无粘结部分预应力混凝土叠合结构的力学性能研究与数值仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
叠合梁是建筑工程中常见的一种结构形式,它将预制与现浇工艺相结合,与现浇梁相比,具有施工方便、节约模板、缩短工期、降低造价等优点,与预制装配式梁相比,具有整体性好、抗震性能好等优点。其效益已为众多工程实践所证实,大力发展和研究这种结构是符合我国工程建设需要的。
     本文在无粘结部分预应力混凝土叠合梁的受力性能试验研究的基础上,利用有限元分析软件ANSYS对试验全过程进行了仿真模拟。
     本文总结了近年来国内外无粘结部分预应力混凝土叠合结构方面的研究现状,系统归纳了钢筋混凝土非线性有限元法作为设计理论的优点和意义,以及存在的问题。系统整理了20根无粘结部分预应力混凝土叠合梁(其中2根为对比梁)受力性能的试验研究,在试验结果和理论分析的基础上,总结出了无粘结部分预应力混凝土叠合梁的承载力、变形和裂缝特性,以及“荷载预应力”、“应力超前”、“压应变滞后”的产生机理。
     系统阐述了混凝土非线性理论,包括破坏准则(单轴和多轴)、本构模型(Ottosen非线性弹性全量模型和弹塑性本构模型)和钢筋混凝土非线性有限元模型(整体式、分离式和组合式模型)。对本次模拟中两种主要单元Solid65和Pipe20的特性和应用条件进行了详细的阐述,对软件中混凝土的屈服准则、裂缝模式、压碎处理进行了系统的论述。考虑到钢筋和混凝土的联合作用,采用分离式模型,裂缝采用片状裂缝模式,不考虑混凝土的压碎,根据本次试验的特点,利用ANSYS中单元生死功能和重起动技术来解决试验梁二次浇筑和二次受力特性。
     本文在已有的混凝土叠合结构研究成果基础上,考虑其自身受力的特点,用有限元软件ANSYS建立了无粘结部分预应力混凝土叠合梁的力学模型,分析了在二次荷载作用下从加载到破坏的全过程,得到了试验梁的承载力和变形,以及应变和应力的全过程变化曲线,对“荷载预应力”、“应力超前”和“应变滞后”这些叠合结构的典型特征进行了详细的分析,并间接得到了试验梁裂缝宽度值。经过对比分析,数值模拟值与实测值吻合良好,证明用ANSYS来分析无粘结部分预应力混凝土叠合结构是可行的,数值模拟结果是可靠的。
     在国内外叠合面试验研究的基础上,建立了叠合面剪切滑移数值模型,分析了叠合梁在试验荷载作用下叠合面的抗剪性能,与试验内容和数据相近的山东建筑科学研究院和原武汉水利电力大学研究成果对比分析,得出本次试验叠合梁不会发生叠合面剪切破坏而引起的构件破坏,即叠合面能保证整个梁的正常工作状态。
     以上研究结果可为无粘结部分预应力混凝土叠合梁的工程应用和进一步研究提供参考。最后,对本文研究进行全面总结,并就该课题的进一步深化提出建议
Composite beam is a familiar structure form in construction engineering, and combines together with prefabrication and concreting in spot technics. Compared with concreting beam,it has such merits as convenient construction, saving moulding board, shortening time limit for a project, reducing cost, etc; and compared with prefabricating beam, it has such merits as good whole and good resist-shaking. Its benefit has been approved by many projects, and it will accord with project building need of our country to develop and study this structure at full steam.
     On the basis of experimental study of mechanics characteristic about unbonded and partially prestressed concrete composite beams in this paper, numerical simulation about the whole process of experiment was done by finite element software-ANSYS.
     It was summarized about study actualities recent inside and outside our country for unbonded and partially prestressed concrete composite beams in this paper, and it was concluded systemically about merits, significance and existent questions of RC nonlinear finite element law as design theory. It was neatened systemically about experimental study of mechanics characteristic for 20 pieces of unbonded and partially prestressed concrete composite beams (2 pieces as contrasted beams in 20 pieces). On the basis of experimental results and theoretic analysis, it was summarized about properties of ultimate bearing force, crack width and deformation, and being mechanism about“load-prestress”,“stress-exceeding”and press strain-lagging”for composite beams.
