聚酰亚胺/氧化铝纳米复合薄膜制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚酰亚胺(polyimide, PI)由于具有优异的热稳定性,机械性能和电气绝缘性能,广泛应用于航空航天及电气电子等领域。近年来,随着交流变频调速电机得到广泛应用,对绝缘材料的耐电晕性能的要求进一步提高。PI/Al_2O_3纳米复合薄膜把纳米氧化物添加到传统的绝缘材料中,可以使材料性能明显提高,因而引起了人们广泛关注。Al_2O_3具有耐高温,绝缘性能好,化学稳定性好,导热系数高等优点,将其掺杂到PI薄膜中,可以明显提高材料的耐电晕性能。目前,已报道制备PI/Al_2O_3纳米复合薄膜的方法主要是通过溶胶凝胶法将异丙醇铝水解,或者将Al_2O_3纳米粉体与偶联剂在溶剂中超声分散,采用共混法或原位生成法将异丙醇铝的水解产物或Al_2O_3纳米粉体与聚酰胺酸复合。然而,当掺杂量较高时,Al_2O_3纳米粒子易发生团聚而影响复合薄膜耐电晕性能进一步提高。
     本论文采用水热工艺,以异丙醇铝为前驱体,分别制备了γ-Al_2O_3溶胶和AlOOH溶胶;并以均苯四甲酸二酐和4,4’-二氨基二苯醚为原料,采用原位生成法制备了PI/γ-Al_2O_3和PI/AlOOH纳米复合薄膜,以提高聚酰亚胺的耐电晕性能。考察了两种体系中复合薄膜的形貌、耐电晕性能与氧化铝溶胶形貌结构之间的关系。
     PI/γ-Al_2O_3纳米复合薄膜具有新颖的网状结构及良好的分散性。γ-Al_2O_3掺杂量高达25wt%时,纳米粒子无团聚现象;掺杂量高于9wt%时,无机相在复合薄膜中形成网状结构。结合制备方法及表征结果,阐述了本文制备的PI/γ-Al_2O_3复合薄膜的结构模型及形成机理。
     PI/γ-Al_2O_3纳米复合薄膜的介电系数随着频率的增加而减小,随γ-Al_2O_3含量的增加而增加。在10~2Hz-10~4Hz频率范围,复合薄膜的介电损耗随频率的增加而降低,随掺杂量的增加而增加;在10~4Hz-10~5Hz频率范围,复合薄膜的介电损耗随频率的增加而增加,随着掺杂量的增加而降低。
     采用不同的方法对PI/γ-Al_2O_3纳米复合薄膜的表面性能进行了表征。静电力显微镜对复合薄膜表面电位测试结果表明,电晕前复合薄膜表面的无机相上具有更高的负电位。这有利于对电晕过程中到达材料表面的电子产生屏蔽及偏转作用。采用X射线光电子能谱对复合薄膜表征结果表明,γ-Al_2O_3在复合薄膜内部的含量高于在表面层的含量。
     PI/γ-Al_2O_3纳米复合薄膜具有优良的耐电晕性能,随着氧化铝含量的增加,复合薄膜的耐电晕性能增加。γ-Al_2O_3含量为25wt%时,耐电晕时间是纯PI薄膜的25.4倍,在绝缘领域可望具有广阔的应用前景。结合表征结果解释了复合薄膜耐电晕性能明显提高的原因。
     聚酰亚胺/AlOOH纳米复合薄膜中,粒度为20-30nm的球形勃姆铝石粒子比较均匀地分布在聚酰亚胺基体中。在掺杂量不超过9wt%时,复合薄膜的热稳定和耐电晕性能性随着AlOOH掺杂量增加而增加,掺杂量为9wt%的复合薄膜的耐电晕时间是纯PI薄膜耐电晕时间的13倍。然而,在掺杂量较高时,复合薄膜中发生明显的团聚现象。
Polyimides (PIs) have been extensively applied in the aero-space, microelectronic and electrical industries for insulation owing to their outstanding combination of thermal, mechanical, and electrical properties over an extremely wide temperature range. In recent years, the trend in AC motors has been towards higher operating voltages, an unavoidable consequence of which is increased attack on the insulation system due to corona discharge. Therefore, it is necessary to develop high-voltage insulation materials that perform well in corona-discharge environments. PI composite materials have received considerable attention due to the significant improvements compared with the pristine PI that can be achieved by introducing inorganic additives. By virtue of its high temperature resistance, good chemical stability, higher thermal conductivity, and its wider application in electrical devices, Al_2O_3 is considered to be one of the most important inorganic components for enhancing the corona resistance of dielectric materials. PI/Al_2O_3 nanocomposite materials can generally be prepared by mixing the polyamic acid (PAA) with the hydrolysate of aluminum isopropoxide by sol–gel method or be prepared by dispersing nano Al_2O_3 powder and the coupling agent in the solvent by means of an ultrasonic device and then be mixed with PAA. However, higher doping content usually leads to aggregation which impedes the further improvement of corona resistance of the composite films.
