of sound field and reveal the differentfailure patterns for fault diagnosis. The fault diagnosis method based on sound field spacedistribution characteristics effectively integrates microphone array measurement, acousticimaging, image processing, feature extraction, pattern identification and othermultidisciplinary research. This method can visualize the radiated sound field of machinery,and mine failure patterns underlying sound field. The experimental research on faultdiagnosis for rolling element bearing and gearbox further validates the effectiveness andpracticality of the proposed method, and the research on effect of noise interference furthershows the superiority of the proposed method. This new ABD method expands theapplication scope of acoustic imaging techniques, provides new ideas and options for ABD,and promotes the development of fault diagnosis technology and its application in practice.
     The research content of this dissertation can be summarized as follows.
     (1) The progress of machinery fault diagnosis is reviewed firstly, especially for theABD and intelligent diagnosis. The development of acoustic imaging techniques isoutlined, and the commonly used beamforming and near-field acoustic holographytechnique are summarized.
     (2) Generation mechanism of machinery radiated sound field is analyzed, and thestructural acoustic radiation question is presented mathematically. The basic formulas ofthe plane near-field acoustic holography are deduced. Several problems of selectingparameters in practical application of near-field acoustic holography are summarized. Thebasic principle of beamforming is introduced, and several problems of selecting parametersin beamforming are concluded. Several typical textural analysis methods are investigatedfor extracting spatial distribution characteristics of sound field. Pattern recognition basedon support vector machine is also introduced.
     (3) Fault feature extraction and fault diagnosis based on spatial distributioninformation of sound field is put forward. Based on this idea, specifically, a fault diagnosis scheme suitable for medium-high frequency analysis based on acoustic imaging byfar-field beamforming is developed, and a fault diagnosis scheme suitable for medium-lowfrequency analysis based on acoustic imaging by near-field acoustic holography isdeveloped. Then, specific research is carried on, repectively.
     (4) Based on the investigation on acoustic imaging and feature extraction, amechanical fault diagnosis method based on near-field acoustic holography andHist+GLGCM feature extraction is put forward, and the method is applied to rollingelement bearing fault diagnosis and gearbox fault diagnosis. Rolling element bearing faultdiagnosis test-bed and gearbox fault diagnosis test-bed are established for research onmulti-class fault diagnosis, respectively. Diagnosis results are compared to traditional ABD.The effect of acoustic imaging and diagnosis results with noise interference is also studied.
     (5) Acoustic images at meshing frequency and its side frequencies are studied, andthe effect of choosing different characteristic frequencies is investigated. For applying thefault diagnosis method based on acoustic imaging tequniques, the noticeable problemsabout choosing characteristic frequencies are concluded. Sound field distributions at sidefrequencies are not stable, and not suitable for fault pattern identification.
     (6) Diagnosis performances of different gray levels and different textural extractionmethods are investigated. The principle of choosing gray level and the performances ofextracting spatial distribution characteristics of sound field for different textural extractionmethods are concluded, and concrete suggestions are provided for practical applicaiton.
     (7) The application of acoustic imaging techniques in mechanical diagnosis and testsystem is studied. The common platform of fault diagnosis and test system based onacoustic imaging is designed by virtual instrument, and the principle prototype isdeveloped. The application example of gearbodx fault diagnosis shows its effectiveness.
引文
[1]杨叔子等.机械设备诊断学的探讨.华中工学院学报,1987,15:1-9.
    [2]徐敏.机械设备状态监测与故障诊断技术的现状与发展动向.第二届全国机械设备故障诊断学术会议,北戴河,1988.
    [3]陈进.机械设备振动检测与故障诊断.上海:上海交通大学出版社,1999.
    [4]徐玉秀,张剑,侯荣涛.机械系统动力学分形特征及故障诊断方法.北京:国防工业出版社,2006.
    [5]屈梁生,何正嘉.机械设备故障诊断技术.上海:上海科学技术出版社,1986.
    [6] N Baydar, A Ball. A comparative study of acoustic and vibration signals in detection of gearfailures using Wigner-Ville distribution. Mechanical Systems and Signal Processing,2001,15(6):1091-1107.
    [7] N Baydar, A Ball. Detection of gear failures via vibration and acoustic signals using wavelettransform. Mechanical Systems and Signal Processing,2003,17(4):787-804.
    [8] K Shibata, A Takahashi, T Shirai. Fault diagnosis of rotating machinery through visualisation ofsound signals. Mehanical Systems and Signal Processing,2000,14(2):229-241.
    [9] U Benko, J Petrovcic, D Juricic, et al. An approach to fault diagnosis of vacuum cleaner motorsbased on sound analysis. Mechanical Systems and Signal Processing,2005,19:427-445.
    [10] R H Lyon. Machinery noise and diagnosis. Boston: Butterworths,1987.
    [11] W D Li, M Robert, J C Parkin. Acoustic based condition monitoring of a diesel engine usingself-organizing map networks. Applied Acoustics,2002,63:699-711.
    [12] G Hessel, F P Schmitt. A neural network approach for acoustic leak monitoring in pressurizedplants with complicated topologies. Control Engineering Practice,1996,4(9):1271-2241.
    [13]王洪刚,郑海起,方翠.基于小波分析的变速箱齿轮声压故障诊断.河北工业大学学报,2001,30(2):58-61.
    [14]徐刚,连小珉,蒋孝煜.汽车变速器齿轮制造缺陷的声频特征提取.汽车工程,2000,22(1):55-58.
    [15] E G Willams, J D Maynard, E Skudrzyk. Sound source reconstructions using a microphone array.Journal of the Acoustic Society of America,1980,68(1):340-344.
