14/56GHz MMIC四倍频器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微波电路和半导体材料的发展,单片微波集成电路(MMIC)技术日益成熟。MMIC凭借其尺寸小、质量轻、可靠性高、抗干扰能力强等一系列优点,广泛地应用于军事电子战、雷达、宽带通信、智能交通等系统,从军用到民用,MMIC的应用无所不在。
     倍频器能够降低电子设备的主振频率,扩展工作频段,解决微波频谱拥挤问题;此外,它还是频率合成器的一个重要组成部分。单片倍频器不仅具有以上的作用和特点,还结合了单片微波集成电路的优点。在现代的毫米波通信系统中,单片倍频器比混合电路设计的倍频器更具有优势。
     本论文的主要工作是基于0.15um GaAs PHEMT单片微波集成电路工艺,设计和研制14/56 GHz MMIC四倍频器芯片。该四倍频器采用有源倍频方案提高倍频增益;采用单管FET一阶四倍频电路拓扑结构,有效地减小芯片尺寸;利用四分之一波长开路微带传输线抑制和滤除基波和不需要的谐波。单片四倍频器的设计利用了Advanced Design System (ADS)软件进行电路模拟仿真和版图设计。
     本论文设计的MMIC四倍频器在输入功率为3.5~5dBm时,输入频率为14±0.5GHz条件下,其输出变频增益为-4.6±0.4dB,最大变频增益为-4.2dB;输出信号以56GHz为中心,3dB带宽7.1%;基波抑制大于30dBc,二次谐波抑制大于25dBc,三次谐波抑制大于27dBc;芯片的尺寸为1.5mm×1.2mm。该MMIC四倍频器设计满足预期目标,将应用于60GHz毫米波频综系统,提高工作频率。
     采用先进的0.15um GaAs PHEMT工艺,设计和研制实用的14/56 GHz MMIC四倍频器芯片是本学位论文的特色。目前,国内尚未见V波段MMIC毫米波四倍频器芯片的研究报道,本学位论文的研究有利于促进国内毫米波单片倍频器的发展。
The technology of Monolithic Microwave Integrated Circuit (MMIC) progresses increasingly with the development of microwave circuits and semiconductor material. Base on a series of merits of small size, light quality, high reliability and good capability of anti-jamming, MMIC is used in military electronic warfare, radar, broadband communication and intelligent traffic system and so on. The application of MMIC is everywhere from military affairs to commerce.
     Frequency multipliers can make the oscillate frequency of electron equipments lower. It can solve the problem of crowded operation frequency in microwave band. It is also an important part of frequency synthesizers. Monolithic frequency multipliers not only have the function and characteristics mentioned above, but also have merits of MMIC. Comparing with Hybrid Microwave Integrated Circuit (HMIC) frequency multipliers, MMIC frequency multipliers are popular in modern millimeter wave high frequency communication systems.
     Based on 0.15um GaAs PHEMT MMIC process, design a chip of 14/56GHz MMIC quadrupler by Advanced Design System (ADS) simulation software is the main task of the thesis. The MMIC quadrupler uses active multiple scheme to improve conversion gain. Its configuration is based on single-ended one-stage that can effectively make the chip size smaller. Rejection of the fundamental and the undesired harmonic in the MMIC quadrupler are quarter wavelength microstrip open stubs.
     When power of input signal is 3.5~5dBm, the conversion gain of the MMIC quadrupler is -4.6±0.4dB, the maximum conversion gain is -4.2dB. When input frequency is 14±0.5GHz,the 3 dB bandwidth of 7.1% is obtained which the center frequency is 56GHz. The rejection of fundamental is larger than 30 dBc and rejection of unwanted harmonic is more than 25 dBc for second harmonic and more than 27 dBc for the third. The chip size of the MMIC quadrupler is 1.5mm by 1.2mm. The designed MMIC quadrupler meets the anticipate targets and it will be used in 60GHz millimeter wave frequency synthesizers to heighten operation frequency.
     It is characteristic of the thesis that designing a chip of 14/56 GHz MMIC quadrupler with advanced 0.15 um GaAs PHEMT MMIC process. The research of V-band MMIC millimeter wave quadrupler had not been reported in our country. The research work of the thesis will help to the development of millimeter wave MMIC frequency multipliers in our country.
引文
[1] 薛良金.毫米波工程基础.哈尔滨:哈尔滨工业大学出版社,2004,pp5
    [2] 《中国集成电路大全》编委会.微波集成电路.北京:国防工业出版社,1995,pp13
    [3] I. D. Robertson,S. Lucyszyn. RFIC and MMIC design and technology. The Institution of Electrical Engineers (IEE), 2001. pp3
    [4] 费元春,陈世伟.微波单片集成电路及其发展趋势.北京理土大学学报,vo1.16,No.3,Jun.1996,pp297-302
    [5] 陈效建,迅速发展的微波与毫米单片集成电路 MMIC 技术. 2001’全国微波毫米波会议论文集,pp783
    [6] 东熠.蓬勃发展的 GaAs MMIC-1994 IEEE GaAs IC 讨论会侧记.半导体情报,Vo1.32, No.1,Feb.,1995.