     In this dissertation, in order to improve the corona resistance of PI film, the sol ofγ-Al_2O_3 and AlOOH (boehmite) were synthesized from aluminum isopropoxide by hydrothermal process, and then PI/γ-Al_2O_3 and PI/AlOOH nanocomposite films were prepared using pyromellitic dianhydride (PMDA) and 4,4'-oxydianiline(ODA) as monomers by in situ process. The relationships among morphology of the alumina gel, structure of the nanocomposite films and the corona resistance time in the two systems were investigated.
     The results indicated thatγ-Al_2O_3 nanoparticles were well dispersed in the PI matrix even when the doping content was as high as 25wt%. A novel interpenetrated structure was clearly observed when the doping content exceeded 9wt%. Combing the preparation method and characterization results, we put forward the structure model and the formation mechanism of PI/γ-Al_2O_3nanocomposite films.
     Study on dielectric property of PI/γ-Al_2O_3 films revealed that dielectric coefficient decreased with increasing frequency and increased with increasing 2doping content. New phenomena were observed in the dielectric spectra of the films: dielectric loss decreased in the frequency region 10~2-10~4Hz, but increased in the frequency region 10~4-10~5Hz. With increasingγ-Al_2O_3 content, the magnitude of dielectric loss increased in the frequency region 10~2-10~4Hz, but decreased in the frequency region 10~4-10~5Hz.
     PI/γ-Al_2O_3 films were characterized by Electrostatic Force Microscope (EFM) and X-ray photoelectron spectroscopy (XPS). The results revealed that the surface potential on the inorganic phase was higher than that on the PI matrix, and this was beneficial to shield and deflect the electrons arrived to the film surface in the corona process. Furthermore, theγ-Al_2O_3 content of the composite film in the inner part was higher than that on the surface.
     The corona resistance time of PI/γ-Al_2O_3 nanocomposite films was increased with increasingγ-Al_2O_3 content. It was found to be 25.4 times longer than that of a pure PI film whenγ-Al_2O_3 content was 25wt%. The reasons of enhanced corona resistance property were proposed combined with characterization results.
     The results revealed that 20–30nm sized spherical boehmite particles were homogenously dispersed in PI/AlOOH nanocomposite films without agglomeration. Thermal stabilities and corona resistance time of PI/AlOOH films were increased when the Al_2O_3 contents were less than 9wt%. The corona resistance time of PI/γ-Al_2O_3 nanocomposite films was increased with increasingγ-Al_2O_3 content, and it was found to be 13 times longer than that of the pure PI films when AlOOH content was 9wt%. However, obvious aggregation was observed in PI/AlOOH films containing higher content of AlOOH.
引文
[1]丁孟贤,何天白.聚酰亚胺新型材料[M].北京:科学出版社, 1998: 6-20; 187-191; 263-280.