    [16] J D Maynard, E G Willams, Y Lee. Near-field acoustic holography: Theory of generalizedholography and the development of NAH. Journal of the Acoustic Society of America,1985,78(4):1395-1413.
    [17] W A Veronesi, J D Marnard. Nearfield acoustic holography (NAH): II. Holographicreconstruction algorithms and computer implementation. Journal of the Acoustic Society ofAmerica,1987,81(5):1307-1322.
    [18]徐敏等.设备故障诊断手册.西安:西安交通大学出版社,1998.
    [19]虞和济,韩庆大,李沈等.设备故障诊断工程.北京:冶金工业出版社,2001.
    [20]刘瑞扬,王毓民.铁路货车滚动轴承早期故障轨边声学诊断系统(TADS)原理及应用.北京:中国铁道出版社,2005.
    [21]杨聚星.基于声信号分析的机械故障诊断方法研究,硕士学位论文,北京科技大学,2007.
    [22] C1iff Kaminsky. Statistical Energy Analysis of Noise and Vibration from an Automatic Engine.SAE,9, l975.
    [23] Yoshihito Tamanoi, Takashi Ohtsuka and Ryoji Ohba. Machine diagnosis using acoustic signalprocessing techniques and special sound collecting hood. IEICE Trans. Fundamentals,1995,12(1):1627-1632.
    [24] J S Kwak, J B Song. Trouble diagnosis of the grinding process by using acoustic emission signals.International Journal of Machine Tools&Manufacture,2001,41:899-913.
    [25] X L Li. A brief review: acoustic emission method for tool wears monitoring during turning.International Journal of Machine Tools&Manufacture,2002,42:157-165.
    [26] J Kaiser. Technische Hochschulo Munchen. Ph. D. Thesis. Germany, Munich,1950.
    [27] B H Schofield. Report ARL-150, Aeronautical Research Laboratory, Office of Technical Services,U.S, Dept. of Commerce, Washington, D.C.,1961.
    [28] H L Dunegan. Factors Affecting Acoustic Emission Response from Materials. Acoustic EmissionASTM STP505,1963:100-108.
    [29] L M Rogers. The Application of Vibration Analysis and Acoustic Emission Source Location toOn-line Condition Monitoring of Antifriction Bearings. Tribology International,1979,12(2):5l-59.
    [30] P D McFadden, J D Smith. Acoustic Emission Transducer for The Vibration Monitoring ofBearings at Low Speeds. Report no. CUED/C-Mech/TR29,1983.
    [31] S Fararooy, J Allan. Condition monitoring and fault diagnosis of railway signaling mechanicalequipment using acoustic emission sensors. Insight-Nondestructive Testing and ConditionMonitoring.1995,37(4):294-297.
    [32] D Mba. Applicability of acoustic emissions to monitoring the mechanical integrity of boltedstructures in low speed rotating machinery: case study. NDT&E International,2002,35:293-300.
    [33] J S Kwak, J B Song. Trouble diagnosis of the grinding process by using acoustic emission signals.International Journal of Machine Tools&Manufacture,2001,41:899-913.
    [34] U Benko, J Petrovcic, D Juricic, et al. Fault diagnosis of a vacuum cleaner motor by means ofsound analysis. Journal of Sound and Vibration,2004,276(3-5):781-806.
    [35] K Manabu, Y Ueda, H Matsumoto, et a1. Acoustic diagnosis for blower with wavelet transformand neural networks. In Proceedings of IEEE International Conference on Neural Networks,1995,Nov27-Dec,1:718-723.
    [36] J Lin. Feature extraction of machine sound using wavelet and its application in fault diagnosis.NDT&E International,2001,34(1):25-30.
    [37] W D Li, M Robert,J C Parkin. Acoustic based condition monitoring of a diesel engine usingself-organizing map networks. Applied Acoustics,2002,63:699-711.
    [38] G Hessel, F P Schmitt. A neural network approach for acoustic leak monitoring in pressurizedplants with complicated topologies. Control Engineering Practice,1996,4(9):1271-1276.
    [39]侯温良.振动噪声判别机器故障—谱相关法.声学学报,1983,8(6):339-344.
    [40]侯温良.机器噪声的谱相关.声学技术,200l,20(1):24-26.
    [41]舒大文,廖伯瑜.用振动和噪声信号诊断汽车变速箱齿轮故障的研究.昆明理工大学学报,1997,22(4):54-61.
    [42]卢学军,魏智.变速箱噪声的频谱分析与故障诊断.振动与冲击,1999,18(2):75-78.
    [43]周文其,汽油发动机故障模糊诊断数据库专家系统研究,硕十学位论文,浙江农业大学,1998.
    [44]王义军.采用虚拟仪器的湿度传感器测试系统.机械工程师,2002.12.
    [45] Giancarlo Fortino, Libero Nigro. Development of virtual data acquisition systems based onmultimedia internetworking. Computer Standard&Interfaces,1999,(21).
    [46] Raju, G.V.S Husheng Wang, Sensor data fusion using Mahalanobis distance and single1inkagealgorithm. Systems, Man, and Cybernetics,’Humans, Information and Technology’,2-5Oct1994,(3):2605-2610.
    [47]陈敏.虚拟仪器软件LabVIEW和数据采集.小型微型计算机系统,2001,22(4):4.
    [48] J S Shore. Trouble-shooting to stop vibration of centrifugal. Petro/Chem Engineer,1968,11:2-23.
    [49]张礼勇,蒋东翔等.故障诊断技术出国考察报告.机电部哈尔滨电工仪表研究所,1991.