     It was expatiated on nonlinear theory of concrete, including failure rule (uniaxial and multiaxial relations), constitutive model (ottosen model and elastic-plastic model) and RC nonlinear finite element model(overall, discrete and complex model).It was expatiated in detail on properties and application conditions of two main elements, Solid65 and Pipe20 in this simulation, and discussed systemically about yield rule, crack mode and crush disposing of concrete in the software. Considering the combination of rebar and concrete, discrete model, smeared cracking model was adopted, and crush in concrete was not considered. From the point of this experiment, two stages property of concreting and bearing loads was solved by the birth and death function of element and the restarting technology in ANSYS.
     In this paper, on the basis of study fruits about concrete composite structure, considering itself point of loading, it was established about mechanics model of unbonded and partially prestressed concrete composite beams in ANSYS, and the whole process from loading to failure was analyzed under twice loads, and ultimate bearing force, deformation and curve of strain-stress in whole process were attained. As representative characters of composite structure, it were analyzed in detail about“load-prestress”,“stress-exceeding”and press strain-lagging”, and crack width values of experimental beams were indirect attained. By contrast analysis, numerical simulation values tally with measurable value in fact, and it was proved that ANSYS was feasible to analyse unbonded and partially prestressed concrete composite structures, and numerical simulation results were reliable.
     On the basis of experimental study about composite plane inside and outside our country, shear-slip numerical model of composite plane was established, and shear-resist capability of composite plane was analyzed under the action of experimental loads. By contrast with study fruits that have similar experimental contents and datas by ShanDong Construction Science Academe and WuHan Water Conservancy and Electric Power university, it was gained about the conclusion that composite beams were not destroyed by the failure of composite plane, and namely composite plane can assure normal work condition of whole beams.
     The study results from above can provide reference for engineering application and further study of unbonded and partially prestressed concrete composite beams. Finally, whole summarization about the study in this paper was done, and advice about furthering the task was brought forward.
引文
[1]白绍良,陈锦川.预应力混凝土叠合构件二阶段受力特性的分析及实验论证[J].重庆建筑工程学院学报,1988,Vol.10,No.4:24-28
    [2]博嘉科技编著.有限元分析软件-ANSYS 融会与贯通[M].中国水利水电出版社. 2002
    [3]陈精一,蔡国忠.电脑辅助工程分析 ANSYS 使用指南[M].北京:中国铁道出版.2002
    [4]陈晓宝.无粘结部分预应力混凝土结构计算理论的研究博士学位论文].大连:大连理工大学,1990
    [5]叠合结构应用研究专题科研组.高效预应力混凝土叠合结构在多层木屋架中的应用研究.1994,128-141
    [6]董哲仁.钢筋混凝土非线性有限元分析研究进展[J].水利水电技术,1998(10):42-48
    [7]杜拱辰,陶学康.部分预应力混凝土梁无粘结筋极限应力的研究[J].建筑结构学报, 1985 , Vol.6,No.6:2-12
    [8]房贞政.无粘结与部分预应力混凝土结构[M].北京:人民交通出版社.1999
    [9]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社.2003
    [10]过镇海.钢筋混凝土原理[M].清华大学出版社,2001
    [11]过镇海.混凝土强度和变形试验基础和本构关系[M].北京:清华大学出版社,1997
    [12]郝文化.ANSYS 土木工程应用实例[M].中国水利水电出版社,2005
    [13]黄赛超,周旺华.二次受力混凝土叠合连续梁斜截面受力性能的试验研究[J].土木工程学报,1994, 27(2):65- 74
    [14]混凝土结构设计规范 GB50010—2002.北京:中国建筑工业出版社,2002
    [15]江见鲸,陆新征,叶列平.混凝土结构有限元分析[M].清华大学出版社,2005
    [16]江见鲸.钢筋混凝土结构非线性有限元分析[M].陕西科学技术出版社,2002
    [17]夸克工作室, ANSYS 与 Mathematica[M].北京:清华大学出版社,2002
    [18]蓝宗建,庞同和,刘航等.部分预应力混凝土梁裂缝闭合性能的实验研究[J].建筑结构学报,1998,Vol.19,No.1:33-40
    [19]蓝宗建,温峰.在使用荷载下出现裂缝的部分预应力混凝土梁裂缝宽度的计算[J].建筑结构学报,1993,Vol.l4,No.5:57-66
    [20]李皓月,周田朋,刘相新.ANSYS 工程计算应用教程[M].北京:中国铁道出版社,2003
    [21]李权.ANSYS 在土木工程中的应用[M].人民邮电出版社.2005.6
    [22]刘超英,陈永春,杜拱辰.无粘结部分预应力混凝土矩形截面梁短期刚度的实验研究[J].土木工程学报,1988,Vol.21,No.3:38-44
    [23]刘福胜.无粘结部分预应力混凝土叠合梁受力性能的理论研究(山东省自然科学基金资助项目.研究报告,2002
    [24]刘涛,杨凤鹏. 精通 ANSYS[M].北京:清华大学出版社,2002
    [25]陆洪健,赵志方,高延民.无粘结部分预应力钢筋混凝土叠合梁的实验研究[J].三峡大学学报.2003 Vo1.25.No.3:23-29
    [26]陆新征,江见鲸. 用 ANSYS Solid 65 单元分析混凝土组合构件复杂应力[J].建筑结构,33(6),2003:22-24
    [27]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用[M].上海:同济大学出版社,1997(5).