    [2]孙建平,吴洪才,李宝铭.侧链含偶氮苯发色团的聚酰亚胺薄膜的制备及其三阶非线性光学和光存储性能的研究[J].高等学校化学学报, 2004, 25(2): 372-375.
    [3] QIU F X, ZHOU Y M, LIU J Z, et al. Synthesis and Characterization of Polyimide/Silica Hybrid Waveguide Materials via Sol-Gel Technique. Proceedings of the Society of Photo-Optical Instrumentation Engineers[C], Conference on Optoelectronic Devices and Integration, Beijing, 2004: 309-316.
    [4] GAO L X, LIU Q P, GAO Z W, et al. Preparation and Characterization of Polyimide/Silica-Barium Titanate Nanocomposites[J]. Polymer Composites, 2008, 29(10):1160-1164.
    [5]王寿泰,郝铭波.耐电晕PI薄膜及其耐电晕寿命评定方法的研究[J].绝缘材料通讯, 2000, 10(3): 27-30.
    [6] HANDALA M A, LAMROUS O. Surface Degradation of Styrene Acrylonitrile Exposed to Corona Discharge[J]. European Transactions on Electrical Power, 2008, 18, (5): 494-505.
    [7] YIN W, BULTEMEIER K, BARTA D, et al. Critical Factors Forearly Failure of Magnet Wires in Inverter-Fed Motors[C]. Conference on Electrical Insulation and Dielectric Phenomena, Virginia Beach VA USA, 1995: 258-261.
    [8]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社, 2001: 11-18.
    [9] CHEN Y, IROH J O. Synthesis and Characterization of Polyimide/Silica Hybrid Composites[J]. Chemistry of Materials, 1999, 11(5): 1218-1222.
    [10] AHAMD Z, MARK J E. Polyimide-Ceramic Hybrid Composites by the Sol-Gel Route[J]. Chemistry of Materials, 2001, 13(10): 3320-3330.
    [11] LIU W D, ZHU B K, ZHANG J, et al. Preparation and Dielectric Properties of Polyimide/Silica Nanocomposite Films Prepared From Sol-Gel and Blending Process[J]. Polymers for Advanced Technologies, 2007, 18(7): 522-528.
    [12] SHANTALII T A, KARPOVA I L, DRAGAN K S. Synthesis and Thermo- Mechanical Characterization of Polyimides Reinforced with the Sol-Gel Derived Nanoparticles[J]. Science and Technology of Advanced Materials, 2003, 4(2): 115-119.
    [13] KARATA S, KAYAMAN-APOHAN N, DEMIRER H, et al. Polyimide-Silica Hybrid Coatings: Morphological, Mechanical, and Thermal Investigations[J]. Polymers for Advanced Technologies, 2007, 18(6): 490-496.
    [14] MASCIA L, KIOUL A. Influence of Siloxane Composition and Morphology on Properties of Polyimide-Silica Hybrids[J]. Polymer, 1995, 36(19): 3649-3659.
    [15] MO T C, WANG H W, CHEN S Y, et al. Synthesis and Characterization of Polyimide-Silica Nanocomposites Using Novel Fluorine-Modified Silica Nanoparticles[J]. Journal of Applied Polymer Science, 2007, 104(2): 882-890.
    [16] BREVAL E, MULVIHILL M L, DOUGHERTY J P, et al. Polyimide-Silica Microcomposite films[J]. Journal of Materials Science, 1992, 27(12): 3297-3330.
    [17] BERSHTEIN V A, EGOROVA L M, YAKUSHEV P N, et al. Molecular Dynamics in Nanostructured Polyimide-Silica Hybrid Materials and Their Thermal Stability[J]. Journal of Polymer Science: Part B: Polymer Physics, 2002, 40(10): 1056-1069.
    [18] HA C S, PARK H D, FRANK C W. Interfacial Interaction in Polyimide/ Silica Hybrid Composites by Fluorescence Spectroscopy[J]. Chemistry of Materials, 2000, 12(3): 839-844.