    [50]吴今培,肖健华等.智能故障诊断与专家系统.北京:科学出版社,1997,11.
    [51] V Venkat, C King. A neural network methodology for process fault diagnosis. Journal of AICHE,1989,35(12):1993-2002.
    [52] J C Hoskins, K M Kaliyur and M H David. Fault diagnosis in complex chemical plants usingartificial neural networks. Journal of AICHE.1991,37(1):137-141.
    [53] K Watanable, et al. Incipient fault diagnosis of chemical process via artificial neural networks.Journal of AICHE,1989,35(11):1803-1812.
    [54]颜挺虎,钟秉林,黄仁.神经网络技术及其在旋转机械故障诊断中的应用.振动工程学报,1993,6(3):205-211.
    [55]宋金光.人工神经网络在航空发动机中的应用.中国民航学院学报,2002,20(3):46-51.
    [56]张海艳,夏飞.船舰电力系统故障诊断综述.船舰科学技术,2010,32(4):134-137.
    [57]黄晓光,王永泓,翁史烈.基于BP算法的电站燃气机故障诊断.中国电机学报,2000,20(22):72-74.
    [58]张义忠,冯振声.基于神经网络的电子装备故障诊断系统.计算机工程与应用,2000,36(3):159-161.
    [59] A T Vemuri, M M Polycarpou. Neural-network-based robust fault diagnosis in robotic systems.IEEE Transactions on Neural Network,1997,8(6):1410-1420.
    [60] V N Vapnik. The Nature of Statistical Learning Theory. Springer Verlag, NY,1995.
    [61] N Matic, I Guyon, J Denker. Writer-adaptation for on-line handwritten character recognition. In2nd Intel. Conf. on pattern recognition and document analusis,1993,187-191.
    [62] Worden, A J Lane. Damage identification using support vector machines. Smart Material&Structure,2001,(3):540-547.
    [63] S Poyhonen, M Negrea, A Arkkio, et al. Support vector classification for fault diagnostics of anelectrical machine. Proc. of International Conference on Signal Proceeding (ICSP’02), BeijingChina, August,2002,26-30
    [64] S Poyhonen, M Negrea, A Arkkio, et al. Fault diagnostics of an electrical machine with multiplesupport vector classifiers. Proc. of International Conference on Signal Proceeding (ICSP’02),Beijing China, August,2002,44-50.
    [65]肖健华,吴今培.样本数目不对称时的SVM模型.计算机科学,2003,30(2):165-167.
    [66]肖健华,樊可清,吴今培.应用于故障诊断的SVM理论研究.振动、测试与诊断,2001,21(4):258-262.
    [67] B Samanta. Gear fault detection using artificial neural networks and support vector machines withgenetic algerithins. Mechanical Systems and Signal Processing,2002,18(3):625-644.
    [68] B Samanta, K R AI-Balushi, AI Araimi. Artificial neural networks and support vector machineswith genetic algorithm for bearing fault detection. Engineering Applications of ArtificialIntelligence,2003,16(7-8):657-665.
    [69]马笑潇,黄席樾,柴毅.基于支持向量机的故障过程趋势预测研究.系统仿真学报,2002,14(11):1548-1551.
    [70] Yu Su, Hai Zhao, Weiji Su. Fuzzy reasoning based fault diagnosis expert system. IEEEInternational Conference on Networking, Sensing and Control.2004, Taiwan,613-617.
    [71] C Fisher. Data and information fusion for gas path debris monitoring. IEEE Proceedings onAerospace Conference,2001, Hampshire, USA,3017-3022.
    [72] Y G Wang, B Liu, Z B Gao. Application of rough set neural network in fault diagnosis oftest-launching control system of missiles. Fifth World Congress on Intelligent Control andAutomation (WCICA2004),2004, Huangzhou, China,1790-1792.
    [73]杨乐平,李海涛,赵勇等. LabVIEW高级程序设计.北京:清华大学出版社,2003.
    [74]王晓,张宝怀.基于LabVIEW的换热器性能试验装置测控系统的开发.机械工程学报,2009,45(4):309-312.
    [75]刘伟,申焱华.基于LabVIEW的旋转机械故障诊断.振动与冲击,2006,25(S):531-533.
    [76]任自中.虚拟技术在内燃机试验研究中的应用.内燃机学报,2001,19(1):76-79.
    [77]朱余清,吴伟斌,洪添胜等.基于虚拟仪器技术的发动机测功系统.广西大学学报(自然科学版),2004,29(4):310-314.
    [78]金振华,卢青春,聂圣芳.柴油机喷油泵试验台数据采集处理系统的开发明.车用发动机,2001,133(3):38-41.
    [79]王乐勤,徐鸣泉,吴大转.基于LabVIEW的水泵综合特性测试系统研究.流体机械,2005,33(2):33-38.
    [80]王玉彬,孙永兴,张春青.螺杆泵性能试验参数测试系统.仪器仪表与检测技术,2005,24(1):73-76.
    [81]李卫华,高晓丽,李红旗.虚拟仪器在制冷空调领域的应用叨.制冷与空调,2006,(2):38-40.
    [82] W F King, D Bechert. On the sources of wayside noise generated by high-speed trains. Journal ofSound and Vibration,1979,66(3):311-332.
    [83] Paolo Castellini, Milena Martarelli. Acoustic beamforming analysis of uncertainty andmetrological performances. Mechanical Systems and Signal Processing,2008,22(3):672-692.
    [84] A Trucco. A least-squares approximation for the delays used in focused beamforming. Journal ofthe Acoustic Society of America,1998,104(1):171-175.
