开式循环鱼雷热动力装置结构参数摄动系统鲁棒H_∞控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开式循环鱼雷热动力装置的鲁棒控制是一新兴的学科分支,本文在分析开
    式循环鱼雷热动力装置控制系统技术方案、建立动力系统数学模型及对动力系
    统开环特性进行分析研究的基础上,着力研究HAP三组元鱼雷热动力装置结
    构参数摄动的H_∞控制问题、动力装置启动过程的控制问题及动力装置鲁棒控制
    系统的综合与实时混合仿真问题。主要研究内容归纳如下:
     1、在分析HAP三组元鱼雷热动力系统技术方案及各主要部件性能特点的
    基础上,根据各个部件的不同情况,分别采用数理推导或实验统计分析的方法
    建立其机理模型或统计模型,构成了一种混合型非线性的HAP三组元热动力
    装置总体模型。并以此为基础建立起三组元热动力装置的变参数状态空间模
    型。
     2、深入研究了HAP三组元热动力系统的开环特性,着重分析了系统在各
    种情况下的开环稳定性及参变量之间的相互关系。
     3、研究了三组元热动力装置启动过程的控制问题,在反复仿真分析的基础
    上,给出动力装置启动过程的控制规律,并进行了开环燃烧试验的验证。
     4、在研究动力推进系统大偏差数字模拟方法的基础上,给出了一种开式循
    环鱼雷热动力系统变参数实时混合仿真的原理和方法,建立了一台动力装置控
    制系统的实时半物理仿真试验系统,为研究系统各部件之间的相互适配问题,
    以及动力装置控制系统结构参数的调整与优化问题打下了基础。
     5、基于干扰抑制下的二次稳定理论,研究了状态空间描述中所有矩阵均存
    在结构参数摄动的问题,提出了一种广义结构参数摄动系统输出反馈鲁棒H_∞控
    制器的设计方法。
     6、针对三组元鱼雷热动力装置广义结构参数摄动问题,研究了在H_2性能
    约束条件下的H_∞控制器的设计方法,推导出了鲁棒H_∞/H_2状态反馈控制规律,
    给出了结构参数摄动系统混合H_∞/H_2状态反馈控制的充分必要条件,这一结果
    可以作为H_∞/H_2控制理论在范数有界的结构摄动多变量控制系统的发展。
     7、针对鱼雷热动力装置工作状态变化范围大,系统非线性强的特点,解决
    了动力装置控制系统在控制区域边界的控制器切换及跨区域过程控制问题,设
    计了一个鱼雷热动力装置综合控制系统。以动力装置非线性模型为控制对象,
    对综合控制系统的鲁棒性能、目标跟踪性能及抗干扰性能进行了仿真验证。从
    
    
    ——
     仿真结果可知,该系统具有大幅度恒深变速、恒速变深及在变深的同时实现变
     速的功能。变深过程鱼雷航速十分稳定,变速过程调节时间在3秒以内,并实
     现了无误差目标跟踪。
The robust control of open-loop thermal power torpedo propulsion unit now
     becomes one of the new branches in scientific research. This dissertation focuses on
     the research of control problems of structured parameter perturbation of the torpedo
     power unit which uses tri-componet fuel, and on the control problems of the start-up
     transition process of its power unit, and on the problems of real time mixed
     simulation of robust control system. Based on the thorough analysis of the technical
     scheme of the control system of open-loop torpedo power unit and the analysis of its
     characteristics, and on the establishment of its mathematical model, we have made
     the following contributions and findings:
     1 ... A working model and statistical model have been established by employing
     respectively the methods of mathematical and physics derivation or experimental
     statistical analysis, thus forming a mixed nonlinear overall model of the thermal
     power unit which uses HAP tri-componet fuel. As a result, a variable-parameter state-
     space model of the thermal power unit has been set up.
     2 This dissertation provides a thorough study of the open-loop characteristics
     of the thermal power propulsion system, and focuses on the analysis of open-loop
     stability under various circumstances, and on the relationship among different
     parameters and variables.
     3~ This research offers the control rules of start-up transition process of power
     unit and has conducted open-loop combustion tests to verify them, based on the study
     of its control problem and on the repeated simulation analysis.
     4.. Based on the study of large deviation data simulation of power propulsion
     system, this research offers the principles and methods of variable-parameters and
     real time mixed simulation for open-loop torpedo thermal power system. Furthermore,
     a real time and semi-physics simulation testing system has been established so as to
     test the mutual matching of different components in the system. This testing system
     has also laid a good foundation for the study of regulation and optimization of the
     structured parameters of its control system.