    [19] TANG J C, YANG H C, CHEN S Y, et al. Preparation and Properties of Polyimide/Silica Hybrid Nanocomposites[J]. Polymer Composites, 2007, 28(5): 575-581.
    [20] SUZUKI T, YAMADA Y. Physical and Gas Transport Properties of Novel Hyperbranched Polyimide-Silica Hybrid Membranes[J]. Polymer Bulletin, 2004, 53(2): 139-146.
    [21]李鸿岩,胡海兵,刘斌,等.耐电晕材料合成及耐电晕机理研究进展[J].绝缘材料, 2006, 39(6): 19-22.
    [22] CAI H, YAN F Y, XUE Q J, et al. Investigation of Tribological Properties of Al2O3-Polyimide Nanocomposites[J]. Polymer Testing, 2003, 22(8): 875-882.
    [23] QIU W L, LUO Y J, CHEN F T, et al. Morphology and Size Control of Inorganic Particles in Polyimide Hybrids by Using SiO2-TiO2 Mixed Oxide[J]. Polymer, 2003, 44(19): 5821-5826.
    [24] TONG Y J, LI Y S, LIU J P, et al.Preparation and Properties of Polyimide Films Codoped with Barium and Titanium Oxides[J]. Journal of Applied Polymer Science, 2002, 83(8): 1810-1816.
    [25] MARK J E. Ceramic-Reinforced Polymers and Polymer-Modified Ceramics [J]. Polymer Engineering and Science, 1996, 36(24): 2905-2920.
    [26] WANG H T, ZHONG W, XU P, et al. Polyimide/Silica/Titania Nanohybrids via a Novel Non-Hydrolytic Sol–Gel Route[J]. Composites: Part A, 2005, 36(7): 909-914.
    [27] KONG Y, DU H W, YANG J R. Study on Polyimide/TiO2 Nanocomposite Membranes for Gas Separation[J]. Desalination, 2002, 146(1-3): 49-55.
    [28] CHIANG P C, WHANG W T. The Synthesis and Morphology Characteristic Study of BAO-ODPA Polyimide/TiO2 Nano Hybrid Films[J]. Polymer, 2003, 44(8): 2249-2254.
    [29] XIA H S, WANG Q. Ultrasonic Irradiation: a Novel Approach to Prepare Conductive Polyaniline/Nanocrystalline Titanium Oxide Composites[J]. Chemistry of Materials. 2002; 14(5): 2158-2165.
    [30]李传峰,钟顺和.溶胶-凝胶法合成聚酰亚胺/二氧化钛杂化膜[J].高分子学报, 2002, (3): 326-330.
    [31]杜宏伟,孔瑛. PI/TiO2纳米复合材料的耐溶剂和耐热性能研究[J].高分子学报, 2003, (2): 288-291.
    [32] CHANG C M, CHANG C L, CHANG C C, et al. Synthesis and Optical Properties of Soluble Polyimide/Titania Hybrid Thin Films[J]. Macromolecular Materials and Engineering, 2006, 291(12): 1521-1528.
    [33] TONG Y J, LI Y S, XIE F C, et al. Preparation and Characteristics of Polyimide-TiO2 Nanocomposite Film[J]. Polymer International, 2000,49(11): 1543-1547.
    [34] CHEN X H, GONSALVES K E, CHOW G M, et al. Homogeneous Dispersion of Nanostructure Aluminum Nitride in a Polyimide Matrix[J]. Advanced Materials, 1994, 6(6): 481-484.
    [35] AKIYAMA M, MOROFUJI Y, KAMOHARA T, et al. Preparation of Oriented Aluminum Nitride Thin Films on Polyimide Films and Piezoelectric Response with High Thermal Stability and Flexibility[J]. Advanced Functional Materials, 2007, 17(3): 458-462.
    [36] WANG J J, YI X S. Preparation and the Properties of PMR-Type Polyimide Composites with Aluminum Nitride[J]. Journal of Applied Polymer Science, 2003, 89(14): 3913-3917.