    [7] Huei Wang. Monolithic 23.5 to 94 GHz Frequency Quadrupler Using 0.1um Pseudomorphic AlGaAs/InGaAs/GaAs HEMT Technology. IEEE Microwave and Guided Wave Letters Vol.4, No.3, March 1994, pp77-79
    [8] Kazuo Shirakawa,Yoshihiro Kawasaki, Yoji Ohashi el at. A 15/60GHz One-Stage MMIC Frequency Quadrupler. IEEE Microwave and Millimeter-Wave Monolithic Circuits Symposium,1996, pp35-38
    [9] Y.Campos-Roca, L.Verweyen, M.Neumanm et al. Coplanar pHEMT MMIC Frequency Multipliers for 76-GHz Automotive Radar. IEEE Microwave and Guided Wave Letters Vol.9 No.6,1999, pp242-244
    [10] Belinda Piernas, Hitoshi Hayashi, Kenjiro Nishikawa et al. A Broadband and Miniaturized V-Band PHEMT Frequency Doubler. IEEE MICROWAVE AND GUIDED WAVE LETTERS, VOL.10. No.7, JULY 2000, pp276-278
    [11] Marcus Hasselblad, Rumen Kozhuharov, Lars Landen et al. MMIC-based Nonlinear Circuits for Millimeter Wave Applications With Low Power Dissipation. Proceedings of APMC2001, Taipei, Taiwan, R.O.C., pp115-120
    [12] Keigo Kamozaki, Thomas A. Bos, Edmar Camargo. A Highly Integrated Ka-band MMIC Quadrupler. IEEE MTT-S Digest, 2004, pp171-174
    [13] 梁新辉,朱迅,汪春梅. Ku 波段倍频放大组件. 微波与卫星通信. No.4,1998
    [14] 彭文峰. Ka 波段宽带四倍频器的研制. 电子工程师. Vol.29, No.12,2003
    [15] MIKE GOLIO 著,孙龙祥等译. 射频与微波手册. 北京:国防工业出版社,2006
    [16] 费元春.固态倍频. 北京:高等教育出版社,1985, pp2-5
    [17] 高树延. 倍频器的研究. 半导体情报,1998,35(4),pp33~35
    [18] 陈庆,陆波.微波 FET 有源倍频器的工程设计.空间电子技术.No.(1-2),2001,pp41-44
    [19] 张德智.微波有源倍频器的设计与 CAD 优化技术.现代电子. No.1,2000,pp42-47
    [20] David M. Klymyshyn, Zhen Ma. Active Frequency-Multiplier Design Using CAD. IEEE Trans-MTT. Vol.51, No.4, 2003, pp1377-1385
    [21] Inder Bahl, Prakash Bhartia 著,郑新,赵玉洁,刘永宁等译. 微波固态电路设计(第二版).北京:电子工业出版社,2002,pp502
    [22] 王惠功等编译.非线性微波毫米波电路分析与设计. 北京:北京邮电学院出版社,1991
    [23] Eoin Carey, Sverre Lidholm. Millimeter-Wave Integrated Circuits. Springer, 2005
    [24] Herbert Zirath, Toru Masuda, Rumen el at. Development of 60-GHz Front-End Circuits for a High-Data-Rate Communication System. IEEE Journal of Solid-State Circuits. Vol.39, No.10, October, 2004, pp1640-1649
    [25] Christian Fager, Lars Landen, Herbert Zirath. High Output Power, Broadband 28-56 GHz MMIC Frequency Doubler. IEEE,MTT-S Digest,2000, pp1589-1591
    [26] Reinhold Ludwig, Pavel bretchko 著,王子宇,张肇仪,徐承和等译. 射频电路设计——理论与应用. 北京:电子工业出版社,2002,pp224
    [27] 张尽颜,苗敬峰.MESFET 倍频器的研究.东南大学学报.No.1,1994,pp12-16
    [28] Donald G. Thomas, Jr. and G.R. Branner. Nonlinear Properties of PHEMT Transistors Exploited in The Design of Active RF/Microwave Frequency Multipliers. IEEE, 1997, pp245-248
    [29] 薛正辉,杨仕明,李伟明等著.微波固态电路. 北京:北京理工大学出版社,2004
    [30] Ali Boudiaf, Didier, Christian. A High-Efficiency and Low-Phase-Noise 38GHz pHEMT MMIC Tripler. IEEE Transaction on Microwave Theory and techniques, Vol.48, No.12, December,2000, pp2546-2553
    [31] Yongshik Lee, Jack R. East, Linda P.B. High-Efficiency W-Band GaAs Monolithic Frequency Multipliers. IEEE Transactions on Microwave Theory and Techniques. Vol.52, No.2, Feb., 2004, pp529-535
    [32] Yolanda Campos-Roca, Christoph Schworer, Arnulf Leuther et al. A D-Band Frequency Doubler MMIC Based on a 100-nm Metamorphic HEMT Technology. IEEE Microwave and Wireless Components Letters, Vol.15,No.7, July 2005, pp466-468
    [33] Matthias Schefer. Integrated Quadrupler Circuit in Coplanar Technology for 60 GHz Wireless Applications. IEEE MTT-S Digest, 2002, pp355-358

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700