    [85]薛山花,叶青华,黄海宁等.利用近场MVDR双聚焦波束形成方法实现被动聚焦.应用声学,2005,24(3):177-181.
    [86] J P Burg. Maximum entropy spectral analysis. Proc of the37th meeting of the Annual Int. SEGmeeting, Oklahoma City OK,1967.
    [87] J Capon. High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE,1969,(8):1408-1418.
    [88] S M Kay, S L Marple. Spectrum analysis-a modern perspective. Proc. Of IEEE,1981,69(11):1380-1419.
    [89] M A Doron, A J Weiss. On focusing matrices for wide-band stray processing. IEEE Trans. SignalProcessing,1992,42(6):1295-1302.
    [90] E Doron, M A Down. Coherent wideband array processing. In Proc. of Int. Conf. on Acoust,Speech, Signal Processing,1992,(2):497-500.
    [91] R Kumareasan. Multi emitter location and signal parameter estimation. IEEE Trans. On AP,1986,34(3):276-280.
    [92] R Roy, A Paulraj, T Kailath. ESPIRIT-A subspace rotation approach to estimation of parametersof cissoids in noise. Acoustics, Speech, and Signal Processing, IEEE Transactions on AP,1986,34(5):1340-1342.
    [93] R Kumaresan, D W Tutts. Estimating the angles of arrival of multiple plane waves. IEEE Trans.on AES,1983,19(1):134-139.
    [94] M Viberg, B Ottersten. Sensor array processing based on subspace fitting. IEEE Trans. on SP.1991,39(5):1110-1121.
    [95] B Barsikow. Experiences with various configurations of microphone array measurement locatesound sources on railway trains operated by the DB AG. Journal of Sound and Vibration,1996,193(1):283-293.
    [96] B Barsikow, W F King, E P Maiser. Wheel/rail noise generated by high-speed train investigatedwith a line array of microphones. Journal of Sound and Vibration,1987,118(1):99-122.
    [97] B Barsikow, W F King. On Removing the Doppler frequency shift array measurement of railwaynoise. Journal of Sound and Vibration,1988,120(1):190-196.
    [98] M G Dittrich. Improved measurement methods for railway rolling noise. Journal of Sound andVibration,2003,267:431-437.
    [99] H Kook, G B Moebs, P Davis, et al. An efficient procedure for visualizing the sound fieldradiated by vehicles during standardized pass-by tests. Journal of Sound and Vibration,2000,233(1):137-156.
    [100] H Kook, P Davies, J S Bolton. The design and evaluation of microphone arrays for thevisualization of noise sources on moving vehicles. Proceedings of the1999Noise and VibrationConference, SAE Paper,99, NV-227.
    [101] T E Brooks, M A Marcolini and D S Pope. A Directional Array Approach for the Measurement ofRotor Noise Source Distributions with Controlled Spatial Resolution. Journal of Sound andVibration,1987,112(1):192-197.
    [102] M Mosher. Phased Array for Aeroacoustics Testing: Theoretical Development.2nd AIAA/CEASAeroacoustics Conference, State College, Pa.1996, AIAA paper,96-1713.
    [103] M E Watts, M Mosher, M J Barnes. The Microphone Array Phased Processing System (MAPPS).2nd AIAA/CEAS Aeroacoustics Conference. State College, Pa.1996, AIAA paper,96-1714.
    [104] J E Piet, G Elias. Airframe Noise Source Localization Using a Microphone Array.3rdAIAA/CEAS Aeroacoustics Conference, Atlanta, Georgia.1997, AIAA paper,97-1643.
    [105] U Michel, B Barsikow, J Helbig, et al. Fly-over Noise Measurements on Landing Aircraft with aMicrophone Array.4th AIAA/CEAS Aeroacoustics Conference. Toulouse, France,1998, AIAApaper,98-2336.
    [106]孙长瑜,潘学宝.二维频域波束形成方法.应用声学,1997,16(2):28-31.
    [107]罗禹贡,杨殿阁等.应用动态声全息方法识别轿车的行驶噪声源.汽车工程,2003,6(25):595-598.
    [108]毛晓群.行驶汽车车外噪声源识别的阵列处理方法.硕士学位论文,清华大学,2003.
    [109] D Yang, Z Wang, B Li, et al. Quantitative measurement of pass-by noise radiated by vehiclesrunning at high speeds. Journal of Sound and Vibration,2011,330(7):1352-1364.
    [110]乔渭阳, Ulf Michel.二位传声器阵列测量技术及其对飞机进场着陆过程噪声的实验研究.声学学报,2001,26(2):161-168.
    [111]乔渭阳, Ulf Michel.基于传声器阵列过顶测量结果的飞机起落架噪声研究.声学技术,2001,20(2):1-6.
    [112] J R Shewell, E Wolf. Inverse diffraction and a new reciprocity theorem. Journal of the AcousticalSociety of America,1968,58(l):1596.
    [113] E G Williams, J D Maynard, E Skudrzyk. Sound source reconstructions using a microphone array.Journal of the Acoustical Society of America,1980,68(1):340-344.
    [114] E G Williams, J D Maynard. Holographic imaging without wavelength resolution limit. Phys. Rev.Letts,1980,45:554-557.
    [115] E G Williams, J D Numerical. Evaluation of the Rayleigh integral for planar radiators using theFFT. Journal of the Acoustical Society of America,1982,72(6):2020-2030.
    [116] E G Williams. Series expansion of the acoustic power radiated from planar sources. Journal of theAcoustical Society of America,1983,73(5):1520-1524.