     5.. In terms of the theory of quadratic stabilization under disturbance attenuation,
     this research has discovered that structured parameters perturbation exists in all
     matrices in state-space description. Therefore, it presents a new designing method for
     output feedback robust H~, control in general structured parameters perturbation
     system.
    
    
    6. Aiming at solving the sthectured parametCr perturbation in torpedO thermal
    power unit which uses HAn tri-compoent fuel, we have derived the colltrOl rules of
    robust HJH, state feedback, and offers necessary and sufficient conditions for mixed
    HN, state feedback conifOl in the system. This result is considered as the
    development of Hm, control theory in structured perturbed multi-variables conifOl
    system with norm-bounded.
    7. Because of large and changeable working area for toopdo thermal power
    unit and its nonlinear characteristics, this research has solved the problems of
    controller speed change in its power unit condol system over the boundny of contrOl
    area and of the colltrOl process across the boundare. As a result, a comPrehensive
    colltrol system of torpedo thermal power unit has been designed. Aiming at
    controlling the nonlinear model of POwer unit, we have conducted simulation tests to
    verify its robust performance, servo tracking PerfOrmance and disturbance rejection.
    From the results of above tCstS, we have proved that this system has a large range,
    constan depth and fast sPeed change, and its sPeed can be changed While it is going
    down to a cehain dePth. wnle deePening down, it has a stab
引文
[1] Barely A. B. FADEC-Digital propulsion control of the future. AIAA, 76-152.
    [2] Fiebig D. A. Full authority digital electronic engine control system provides needed reliability. AIAA, 90-2037.
    [3] Doyle J. C. Multivariable feedback design: Concepts for a classical/modern Synthesis. IEEE Trans Automat. Contr., 1981. 26(1) : 4-16.
    [4] Safonov M. G., et al. Feedback properties of multivariable systems: the role and use of thereturn difference matrix. IEEE Trans. Automat Contr., 1981,26(1) : 47-65.
    [5] Dehoff R. L. Multivariable control design principle with application to F100 turbofan engine. Proc. ACC, 1976.
    [6] Haddad W. M., et al. Generalized Riccati equation for the full and reduced-order mixed-norm H2/ H∞ Standard problem. System &control Letters, 1990,14:185-197.
    [7] Garg S. Turbofan engine control system design using the LQG/LTR methodology. Proc. ACC, 1989,134-141.
    [8] Moellenhoff D, et al. Design of robust controllers for gas turbine engines. ASME, 90-GT-133,1-8.
    [9] Nordgren R. E., et al. Robust multivariable turbofan engine control, a case study. Proc. CDC, 1994,1056-1092.
    [10] Soede J. F. F100 multivariable control synthesis program/computer implementation of the F100 multivariable control algorithm. NASA, 1983, TP-2231.
    [11] Dolye J. C., et al. State-space solutions to standard H2 and H∞ control problem. Proc. ACC, 1691-1696.
    [12] Doyle J. C., et al. State space solutions to standard H2 and H∞ control problems. IEEE Trans Automat. Contr., 1989,34(8) : 831-847.
    [13] Glover K., et al. State-space formulae for all stabilizing controllers that satisfy an H∞-norm bound and relations to risk sensitivity. System & control Letters, 1988,11:1
    [14] Francis B. A. A course in H∞control theory. Springer Verlag, 1987.
    [ 15] Kimura H, et al. Robust stabilizability for a class of transfer function. IEEE Trans Automat. Contr., 1984,26:188-793.
    [16] Khargonekar P. P., et al. H∞ optimal control with state feedback. IEEE Trans Automat. Contr., 1988. 33(8) : 786-789.
    [17] Petersen I. R. Disturbance attenuation and H∞ optimization: a design method based on the algebraic Riccati equation. IEEE Trans Automat. Contr., 1987, 32(5) : 427-429.
    [18] Zhou K., et al. An algebraic Riccati equation approach to H∞ optimization. System & Control Letters, 1988, 11:85-91.
    [19] Sampei M., et al. An algebraic approach to H∞ output feedback control problems. Systems &Control Letters, 1990, 14:13-24.
    [20] Mita T., et al. H∞ control with weighting functions having purely imaginary poles-
    
    im plementing internal models to H∞ controllers. Int. J. of Robust and Nonlinear Control. 1996,6,537-560.
    [21] Bernatein D. S., et al. LQG control with H∞ performances bound: a Riccati equation approach. IEEE Trans Automat. Contr., 1989,34:293-305.