    [28]吕志涛.现代预应力设计[M].北京:中国建筑工业出版社,1998:117-172
    [29]裘进荪,林俊侠,张国芸.钢筋混凝土叠合梁实验研究[J].浙江大学学报,1990, Vo1. 24 , No. l:67-73
    [30]沈聚敏,王传志,江见鲸.钢筋混凝土有限元与板壳极限分析[M]. 北京:清华大学出版社,1993(11):158-246
    [31]宋永发,王清湘.无粘结部分预应力高强混凝土梁闭合弯矩计算[J].大连理工大学学报, 2000,40(3): 348-350
    [32]宋永发,王清湘等.重复荷载作用下无粘结部分预应力高强混凝土梁正常使用阶段性能研究[J].土木工程学报,2001,34(1):19-23
    [33]宋玉普.钢筋混凝土有限元分析中的力学模型研究[D].大连:大连理工大学, 1988: 18-22
    [34]苏京卫,姚春桥,李国清,周华杰.用于预应力混凝土结构有限元分析的等效荷载法[J].华中科技大学学报(城市科学版),20 (2), 2003. 6:56-60
    [35]孙勇.无粘结部分预应力混凝土叠合梁受力性能的研究[硕士学位论文] .北京:中国农业大学,2005
    [36]谭建国.使用 ANSYS6.0 进行有限元分析[M]. 北京:北京大学出版社,2002.
    [37]陶学康,王逸,杜拱辰.无粘结部分预应力混凝土梁的变形计算.建筑结构学报[J], 1989, Vol.l0,No.1:20-26
    [38]天津大学,同济大学,东南大学,清华大学.混凝土结构[M].北京:中国建筑工业出版社, 1998
    [39]王春生,徐岳.无粘结部分预应力混凝土梁正截面抗弯强度计算方法[J].长安大学学报, 2002,Vol.22,No.1:45-52
    [40]王红.平面应变状态下等效单轴应变本构模型的研究[D].南京:河海大学,2000
    [41]王瑁成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社, 1997: 2-10
    [42]王依群,王福智.钢筋与混凝土间的粘结滑移在 ANSYS 中的模拟[J].天津大学学报, 39(2) ,2006:209-213
    [43]魏宗舒等.概率论与数理统计教程[M].高等教育出版社.1983.10
    [44]无粘结部分预应力混凝土梁裂缝专题组.无粘结部分预应力混凝土梁裂缝宽度计算方法的实验研究.混凝土结构研究报告选集(3).北京:中国建筑工业出版社, 1994 : 123-135
    [45]吴培明.混凝土结构[M].武汉:武汉工业大学出版社,2001:4-11
    [46]肖光宏,勒丽梅.部分预应力混凝土结构设计原理[M].重庆:重庆大学出版社, 1992. 10 :32-36
    [47]徐有邻,沈文都,王洪.钢筋混凝土粘结锚固性能的试验研究[J].建筑结构学报,1994, 15(3).:106-115
    [48]薛伟辰.现代预应力结构设计.北京:中国建筑工业出版社,2003:143-188
    [49]杨丽梅,江炳章.应用日益广泛的无粘结预应力技术[J].重庆交通学院学报,1996,15(增刊)
    [50]叶列平.混凝土结构[M].北京:清华大学出版社,2005
    [51]叶献国.三轴受压混凝土的强度和变形试验研究[D].北京:清华大学,1988.