    [117] E G Williams. Numerical evaluation of the radiation from unbaffled, finite plates using the FFT.Journal of the Acoustical Society of America.1983,74(1):343-347.
    [118] R L Ochs, J D Maynard, E G Williams, et al. Extreme nearfield of an acoustic diffraction grating.Journal of the Acoustical Society of America,1983,74(5):1572-1576.
    [119] J D Maynard, E G Williams. Nearfield acoustic holography: I. Theory of generalized holographyand the development of NAH. Journal of the Acoustical Society of America,1985,78(4):1395-1413.
    [120] W A Veronesi, J D Maynard. Nearfield acoustic holography (NAH): II. Holographicreconstruction algorithms and computer implementation. Journal of the Acoustical Society ofAmerica,1987,81(5):1307-1322.
    [121] E G Williams, J D Maynard. Generalized nearfield acoustical holography for cylindricalgeometry: theory and experiment. Journal of the Acoustical Society of America,1987,81(2):389-407.
    [122] J C Lee. Spherical acoustical holography of low-frequency noise sources. Applied Acoustics.1996,48(1):85-95.
    [123] K Saijyou, S Yoshikawa. Accuracy improvement of reconstruction in near-field acousticalholography by applying data extrapolation method. Japanese Journal of Applied Physics, Part1:Regular Papers&Short Notes&Review Papers,1998,37(5B):3022-3027.
    [124] K Saijyou, S Yoshikawa. Reduction methods of the reconstruction error for large-scaleimplementation of near-field acoustical holography. Journal of the Acoustical Society of America,2001,110(4):2007-2023.
    [125] K Saijyou. Regularization method for the application of K—space data extrapolation to near-fieldacoustical holography. Journal of the Acoustical Society of America,2004,116(1):396-404.
    [126]徐亮,毕传兴,陈剑等.基于波数域外推方法的近场声全息.机械工程学报,2007,43(9):84-90.
    [127] E G Williams, et a1. Fast fourier transform and singular value decomposition formulmions forpatch nearfield acoustical holography. Journal of the Acoustical Society of America,2003,114(3):322-1333
    [128] H Fleisicher, U Axelrad. Restoring an acoustic sound from pressure data using Wiener filtering.Acoustica,1986, v60:172-175.
    [129]张德俊,夏献华等.近场声全息成像方法的研究.声学学报,1992,17(6):436-445.
    [130]张德俊,夏献华等.近场声全息成像对振动体及辐射体的成像.物理学进展,1996,16(3-4):613-623.
    [131] J F Li, J C Pascal, C Carles. A new k-space optimal filter for acoustic holography. Proceedings of3rd International Congress on Air and Structure-Borne Sound and Vibration, Montreal, Canada,June,1994,1059-1066.
    [132] H S Kwon, Y H Kim. Minimization of bias error due to windows in planar acoustic holographyusing a minimum error window. Journal of the Acoustical Society of America,1995,98:2104-2111.
    [133] M S R Bai. Acoustical source characterization by using recursive Wiener filtering. Journal of theAcoustical Society of America,1995,97(5):2657-2663.
    [134]李卫兵,陈剑等.波数域滤波迭代近场声全息.机械工程学报,2004,40(12):14-19.
    [135] B K Gardner, R J Bernhard. A noise source identification technique using an inverse Helmholtzintegral equation method. Journal of Vibration, Acoustics, Stress and Reliability in Design,1988,v110:84-90.
    [136] W Veronesi, J Maynard. Digital holographic reconstruction of sources with arbitrarily shapedsurfaces. Journal of the Acoustical Society of America,1989,85(2):588-598.
    [137] M R S Bai. Application of BEM (boundary element method)-based acoustic holography toradiation analysis of sound sources with arbitrarily shaped geometries. Journal of the AcousticalSociety of America,1992,92(1):533-549.
    [138] A F Seybert, B Soenarko, et al. An advanced computational method for radiation and scattering ofacoustic waves in three dimensions. Journal of the Acoustical Society of America,1985,77(2):362-368.
    [139] H A Schenk. Improved integral formulation for acoustic radiation problem. Journal of theAcoustical Society of America,1968, v44:41-58.
    [140] A J Burton, G F Miller. The application of integral equation methods to the numerical solutions ofsome exterior boundary value problems. Proc. Roy. Soc. London, Series A,1971,323:201-210.
    [141] B U Koo, B C Lee, J G Ih. A non-singular boundary integral equation for acoustic problem.Journal of Sound and Vibration,1996,192:263-279
    [142] S C Kang, J G Ih. On the accuracy of nearfield pressure predicted by the acoustic boundaryelement method. Journal of Sound and Vibration,2000,233(2):353-358.
    [143]刘继军.不适定问题的正则化方法及应用.北京:科学出版社,2005.
    [144] Z Wang, S F Wu. Helmholtz equation-least-squares method for reconstructing the acousticpressure field. Journal of the Acoustical Society of America,1997,102(4):2020-2032.
    [145] N Rayess, S F Wu. Experimental validations of the HELS method for reconstructing acousticradiation from a complex vibrating structure. Journal of the Acoustical Society of America,2000,107(6):2955-2964.
    [146] A Sarkissian. Method of superposition applied to scattering from a target in shallow water.Journal of the Acoustical Society of America,1994,95:2340-2345.
    [147]毕传兴,陈心昭,陈剑等.基于等效源法的近场声全息技术.中国科学(E辑),2005,35(5):535-548.
    [148]刘钊,陈心昭.结构声辐射分析的全特解场边界元法.振动工程学报,1996,9(4):341-347.