    [22] Khargonekar P. P., et al. Mixed H2/ H∞ control: a convex optimization approach. IEEE Trans Automat. Contr., 1991,36(7) : 824-837.
    [23] Athans M., et al. Linear-quadratic Gaussian with loop transfer recovery methodology for the F-100 engine. Journal of Guidance Control and Dynamics. 1986,9(1) : 45-52.
    [24] Zanies G. Feedback and optimal sensitivity model reference transformations, multiplicative seminorms, and approximate inverses. IEEE Trans Automat Contr. ,1981,26(2) : 301-320.
    [25] Rotea M. A., et al. H2 optimal control with an H∞, constraint: the state feedback case. Automatic, 1991,27(2) : 307-316.
    [26] Rotea M. A., et al. Bounds on solution to H∞ algebraic Riccati equation and H2 properties of H∞ control solutions. System & control Letters, 1992,19:341-352.
    [27] Nobuyama E., et al. A generalization in mixed H2/H∞, control with state feedback. Systems & Control Letters, 1995,25: 289-293.
    [28] Boyd S. Linear matrix inequalities in system and control theory. The Society for Industrial and Applied Mathematics, 1994.
    [29] Peterson I. R. Linear quadratic differential games with cheep control, Systems & Control Letters, 1986, 8:181-188.
    [30] Khargonekar P. P., et al. Robust stabilization of uncertain linear systems: quadratic stabilizability and H∞, control theory. IEEE Trans Automat. Contr., 1990, 35(3) : 316-361.
    [31] Xie L., et al. Robust H∞ control for linear systems with norm bounded time varying uncertainty. IEEE Trans Automat. Contr., 1992, 37(8) : 1188-1191.
    [32] Xie L., et al. H∞ control and quadratic stabilization of systems with parameter uncertainty via output feedback. IEEE Trans Automat. Contr., 1992, 37(8) : 1253-1256.
    [33] Gu K. H∞ control of systems under norm bounded uncertainties in all system matrices. IEEE Trans Automat. Contr., 1994, 39(10) : 2135-2139.
    [34] Pfeil W. H., et al. Multivariable control of the GE T700 engine using the LQG/LTR design methodology. Proc. ACC, 1986. 1297-1304.
    [35] Williams S. J., et al. A comparison of different H∞ method in VSTOL flight control system design. Proc. ACC, 1990,2508-2513.
    [36] Adibhatla S., et al. Turbofan engine control design robust multivariable control technologies. AIAA, 96-2587.
    [37] Wolodkin G., et al. Application of parameter-dependent robust control synthesis to turbofan engines. AIAA, 98-0973, 1-8.
    [38] Doyle J. C. Analysis of feedback system with structured uncertainties. IEE Proc. 1982, 128: 242-250.
    [39] Yedavalli R. K., et al. Improved measures of stability robustness for linear state space models. IEEE Trans Automat. Contr., 1985,30: 557-579.
    
    
    [40] Yedavalli R. K., et al. Reduced conservatism in stability robustness bounds by state transformation. IEEE Trans Automat. Contr., 1986,31: 863-866.
    [41] Barmish B. R., et al. Necessary and sufficient conditions for quadratic stabilizability of an uncertain systems. Journal of Optimization theory and applications. 1985,46(4) : 399-408.
    [42] Petersn I. R. A stabilization algorithm for a class of uncertain linear systems. Systems & Controls, 1987,8:351-357.
    [43] Glover K., et al. A characterization of all solutions to the four block general distance problem. SIAM J Control and Optimization. 1991,29(2) : 283-324.
    [44] Safonov M. G., et al. Simplifying the H∞, theory via loop-shifting, matrix-pencil and descriptor concepts. Int. J. Control, 1989, 50(6) : 2467-2488.
    [45] Dorato P. Linear quadratic control: an introduction. Prentice-Hall, 1995.
    [46] Bambang R., et al Mixed H2/ H∞ control of uncertain systems, Proc. ACC, 1993,245-247.
    [47] Copeland B., et al. Zero compensation approach to singular H2 and H∞ problems. Int. J. of Robust and Nonlinear Control. 1995, 5: 71-106.
    [48] David J., et al. H2 controller design with an H∞ bounded controller. Proc ACC, 1993, 248-249.
    [49] De Gaston R. R. E., et al. Exact calculation of the multi-loop stability margin. IEEE Trans. Automat. Contr., 1988,33(2) : 156-171.
    [50] Doyle J. C., et al. Optimal controls with mixed H2 and H∞, performance objectives. Proc. ACC, 2065-2070.
    [51] Doyle J. C. Structured uncertainty in control system design. Proc. CDC, 1985,260-265.