    [52]袁勇.混凝土结构早期裂缝控制[M] .北京:科学出版社,2004
    [53]袁志芬.钢筋混凝土结构非线性有限元分析[D].杨陵:西北农林科技大学,2000.
    [54]张士铎.部分预应力混凝土[M].人民交通出版社,1997: 2-5
    [55]张耀军.无粘结部分预应力混凝土叠合梁正截面受力性能的实验研究[硕士学位文] .合肥:合肥工业大学,2001
    [56]张耀庭,邱继生.ANSYS 在预应力钢筋混凝土结构非线性分析中的应用[J].华中科技大学学报(城市科学版) ,20 (4 ) ,2003. 12 : 20-23
    [57]赵国藩,文明秀.无粘结部分预应力混凝土梁裂缝宽度的实验研究[J].建筑结构学报, 1991,Vo1.12,No.3:24-32
    [58]赵顺波,李树瑶.预应力混凝土叠合梁裂缝宽度和变形的计算[J].大连理工大学学报. 1993,Vo1.33,No.l:142-147
    [59]赵顺波,张新中.混凝土叠合结构设计原理与应用[M].北京:中国水利水电出版社. 2001
    [60]中国建筑科学研究院编.混凝土结构设计[M].北京:中国建筑工业出版社,2003: 185-216
    [61]周旺华.现代混凝土叠合结构[M].北京:中国建筑工业出版社,1998
    [62]朱伯芳.混凝土本构关系模型[M].北京:水利水电科学研究院,1993
    [63]朱伯芳.有限单元法的原理及应用[M].北京:中国水利水电出版社,1998
    [64]朱伯龙,草振祥.钢筋混凝土非线性分析[M].上海:同济大学出版社.1985
    [65]朱伯龙等.混凝土结构设计原理[M].上海:同济大学出版社.1992
    [66]朱尔玉,刘福胜,王冰伟.对无粘结部分预应力混凝土叠合梁变形计算方法的研究和探讨[J].水利学报,1997,10:36-43
    [67]ANSYS Theory Manual. ANSYS 8.1 Help System
    [68]ANSYS 使用手册(高级技术分析指南).美国 ANSYS 公司驻京办事处,2000
    [69]Antonio.F. Barbosa,Gabriel, Ribeiro. Analysis of Reinforced Concrete Structures Using ANSYS Nonlinear Concrete Model[J]. Computational Mechanics,1998(136):12-19
    [70]Bandy Opadhyay,T.K .Determining aging coefficient and time-dependent losses and deformations of prestressed members with due consideration of percentage of steel[J] Nuclear Engineering and Design.1995(156 ):287-311
    [71]Barakat, Samer and Bani-Hani, Khaldoon. Multi-objective reliability-based optimization of prestressed concrete beams[J].Structural Safety. 2004 (26): 311-342
    [72]Chen.W.F, Han.D.J. “A Five-Parameter Mixed Hardening Model for concrete Materiais” in Plasticity Today-Modelling Methods and Applications[M]. Elsevier Applied Science Publisher, 1985:587-602
    [73] D. D.L Chung.Corrosion Control of Steel-Reinforced Concrete[J]. Journal of Materials Engineering and performance, 2000, 9(5) 585-588
    [74] Caws,Joan.R. and Crespo-Minguillon. Cesar Probabilistic response of prestressed concrete bridges to fatigue[J].Engineering Structures,1998 (20):940-947
    [75]Chen.w. F. Plasticity in Reinforced Concrete[M]. Mcgraw-Hill Book Company, 1982:92-106
    [76]Chen, Saleeb, Constitutive Equation for Engineering Material[J].Joural of Structural Engineering, 1982,vol.1:230-235
    [77]David Darwin, Andrew Scanlon.Cracking of Concrete Members in direct tersion[J]. ACI Journal, 1986, 83(1)
    [78]Franklin. H.A. Nonlinear analysis of reinforced concrete frames and panels [D]. Ph .D.Dissertation Division of Structural Engineering and Structural Mechanics, University of California, Berkely, 1970
    [79]Freidin.C and Krichevsky.A. Prestressed concrete containment of nuclear power station with PWR[J].Nuclear Engineering and Design, 2002 (214): 173-182
    [80]H. Park, R. E. Klingner. Nonlinear Analysis of RC Members Using Plasticity With Multiple Failure Criteria[J]. Journal of Structural Engineering, May, 1997,Vol. 123 (No. 5)
    [81]H.Kupfer and K.H.Gerstle.Behavior of Concrete Under Biaxial Stresses[J].ASCE, Engineering Mechanics Division,1973(8)
    [82]Hamed. E. and Frostig.Y. Free vibrations of cracked prestressed concrete beams[J]. Engineering Structures. 2004 (26):1611-1621