    [37] KRAMARENKO V Y, SHANTALIL T A, KARPOVA I L. Polyimides Reinforced with the Sol-Gel Derived Organosilicon Nanophase as Low Dielectric Permittivity[J]. Polymers for Advanced Technologies, 2004, 15(3): 144-148.
    [38] CHOI S, KIM Y, KIM I, et al. Effect of Organosilica Isomers on the Interfacial Interaction in Polyimide/Aromatic Organosilica Hybrids[J]. Journal of Applied Polymer Science, 2007, 103(4): 2507-2513.
    [39]杨晶晶,周宏伟,党国栋,等.聚酰亚胺硅氧烷/聚酰亚胺两面异性复合薄膜的制备及性能研究[J].高等学校化学学报, 2006, 27(8): 1579-1582.
    [40] TAMAKI R, CHOI J, RICHARD M L. A Polyimide Nanocomposite From Octa(aminophenyl)Silsesquioxane[J]. Chemistry of Materials, 2003, 15(3): 793-797.
    [41] YANO K, USUKI A, OKADA A. Synthesis and Properties of Polyimide-Clay Hybrid Films[J]. Journal of Polymer Science Part A: Polym Chem, 1997, 35(11): 2289-2294.
    [42] YANO K, USUKI A, OKADA A, et al. Synthesis and Properties of Polyimide Clay Hybrid[J]. Journal of Polymer Science: Part A, Polymer Chemistry, 1993, 31(10): 2493-2498.
    [43] MORGAN A B, GILMAN J W, JACKSON C L. Characterization of the Dispersion of Clay in a Polyetherimide Nanocomposite[J]. Macromolecules, 2001, 34(8): 2735-2738.
    [44] DELOZIER D M, ORWOLL R A, CAHOON J F, et al. Preparation andCharacterization of Polyimide/Organoclay Nanocomposites[J]. Polymer, 2002, 43(3): 813-822.
    [45] WANG H W, DONG R X, LIU C L, et al. Effect of Clay on Properties of Polyimide-Clay Nanocomposites[J]. Journal of Applied Polymer Science, 2007, 104(1): 318-324.
    [46] YANG Y, ZHU Z K, YIN J, et al. Preparation and Properties of Hybrids of Organo-Soluble Polyimide and Montmorillonite with Various Chemical Surface Modification Methods [J]. Polymer, 1999, 40(15): 4407-4414.
    [47] MYA K Y, WANG K, CHEN L, et al. The Effect of Nanofiller on the Thermomechanical Properties of Polyimide/Clay Nanocomposites[J]. Macromolecular Chemistry and Physics, 2008, 209(6): 643-650.
    [48] ZHANG Y H, FU S Y, LI R K Y. Investigation of Polyimide–Mica Hybrid Films for Cryogenic Applications [J]. Composites Science and Technology, 2005, 65(11-12): 1743-1748.
    [49] TONG Y J, LI Y S, LIU J P, et al. Preparation and Properties of Polyimide Films Codoped with Barium and Titanium Oxides[J]. Journal of Applied Polymer Science, 2002, 83(8): 1810-1816.
    [50] WEN J Y, WILKES G L. Orangic/Inorganic Hybrid Network Materials by the Sol-Gel Approach[J].Chemistry of Materials, 1996, 8(8): 1667-1681.
    [51] SHANTALII T A, KARPOVA I L,DRAGAN K S, et al. Properties of an Organosilicon Nanophase Generated in a Poly(amide imide) Matrix by the Sol-Gel Technique[J]. Polymer Advanced Technology, 2005, 16(5): 400-404.
    [52]张雯,张露,李家利等.国外聚酰亚胺薄膜概况及其应用进展[J].绝缘材料, 2001, 34(2): 21-23.
    [53] KATZ M, THEIS R J. New High Temperature Polyimide Insulation for Partial Discharge Resistance in Harsh Environments[J]. IEEE Electrical Insulation Magzine, 1997, 13(4): 24-30.