    [52] Doyle J. C. Performance and robustness analysis for structured uncertainty, Proc. CDC, 1982: 2629-636.
    [53] Gerstner A. B. Computational solution of the algebraic Riccati equation. J SICE, 1996, 35(8) : 632-639.
    [54] Hara S., et al. A synthesis for robust tracking systems based on H∞ control. J SICE, 1996, 32(4) 502-509.
    [55] Hinrichsen D., et al. Stability radius for structured perturbations and the algebraic Riccati equation. Systems & Control Letters, 1986, 8: 105-113.
    [56] Kasenally E. M., et al. Closed formulae for a parametric mixed sensitivity problem. Systems &control Letters, 1989,12:1-7.
    [57] Khargonekar P. P., et al. Stabilization of uncertain systems with norm bounded uncertainty using control Lyapunov function. Proc. CDC, 1988,503-507.
    [58] Kimura H., et al. Synthesis of H∞, controllers based on conjugation. Proc. CDC, 1988.
    [59] Kimura H., et al. Conjugation interpolation and model matching in H∞. Int. J. Control, 1989,49:269-307.
    [60] Kimura H., et al. Directional approach to H∞, optimization and robust stabilization. IEEE Trans Automat. Contr., 1987, 32: 1085-1093.
    [61] Kimura H., et al. On the structure of H∞ control systems and related questions, IEEE Trans Automat. Contr., 1991, 36(6) : 653-667.
    
    
    [62] Liu K. Z., et al. Generalized H∞ control theory. Proc. ACC, 1992,2245-2249.
    [63] Liu K. Z., et al. Parameterization of state feedback H∞, controllers. Int. J. Control, 1990,51(3) : 535-551.
    [64] Madiwale A. N., et al. Robust H∞ control design for systems with structured parameter uncertainty. Systems & Control Letters, 1989, 12: 393-407.
    [65] Mita T., et al. Correction of the FI result in H∞ control and parameterization of H∞ state feedback controllers. IEEE Trans. Automat. Contr., 1993,38(2) : 343-350.
    [66] Nikoukhah R. On the design of H∞ controllers when standard assumptions are not satisfied, Proc. ACC, 1993,610-611.
    [67] Packard A., et al. Quadratic stability with real and complex perturbations. IEEE Trans Automat. Contr., 1990, 35(2) : 198-201.
    [68] Peng S., et al. Bounds on the algebraic Riccati equation under perturbations in the coefficients. Systems & Control Letters, 1990, 15: 175-181.
    [69] Rotea M. A., et al. Necessary and sufficient conditions for quadratic controllability of a class of uncertain systems. System & control Letters, 1995,26:195-201.
    [70] Rogers W L. X-29 H. controller synthesis. J Guidance, 1992,15(4) : 962-967.
    [71] Safonov M. G., et al. Stability margins of diagonally perturbed multivariable feedback systems. IEE Proc. 82, 129(6) : 251-256.
    [72] Stoorvogel A. A. H∞ control with state feedback robust control of linear systems and nonlinear control. Proceeding of the International Symposium NTNS-89, Volume Ⅱ.1990.
    [73] Stoorvogel A. A. The H∞ control problem. Prentice Hall, 1992.
    [74] Stoorvogel A. A. et al. Continuity properties of solutions to H2 to H∞, Riccati equations. Systems & Control Letters, 1996,27: 209-222.
    [75] Tsay S. C. Robust control for linear uncertain systems via linear quadratic state feedback. Systems & Control Letters, 1990,15:199-205.
    [76] Veillette R. J. et al. Robust stabilization and disturbance rejection for systems with structured uncertainty. Proc. CDC, 1989, 936-941.
    [77] Xie L. Output feedback H∞ control of systems with parameter uncertainty. Int. J. Control, 1996,63(47) : 741-750.
    [78] Xie L., et al. Robust H∞ control for linear systems with norm-bounded time-varying uncertainty. Proc. CDC, 1990, 1034-1035.
    [79] Xie L., et al. Robust H∞ control for linear time-invariant systems with norm-bounded uncertainty in the input matrix. Systems & Control Letters, 1990,4: 389-396.
    [80] 木村英纪.制御现状实用化展望.计测制御,1991,30(8) :647-654.
    [81] 大内茂人.H2制御H∞制御系最优化.计测自动制御学会论文集.1991. 27(10) : 1123-1130.
    [82] 冯纯伯,田玉平,忻欣.鲁棒控制系统设计.东南大学出版社,1995.