    [149] C X Bi, X Z Chen, R Zhou, et al. Reconstruction and separation in a semi-free field by using thedistributed source boundary point method-based nearfield acoustic holography. Journal ofVibration and Acoustics, Transactions of the ASME,2007,129(3):323-329.
    [150] Y C Chao. An implicit least-square method for the inverse problem of acoustic radiation. Journalof the Acoustical Society of America,1987,81(5):1288-1292.
    [151] S F Wu, J Y Yu. Reconstruction interior acoustic pressure fields via Helmholtz equationleast-squares method. Journal of the Acoustical Society of America,1998,104(4):2054-2060.
    [152] R C Wittman. Probe-corrected spherical near-field scanning theory in acoustics. IEEE.Transactions on instrumentation and measurement,1992,41(1):17-21.
    [153] T B Hansen. Spherical expansion of time-domain acoustic fields: Application to near fieldscanning. Journal of the Acoustical Society of America,1995,98(2):1204-1215.
    [154] P R Stepanishen, H W Chen. Acoustic time-independent loading on elastic shell of revolutionusing internal source density and singular value decomposition method. Journal of the AcousticalSociety of America,1996,99(4):1913-1923.
    [155] P R Stepanishen. A generalized internal source density method for forward and backwardprojection of harmonic pressure field from complex bodies. Journal of the Acoustical Society ofAmerica,1997,101(6):3270-3277.
    [156] S F Wu, N Rayess, X Zhao. Visualization of acoustic radiation from a vibrating bowling ball.Journal of the Acoustical Society of America,2001,109(6):2771-2779.
    [157] S F Wu, X Zhao. Combined Helmholtz equation-least squares method for reconstructing acousticradiation from arbitrarily shaped objects. Journal of the Acoustical Society of America,2002,112(1):179-188.
    [158] G H Koopmann, L Song, J B Fahnline. A method for computing acoustic fields based on theprinciple of wave superposition. Journal of the Acoustical Society of America,1989,86(6):2433-2438.
    [159] R A Jeans, I C Mathews. The wave superposition method as a robust technique for computingacoustic fields. Journal of the Acoustical Society of America,1992,92(2): l156-l166.
    [160] D T Wilton, R A Jeans, I C Mathews. A clarification of nonexistence problems with superpositionmethods. Journal of the Acoustical Society of America,1993,94(3):1676-1680.
    [161] B M Horacek, J C Clements. The inverse problem of electrocardiography: a solution in terms ofsingle-layer and double-layer sources of the epicedial surface. Math Biosci,1997,144(2):119-124.
    [162] S Fiori. Singular value decomposition learning on double Stiegel manifold.Int J Neural Syst.,2003,13(3):155-170.
    [163]向宇,黄玉盈.基于复数矢径的波叠加法解声辐射问题.固体力学学报,2004,25(1):35-41.
    [164] L Song, G H Koopmann, J B Falmline. Numerical errors associated with the method ofsuperposition for computing acoustic fields. Journal of the Acoustical Society of America,1991,89:2625-2633.
    [165] J B Fahnline, G H Koopmann. A numerical solution for the general radiation problem based onthe combined methods of superposition and singular-value decomposition. Journal of theAcoustical Society of America,1991,90(5):2808-2819.
    [166]于飞,陈剑,李卫兵等.一种稳健的全波数声场重构技术.中国科学(E辑),2002,32(6):1-9.
    [167]刘钊,陈心昭.结构声辐射分析的全特解场边界元法.振动工程学报,1996,9(4):341-347.
    [168]毕传兴,陈剑,周广林等.分布源边界点法在声场全息重建和预测中的应用.机械工程学报,2003,39(8):81-85.
    [169] S Y Zhang, X Z Chen. The boundary point method for the calculation of exterior acousticradiation. Journal of Sound and Vibration,1999,228(4):761-772.
    [170]毕传兴,陈心昭,陈剑等.正交球面波源边界点法及其在声全息中的应用.科学通报,2004,49(13):1322-1331.
    [171] C X Bi, X Z Chen, R Zho, et al. Reconstruction and separation in a semi-free field by using thedistributed source boundary point method-based nearfield acoustic holography. Journal ofVibration and Acoustics, Transactions of the ASME,2007,129(3):323-329
    [172]毕传兴,陈心昭,周蓉等.球面波源叠加法与球面波源边界点法实现声全息的比较研究.科学通报,2005,50(6):512-523.
    [173] E G Williams, H D Dardy, R G Fink. Nearfield acoustical holography using an underwater,automated scanner. Journal of the Acoustical Society of America,1985,78(2):789-798.
    [174] J Hald. STSF-a unique technique for scan-based near-field acoustic holography withoutrestrictions on coherence. Brueel&Kjaer Technical Review,1989,(1):1-50.
    [175] K B Ginn, J Hald. STSF-practical instrumentation and applications. Brueel&Kjaer TechnicalReview,1989,(2):1-27.
    [176]蒋伟康,高田博,西择男.声近场综合试验解析技术及其在车外噪声分析中的应用.机械工程学报,1998,34(5):77-84.
    [177] Y J Kim, J S Boltonand, H S Kwon. Partial sound field decomposition in multi-referencenear-field acoustical holography by using optimally located virtual references. Journal of theAcoustical Society of America,2004,115(4):1641-1652.
    [178] H S Kwon, Y J Kim, J S Bolton. Compensation for source non-stationary in multi-referencescan-based near-field acoustic holography. Journal of the Acoustical Society of America,2003,113(1):360-368.
    [179] T Loyau, J C Pascal. Broadband acoustic holography reconstruction from acoustic intensitymeasurement I: principle of method. Journal of the Acoustical Society of America,1988,84(5):1744-1750.