    [54] CENTURIONI L, GUASTAVINO F, TIEMBLO P, et al. Charge Decay on Polymers Subjected to Ageing by Partial Discharges[J]. Polymer International, 1998, 46(1): 47-53.
    [55]李鸿岩,郭磊,刘斌.聚酰亚胺/纳米Al2O3复合薄膜的介电性能[J].中国电机工程学报, 2006, 26(20): 166-170.
    [56] LI H Y, LIU G, LIU B, et al. Dielectric Properties of Polyimide/Al2O3 Hybrids Synthesized by in-situ Polymerization[J]. Materials Letters, 2007, 61(7): 1507-1511.
    [57] WU J T, YANG S Y, GAO S J, et al. Preparation, Morphology and Properties of Nano-Sized Al2O3/Polyimide Hybrid Films[J]. European Polymer Journal, 2005, 41(1):73-81.
    [58]赵斌,饶宝林.聚酰亚胺/纳米氧化铝复合薄膜的研究[J].绝缘材料, 2005, 38(6): 23-25.
    [59] MA P C, NIE W, YANG Z H, et al. Preparation and Characterization of Polyimide/Al2O3 Hybrid Films by Sol-Gel Process[J]. Journal of Applied Polymer Science, 2008, 108(2): 705-712.
    [60]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社, 2001: 336-339.
    [61] DISSADO L A, MAZZANTI G C. The Role of Trapped Space Charge in the Electrical Aging of Insulating Materials[J]. IEEE Transations on Dielectrics and Electrical Insulation, 1997, 4(5): 496-506.
    [62]李鸿岩,王峰,郭磊,等.变频电机的匝间绝缘电老化机理[J].绝缘材料, 2005, 38(2): 57-60.
    [63]李吉晓,张冶文,夏钟福,等.空间电荷在聚合物老化和击穿过程中的作用[J].科学通报, 2000, 45(23):2469-2475.
    [64] TANAKA T, KOZAKO M, FUSE N. Proposal of a Multi–Core Model for Polymer Nanocomposite Dielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(4): 669-681.
    [65] YIN W J. Dielectric Properties of an Improved Magnet Wire for Inverter-Fed Motors[J]. IEEE Electrical Insulation Magazine, 1997; 13(4): 17–23.
    [66] OKAMOTO T. Partial Discharge Resistant Mechanism of Newly Developed Enameled Wire[C]. Conference on Electrical Insulation and Dielectric Phenomena. Minnea Polis, 1997: 512-515.
    [67] HUDON C, SEGUIN J N, AMYOT N, et al. Turn Insulation Aging of Motors Exposed to Fast Pulses of Inverter Drives[C]. Electrical Insulation Conference. Chicago USA, 1997: 413-417.
    [68]尹毅,肖登明,屠德民.空间电荷在评估绝缘聚合物电老化程度中的应用研究[J].中国电机工程学报, 2002, 22(1): 43-18.
    [69]吴人洁.复合材料[M].天津:天津大学出版社, 2000: 262-263.
    [70] HALBACH T S, THOMANN Y, MüLHAUPT ROLF. Boehmite Nanorod-Reinforced-Polyethylenes and Ethylene/1-Octene Thermoplastic Elastomer Nanocomposites Prepared by in situ Olefin Polymerization and Melt Compounding[J], Journal of Polymer Science, Part A: Polymer Chemistry, 2008, 46(8): 2755-2765.
    [71] HIDBER P C, GRAULE T J, GAUCKLER L J. Citric Acid-A Dispersant for Aqueous Alumina Suspensions[J], Journal of the American Ceramic Society, 1996, 79(7): 1857-1867.
    [72] RAMESH S, SOMINSKA E, CINA B, et al. Nanocrystallineγ-Alumina Synthesized by Sonohydrolysis of Alkoxide Precursor in the Presence of Organic Acids: Structure and Morphological Properties[J]. Journal of the American Ceramic Society, 2000, 83(1): 89-94.