    [83] 徐纲,孙建国,张绍基.用H∞方法设计航空发动机鲁棒控制系统.航空动力学报, 1995,10(1) :90-92.
    [84] 张燕东,曾庆福.结构摄动系统鲁棒控制器的正交特征向量设计方法.西北工业大学学报,1997,15(2) .
    
    
    [85] 陶涛.航空发动机鲁棒控制研究.西北工业大学博士论文,1997.
    [86] 吕跃飞,黎中伟,熊学泉,戴冠中.航空发动机多变量PI型鲁棒控制器.1997,18(4) : 412-416.
    [87] 王曦.航空发动机结构不确定性系统多变量鲁棒H∞控制.西北工业大学博士论文, 1998.
    [88] 申铁龙.构成的不确H∞准最优补偿器构成 法.计测自动制御学会论文集.1991,27(9) :1058-1060.
    [89] 申铁龙.Riccati不等式负定余裕时变摄动准最优 制御.计测自动制御学会论文集.1992,28(4) :472-477.
    [90] 吕跃飞,戴冠中.奇异H∞状态反馈问题的降阶递推解法,控制理论与应用,1993, 10(4) :367-373.
    [91] 王松桂,贾忠贞.矩阵论中不等式.安徽教育出版社,1994.
    [92] 多伊尔.反馈控制理论.慕春隶译,清华大学出版社,1993.
    [93] 申铁龙.H∞控制理论及应用.清华大学出版社,1996.
    [94] 美多勉.H2制御.昭晃堂,1994.
    [95] 孙增圻.计算机控制理论及应用.清华大学出版社,1989.
    [96] 曹永岩,孙优贤.结构不确定线性系统的鲁棒性分析.信息与控制,1996,25(5) :257. 263.
    [97] 解学书,钟宜生.H∞控制理论.清华大学出版社,1994.
    [98] 熊学泉.H∞控制理论及其在航空发动机全包线多变量控制器设计中的应用,西北工业 大学硕士论文.1997.
    [99] 翁正新,王广雄.混合灵敏度问题的鲁棒H∞/LTR.设计方法,控制理论与应用,1995, 12(3) :284-298.
    [100] 翁正新,张仲俊,王广雄.某导弹自动驾驶仪的H∞控制.控制与决策,1997,12(2) :114-102.
    [101] 翁正新,王广雄,姚一新.鲁棒H∞状态反馈控制.控制理论与应用,1994,11(4) :456-459.
    [102] 毛维杰,孙优贤.不确定线性系统的输出反馈鲁棒H∞控制.信息与控制,1997,26(3) : 174-179.
    [103] 俞立,诸健.具有滞后输入不确定系统的鲁棒镇定.控制理论与应用,1998,15(2) : 227-280.
    [104] 杨富文.具有参数不确定性和外干扰系统鲁棒H∞状态反馈控制.控制理论与应用, 1993,10(6) :698-702.
    [105] 张燕东,曾庆福,吕跃飞.航空发动机H∞控制器设计方法.航空动力学报,1998,11(1) : 129-136.
    [106] 马瑞,卢毅.H∞控制器设计中的相关问题讨论.西北工业大学学报,1996. 14(2) :260-264.
    
    
    [107] 熊光楞.控制系统仿真与模型处理.科学出版社,1993.
    [108] 樊思齐,徐云华.航空推进系统控制,西北工业大学出版社,1995.
    [109] 郑大钟.线性系统理论.清华大学出版社,1990.
    [110] 赵连峰.鱼雷活塞发动机原理.西北工业大学出版社,1991.
    [111] 马世杰.鱼雷动力装置设计原理,兵器工业出版社,1992.
    [112] 徐德民.鱼雷自动控制系统,西北工业大学出版社,1991.
    [113] 吴旭光.控制系统计算机仿真,西北工业大学教材,1990.
    [114] 方崇智.过程总辩识,清华大学出版社,1990.
    [115] 周雪琴.计算机控制系统,西北工业大学出版社,1995.
    [116] 阙志宏.线性系统理论,西北工业大学出版社,1995.
    [117] 聂铁军.数值计算方法,西北工业大学出版社,1990.
    [118] 孙得保,汪秉文.自适应控制原理,华中理工大学出版社,1990.
    [119] 陈宗基,自适应技术的理论及应用,北京航空航天大学出版社,1991.
    [120] 陈佳实,欧阳玲.微机控制与微机自适应控制,电子工业大学出版杜,1987.
    [121] 韩曾晋.白适应控制,清华大学出版社,1995.
    [122] 李清泉.自适应控制系统理论、设计与应用,科学出版社,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700