    [180] J A Mann, J C Pascal. Locating noise sources on an industrial air compressor using broadbandacoustic holography from intensity measurement (BAHIM). Noise Control Engineering Journal,1992,39(1):3-12.
    [181] E G Williams, B H Houston, J A Bucaro. Broadband nearfield acoustical holography for vibratingcylinders. Journal of the Acoustical Society of America,1989,85(2):674-679.
    [182] T Komine, et al. Aerodynamic noise measurement using near-field acoustic holography. JSAE,May,1992.
    [183]张德俊等.振动体及其辐射场的近场声全息实验研究.声学学报,1995,20(4):250-255.
    [184]何元安,何祚镛.基于平面声全息的全空间场变换: II.水下大面积发射声基阵的近场声全息实验.声学学报,2003,28(1):45-51.
    [185] G X Zhang, Z Y He. Nearfeild acoustic holography (NAH) on underwater sound sources.14thinternational congress on acoustics, Beijing, China,1992, L10-6.
    [186] A Schuhmacher, J Hald, K B Rasmusse, et al. Sound source reconstruction using inverseboundary element calculations. Journal of the Acoustical Society of America,2003,113(1):114-127.
    [187] E G Williams, et al. Interior near-field acoustical holography in flight. Journal of the AcousticalSociety of America,2000,108(4):1451-1463.
    [188] J A Mann, J C Pascal. Locating noise sources on an industrial air compressor using broadbandacoustic holography from intensity measurement (BAHIM). Noise Control Engineering Journal.1992,39(1):3-12.
    [189] E U Saemann, J Hald. Transient Tyre Noise Measurements Using Time Domain AcousticalHolography. In: Bemard J Challen eds. Proceedings of the1997Noise and Vibration Conference.1997ASE Noise&Vibration Conference, Traverse City, Michigan, USA.1997, Wandndale:Society of Automotive Engineers,1997,1423-1430.
    [190] T Tanaka, et al. Tire noise analysis during vehicle acceleration running with acousticalholography. Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society ofMechanical Engineers, Part C,2003,69(4):959-965.
    [191] T N Patro. Vehicle Powertrain Noise Diagnosis Using Acoustic Holography Techniques. In:Bemard J Challen eds. Proceedings of the1997Noise and Vibration Conference.1997ASE Noise&Vibration Conference, Traverse City, Michigan, USA.1997, Wandndale: Society ofAutomotive Engineers,1997,1431-1447.
    [192] F Deblauwe. Transient holography-what is possible for engines. Proceedings of SPIE-TheInternational Society for Optical Engineering,2000,1052-1055.
    [193] J Hald. Time domain acoustical holography and its applications. Sound and Vibration,2001,2:16-25.
    [194] D Hallman, J S Bolton. A technique for performing source identification in a reflectiveenvironment by using nearfield acoustical holography. Proceedings of the1994InternationalCongress on Noise Control Engineering, Yokohama, Japan,479.
    [195]于飞,陈剑,陈心昭.双全息面声场分离技术及其在声全息中的应用.声学学报,2003,28(5):385-389.
    [196] H S Kwon, Y H Kim. Moving frame technique for planar acoustic holography. Journal of theAcoustical Society of America,1998,103(4):1734-1741.
    [197]杨殿阁,郑四发等.利用声全息方法研究汽车噪声空间传播.中国机械工程,2001,12(10):1148-1150.
    [198]万泉,蒋伟康.循环平稳声场近场声全息理论与实验研究.声学学报,2005,30(4):379-384.
    [199] Q Wan, W K Jiang. Near field acoustic holography (NAH) theory for cyclostationary sound fieldand its application. The Journal of Sound and Vibration,2006,290:956-967.
    [200] H B Zhang, Q Wan, W K Jiang, et al. A study on holographic reconstruction of cyclostationarysound field based on boundary element method. Journal of Vibration and Acoustics, ASME,2010,132(5):054501-5.
    [201] H B Zhang, W K Jiang, Z Y Huang, et al. Research on the reconstruction of the vibro-acousticfield generated by the complicated sources using the modified wave superposition algorithm.Proc. IMechE Part C: J. Mechanical Engineering Science,2009,223(3):353-361.
    [202] Haibin Zhang, Quan Wan, Weikang Jiang. Research on the cyclostationary nearfield acousticholography based on boundary element method. Chinese Journal of Acoustics (声学学报,英文版),2009,28(1):87-96.
    [203] J Lin, L Qu. Feature extraction based on morlet wavelet and its application for mechanical faultdiagnosis. Journal of Sound and Vibration,2000,234(1):135-148.
    [204] R B Randall, J Antoni, S Chobsaard. The relationship between spectral correlation and envelopeanalysis in the diagnostics of bearing faults and other cyclostationary machine signals.Mechanical Systems and Signal Processing,2001,15(5):945-962.
    [205] Z K Peng, P W Tse, F L Chu. A comparison study of improved Hilbert–Huang transform andwavelet transform: application to fault diagnosis for rolling bearing. Mechanical Systems andSignal Processing,2005,19(5):974-988.
    [206] H Oehlmann, D Brie, M Tomczak, et al. A method for analysing gearbox faults usingtime-frequency representations. Mechanical Systems and Signal Processing,1997,11(4):529-545.
    [207] J Zhou, J Chen. A comparative study on time-frequency feature of cracked rotor by Wigner-Villedistribution and wavelet transform. Journal of Sound and Vibration,2004,276(1-2):1-11.
    [208]洪子泉,杨靖宇.统计模式识别中的特征提取.中国图像图形学报,1998,3:189-193.