    [73] LEPOT N, VAN BAEL M K, VAN DEN RUL H, et al. Synthesis of Platelet Shaped Boehmite andγ-Alumina Nanoparticles via an Aqueous Route[J]. Ceramics International, 2008, 34(8): 1971-1974.
    [74] LEE Y C, WEN S B, LIANG W, et al. Nanoα-Al2O3 Powder Preparation by Calcining an Emulsion Precursor[J]. Journal of the American Ceramic Society, 2007, 90(6): 1723-1727.
    [75]何飞,赫晓东,李尧.无机盐和有机盐制备Al2O3干凝胶[J].硅酸盐学报, 2006, 34(9): 1093-1097.
    [76] LIU Y, MA D, HAN X W, et al. Hydrothermal Synthesis of Microscale Boehmite and Gamma Nanoleaves Alumina [J]. Materials Letters, 2008, 62(8-9): 1297-1301.
    [77] CHUAH G K, JAENICKE S, XU T H. The Effect of Digestion on the Surface Area and Porosity of Alumina[J]. Microporous and Mesoporous Materials, 2000, 37(3): 345-353.
    [78] LEE H C, KIM H J, RHEE C H, et al. Synthesis of Nanostructuredγ-Alumina with a Cationic Surfactant and Controlled Amounts of Water[J]. Micropor Mesopor Mater, 2005, 79(1-3): 61-68.
    [79]田明原,施尔畏,元如林,等.铝氢氧化物和氧化物晶粒的热液法制备及其形成机理[J].中国科学: E辑, 1997, 28(2): 113-118.
    [80] FONDEUR F, MITCHELL B S. Infrared Studies of Calcia-AluminaFibers[J]. Journal of the American Ceramic Society, 1996, 79(9): 2469-2473.
    [81] TROMBETTA M, BUSCA G, WILLEY R J. Characterization of Silica- Containing Aluminum Hydroxide and Oxide Aerogels[J]. Journal of Colloid Interface Science, 1997, 190(2): 416–426.
    [82]夏笃伟,张肇熙.高聚物结构分析[M].北京:化学工业出版社, 1990: 58-60.
    [83] ARAVINDAN V, VICKRAMAN P. Characterization of SiO2 and Al2O3 Incorporated PVdF-HFP Based Composite Polymer Electrolytes with LiPF3(CF3CF2)3[J]. Journal of Applied Polymer Science, 2008, 108(2): 1314-1322.
    [84] BRIGGS D.聚合物表面分析[M].曹立礼,邓宗武,译.北京:化学工业出版社, 2001: 13-51.
    [85] GIRARDEAUX C, DRUET E, DEMONCY P, et al. The Polyimide (PMDA-ODA) Titanium Interface. Part 2. XPS Study of Polyimide Treatments and Ageing[J]. Journal of Electron Spectroscopy and Related Phenomena, 1995, 74(1): 57-66.
    [86]宋晓岚,黄学辉.无机材料科学基础[M].北京:化学工业出版社, 2006: 81-82.
    [87] KANDARY S A, ALI A A M, AHMAD Z. Morphology and Thermal Mechanical Properties of Compatibilized Polyimide-Silica Nanocomposites[J]. Journal of Applied Polymer Science, 2005, 98(6): 2521-2531.
    [88] HA C S, CHO W J. Microstructure and Interface in Organic/Inorganic Hybrid Composites[J]. Advances in Polymer Technology, 2000, 11(3): 145-150.
    [89]闵新民,安继明,饶宝林等.聚合物基纳米复合材料热导率计算[J].武汉理工大学学报, 2007, 29(7): 26-29.
    [90]李东云,杨辉,谢田甜,等.水合氧化铝的热处理及纳米氧化铝的颗粒特性[J].无机化学学报, 2006, 22(1): 96-98.
    [91]雷清泉.高聚物的结构与电性能[M].武汉:华中理工大学出版社, 1990: 168-171; 187; 274-275; 278.