    [83]Hand.F. R, Pecknold. D.A and Schnobrich.W.C. Nonlinear Layered Analysis of RC Plates and Shells[J]. Journal of the Structure Division ASCE, 1973,99(7):143-151
    [84]Hognestad.E .Concrete Stress Distribution in Ultimate Strength Design. ACI, Dec 1955:19-23
    [85]Kupfer.H, Gerstle.K.H.Behavior of Concrete under Bbiaxial Stresses[J].Journal of the Engineering Mechanics Division, ASCE, 1973:853-866
    [86]Lin. C. S and Scordelis.A. C. Nonlinear analysis of reinforced concrete shells of general form[J].Journal of Structural Division ASCE. 1975,101(3):262-268
    [87]Liu Jianxing,Zhang Shu. The Experimental study of the Ultimate strength, Crack and Deflection of Unbonded partially prestressed concrete beams[J]. Journal of Hunan University, 1987 Vo1.14,No.3: 49-55
    [88]Ottosen .N .S .Constitutive Model for Short-time Loading of Concrete[J].ASCE, Journal of the Engineering Mechanics,105(1), 1977:172-176
    [89]Ottosen. N.S. A Failure Criterion for Concrete[J].ASCE, Journal of the Engineering Mechanics,1977:181-186
    [90]P.Fanning.Nonlinear Models of Reinforced and Post-tensioned Concrete Beams[J]. Structural Engineering, 2001(2):111-119
    [91] P.S.K and Ramaswamy Ananth,. Flexural strength predictions of steel fiber reinforced high-strength concrete in fully/partially prestressed beam specimens[J].Cement and Concrete Composites,2004 (26): 275-290
    [92]Robert Park,Thomas Paulay. Reinforced Concrete Structures[M].John Wiley&Sons. 1975:12-22
    [93]Scheel,H and Hillemeier. B. Capacity of the remanent magnetism method to detect fractures of steel in tendons embedded in prestressed concrete[J].NDT&E International. 1997(30): 211-216
    [94]Scorderis.A.Finite element analysis of reinforced beam[J]. ACI Journal. 1967(64)
    [95]Nilsson, Arthur.H. Nonlinear analysis of reinforced concrete by finite element method[J].ACI Journal,1968(65):365-371
    [96]Suidan. M and Schnobrich.W. Finite element analysis of reinforced concrete[J]. Journal of Structure Division, ASCE, 1973, 99 (10):124-129
    [97]Toribio.J and Toledano.M. Fatigue and fracture performance of cold drawn wires for prestressed concrete[J].Construction and Building Materials,2000(14): 47-53
    [98] W.A.M.Alwis. Trilinear moment curvature relationship for reinforced concrete beams[J]. ACI Structural Journal,1990.87 (3):276-283
    [99]Willam.K.J, Warnke.E.P. Constitutive Models for the Triaxial Behavior of Concrete [J]. IABSE Proceeding,1975(19):132-138
    [100] Warvin,Rausand.Reliability centered maintenance[J].Reliability Engineering and System Safety, 1996 (60):121-132.
    [101]Y. L.Mo and H. H.Han. Cyclic load tests on prestressed concrete model frames[J]. Engineering Structures,1996(18): 311-320
    [102]Zhu Eryu,Li Shuyao.Unified Calculation Model of Short-Tenn stiffness on the Hydraulic Reinforced concrete Members[J].International Conference on Water Environment and Dister Prevention, Zhengzhou, China,1996:86-92
    [103]Zienkiwiez.O. C,Owen. D. R. H,Phillips D. V. and NyakG. C.Finite element method in analysis of Reactor Vessels[J] Nuclear Engineering and Design, 1972 (20):72-80

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700