    [209]张志龙.基于遥感图像的重要目标特征提取与识别方法研究.博士学位论文,国防科技大学,2005.
    [210] R M Haralick, K Shanmugan, I Dinstein. Texture Features for Image Classification. IEEETransactions on Systems, Man, and Cybernetics,1973,3(6):610-621.
    [211] Andrea Baraldi, Flavio Pamiggiani. An investigation of the textrual characteristics associatedwith gray level co-occurrence matrix statistical parameters. IEEE Trans. On Geoscience andremote sensing, Vol.33, No.2, March,1995.
    [212]张广军.机器视觉.北京:科学出版社,2005.
    [213]袁春兰,熊宗龙,周雪花等.基于Sobel算子的图像边缘检测研究.激光与红外,2009,39(1):85-87.
    [214]洪继光.灰度-梯度共生矩阵纹理分析方法.自动化学报,1984,10(1):22-25.
    [215] L Yu, Z S He, Q Cao. Gabor texture representation method for face recognition using the Gammaand generalized Gaussian models. Image and Vision Computing,2010,28:177-187.
    [216] C J Liu, H Wechsler. Gabor feature based classifcation using the enhanced Fisher lineardiscriminant model for face recognition. IEEE Trans. Image Process,2002,11(4):467-476.
    [217] L Shen, L Bai, M Fairhurst. Gabor wavelets and generalized discriminant analysis for faceidentifcation and verifcation. Image Vision Comput,2006,25(5):553-563.
    [218] D S Zhang, A Wong, M Indrawan, et a1. Content based image retrieval using Gabor texturefeatures//Proceedings of IEEE Pacific Rim Conference on Multimedia. Sydney, Ausualia: IEEEPress,2000,392-395.
    [219] J G Daugman. High confidence visual recognition of persons by a test of statistical independence.IEEE Trans Pattern Analysis and Machine Intelligence,1993,15(11):1148-1161.
    [220] B S Manjunath, W Y Ma. Texture features for browsing and retrieval of image data. IEEE Trans.Pattern Anal. Machine Intell.,1996, v18:837-842.
    [221]甘俊英,张有为.一种基于奇异值特征的神经网络人脸识别新途径.电子学报,2004,32(1):170-173.
    [222]刘元峰,赵枚,黄晓峰.基于神经网络的空调噪声故障诊断.振动工程学报,2004,17(z1):432-433.
    [223]李增芳,何勇,徐高欢.基于声强信号分析和组合神经网络的发动机故障诊断.农业机械学报,2008,39(12):170-173.
    [224]袁胜发,褚福磊. SVM多类分类算法及其在故障诊断中的应用.振动工程学报,2004(8),17(z1):419-421.
    [225] C J C Burges. A tutorial on support vector machines for pattern recognition. Data Mining andKnowledge Discovery,1998,2(2):121-167.
    [226] B S Yang, W W Hwang, M H Ko, et al., Cavitation detection of butterfly valve using supportvector machines. Journal of Sound and Vibration,2005,287(1-2):25-43.
    [227] B Samanta. Gear fault detection using artificial neural networks and support vector machines withgenetic algorithms. Mechanical Systems and Signal Processing,2004,18:625-644.
    [228] J Y Yang, Y Y Zhang. Application research of support vector machines in condition trendprediction of mechanical equipment. Lecture Notes in Computer Science,2005,3498:857-864.
    [229] B S Yang, W W Hwang, D J Kim, et al. Condition classification of small reciprocatingcompressor for refrigerators using artificial neural networks and support vector machines.Mechanical Systems and Signal Processing,2005,19(2):371-390.
    [230] M Ge, R Du, G C Zhang, et al. Fault diagnosis using support vector machine with an applicationin sheet metal stamping operations. Mechanical Systems and Signal Processing,2004,18(1):143-159.
    [231] Raju, G.V.S Husheng Wang. Sensor data fusion using Mahalanobis distance and single1inkagealgorithm. Systems, Man, and Cybernetics,1994,‘Humans, Information and Technology’,Volume:3,2-5Oct1994,2605-2610.
    [232] C C Chang, C J Lin. LIBSVM: a library for support vector machines,2001, Software available athttp://www.csie.ntu.edu.tw/~cjlin/libsvm.
    [233] J Weston, C Watkins. Multi-class Support Vector Machines.1998.
    [234] C W Hsu, C J Lin. A comparison of methods for multi-class support vector machines. IEEETransactions on Neural Networks,2002,13(2):415-425.
    [235]赵芳芳.波束形成方法在噪声源识别应用中的仿真和实验研究.硕士学位论文,上海交通大学,2007.
    [236] B Samanta, K R Al-Balushi. Artificial neural network based fault diagnostics of rolling elementbearings using time-domain features. Mechanical Systems and Signal Processing,2003,17(2):317-328.
    [237] X Lou, K A, Loparo. Bearing fault diagnosis based on wavelet transform and fuzzy inference.Mechanical Systems and Signal Processing,2004,18:1077-1095.
    [238] T Karacay, N Akturk. Experimental diagnostics of ball bearings using statistical and spectralmethods. Tribology International,2009,42:836-843.
    [239] W J Staszewski, K Worden, G R Tomlinson. Time-frequency analysis in gearbox fault detectionusing the Wigner-Ville distribution and pattern recognition. Mechanical Systems and SignalProcessing,1997,11(5):673-692.
    [240]李沈,李森,刘俊磊等. LABVIEW和MATLAB混合编程方法研究及其在柴油机故障诊断中的应用.仪表技术与传感器,2007,(1):22-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700