    [92] ZHANG J, ZHU B K, CHU H J, et al. Silica/Polyimide Hybrids and TheirDielectric Properties. I. Preparation with an Improved Sol-Gel Process with Poly(amic acid) as the Precursor[J]. Journal of Applied Polymer Science, 2005, 97(1): 20-24.
    [93]张明艳. PI/SiO2纳米杂化薄膜的研制[D].哈尔滨:哈尔滨理工大学, 2006 : 55-70.
    [94] HUANG C, ZHANG Q. Enhanced Dielectric and Electromechanical Responses in High Dielectric Coefficient All-Polymer Percolative Composites[J]. Advanced Functional Materials, 2004, 14(5): 501-506.
    [95] DELIG?Z H, YALCINYUVA T, ?ZGüMüS S, et al. Electrical Properties of Conventional Polyimide Films: Effects of Chemical Structure and Water Uptake[J]. Journal of Applied Polymer Science, 2006, 100(1): 810-818.
    [96] ZHANG M Y, ZENG S J, FAN Y, et al. Dielectric and Conduction Properties of Polyimide/Silica Nano-Hybrid Films[J]. Polymer Composite, 2008, 29(6): 617-622.
    [97] KRIPOTOU S, PISSIS P, BERSHTEIN V A, et al.Dielectric Studies of Molecular Mobility in Hybrid Polyimide-Poly(dimethylsiloxane) Networks[J]. Polymer, 2003, 44(9): 2781-2791.
    [98] QUAMARA J K, PILLAI P K C, SHARMA B L. Surface Potential Decay Characteristics and TSDC Studies in Corona Charged Kapton Polyimide Film[J]. Acta Polymerica, 1983, 34(5): 265-267.
    [99] GIRARDEAUX C, GRUET E, DEMONCY P, et al. The polyimide (PMDA/ ODA)-titanium interface. Part 1. Untreated PMDA/ODA: an XPS, AES, AFM and raman study[J]. Journal of Electron Spectroscopy and Related Phenomena, 1994, 70: 11-21.
    [100] OGAWA T, BABA S, FUJII Y. Improvement of Bond Strength of BPDA-PDA-Type Polyimide Film by Corona Discharge Treatment[J]. Journal of Applied Polymer Science, 2006, 100(4): 3403-3408.
    [101] BRIGGS D.聚合物表面分析[M].曹立礼,邓宗武,译.北京:化学工业出版社, 2001:72.
    [102] TU D M, LIU W B, ZHUANG G P, et al. Electrical Breakdown Under Quasi-Uniform Field Conditions and Effect of Emission Shields in Polyethylene[J]. IEEE Transations on Electrical Insulation, 1989, 24(4): 581-590.
    [103]胡志强.无机材料科学基础[M].北京:化学工业出版社, 2004: 62-63.
    [104]周浩然,赵德明,刘新刚,等.无机纳米氧化铝/聚酰亚胺复合膜的表征[J].光谱学与光谱分析, 2008, 28(3): 707-710.
    [105] RULE D L, SMITH D R, SPARKS L L. Thermal Conductivity of Poly Pyromellitimide Film with Alumina Filler Particles from 4.2 to 300K[J]. Cryogenics, 1996, 36(4): 283-290.
    [106] ZHAO L, PHELAN P E. Thermal Contact Conductance Across Filled Polyimide Films at Cryogenic Temperatures[J]. Cryogenics, 1999, 39(10): 803-809.
    [107] JANOSOVITS U, ZIEGLER G, SCHARF U. Structural Characterization of Intermediate Species During Synthesis of Al2O3-Aerogels[J]. Journal of Non-Crystalline Solids, 1997, 210(1): 1-13.
    [108] LIU Q, WANG A Q, WANG X D, et al. Morphologically Controlled Synthesis of Mesoporous Alumina[J]. Microporous and Mesoporous Materials, 2007, 100(1-3): 35-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700