核心高强混凝土柱力学性能试验与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与普通混凝土相比,高强混凝土微观结构密实,高温下易发生爆裂,这使得高强混凝土柱的抗火性能相对较差。另外,随着混凝土强度的提高,混凝土单轴受压应力—应变曲线的上升段、下降段变陡,表现出强度越高脆性越显著的特性,这使得高强混凝土柱的抗震性能相对较差。为改善高强混凝土柱的抗火性能和抗震性能,同时保证柱具有较高的承载力,本文提出了核心高强混凝土柱这一新型构件。核心高强混凝土柱是指在横截面内以高强混凝土为核心,在核心区外围设置普通钢筋混凝土的柱,此类柱已获国家发明专利。核心高强混凝土柱从概念上讲应具有相对较高的承载力和相对较好的抗火性能及抗震性能。一定厚度的外围普通混凝土可减缓高强混凝土爆裂的发生,从而改善柱的抗火性能。外围普通混凝土与核心高强混凝土相比,受压应力—应变曲线下降段平缓,从概念上讲可使得核心高强混凝土柱的抗震性能相对较好。为探索核心高强混凝土柱的受力性能与设计方法,本文开展了以下几方面的研究工作:
     (1)针对核心高强混凝土柱横截面内两种混凝土的峰值压应变不同,轴压荷载作用下,核心高强混凝土柱何时达到轴压承载力及如何计算轴压承载力的问题,进行了16根核心高强素混凝土短柱、3根配筋核心高强混凝土短柱及1根普通钢筋混凝土短柱对比试件的轴心受压试验。试验结果表明:核心高强混凝土短柱轴力达最大值时,外围普通混凝土应力—应变曲线已进入下降段,核心高强混凝土尚未达到其峰值压应力。在计算核心高强混凝土柱轴心受压承载力时,考虑到核心高强混凝土和外围普通混凝土均未处于各自的峰值压应力状态,提出了核心高强混凝土抗力调整系数nc和外围普通混凝土抗力调整系数ne。基于试验结果和数值计算结果,拟合得到了抗力调整系数nc和ne的表达式,并提出了核心高强混凝土短柱轴心受压承载力计算公式。按照本文建议公式所得轴心受压承载力计算值与试件的抗力试验值吻合良好。
     (2)针对实际工程中大多为偏心受压柱这一情况,完成了12根以偏心距和核心高强混凝土面积为参数的核心高强混凝土短柱偏心受压试验,考察了试验柱的破坏情况、距柱端0.5倍柱高处截面在加载过程中应变的分布规律及侧向挠度沿柱高的分布规律。试验结果表明:偏压荷载下核心高强混凝土柱的破坏特征与普通钢筋混凝土柱相似,试件截面在偏压过程中满足平截面假定,侧向挠度曲线符合正弦半波曲线。在计算核心高强混凝土柱偏心受压承载力时,考虑到若采用与普通钢筋混凝土柱相同的以平截面假定为基础的计算理论,确定等效矩形应力图系数比较繁琐这一情况,采用了相对简便实用的强度叠加法。根据折算受压区高度所处的位置,分四种情况分别提出了核心高强混凝土短柱偏心受压承载力计算方法,结果表明:按照本文提出的偏心受压承载力计算方法所得结果与试验结果吻合良好。
     (3)完成了9根以轴压比和核心高强混凝土面积为参数的核心高强混凝土柱水平低周反复荷载试验,考察了试验柱的破坏过程,测得了荷载—位移滞回曲线,分析了试验柱的耗能性能、抗力衰减、刚度退化、骨架曲线及延性性能。试验结果表明:对于剪跨比为3,轴压比no=0.33~0.42的核心高强混凝土柱,在水平低周反复荷载作用下发生压弯破坏,滞回曲线饱满,无捏缩现象,位移延性系数均大于3,延性较好。采用matlab语言编制了核心高强混凝土柱压弯构件非线性全过程分析程序,该程序得到了试验结果的验证。在此基础上,探讨了轴压比、纵筋配筋率、核心混凝土强度、核心混凝土面积比、配箍特征值、外围混凝土强度及剪跨比对核心高强混凝土柱抗震性能的影响。结果表明:轴压比、核心混凝土面积比、剪跨比是影响核心高强混凝土柱抗震性能的三个主要因素;核心高强混凝土柱的抗震性能优于高强混凝土柱;适当选取核心混凝土面积比,可使核心高强混凝土柱的抗震性能与普通钢筋混凝土柱相近。基于112种工况下核心高强混凝土柱水平荷载—位移关系曲线的计算分析和数值回归,提出了以轴压比、核心混凝土面积比、剪跨比为变量的恢复力模型骨架曲线特征参数计算公式,建立了核心高强混凝土柱水平荷载—位移恢复力模型。按照建立的恢复力模型对试验柱进行了计算,所得计算曲线与实测的滞回曲线吻合良好,说明所建立的恢复力模型具有较高的精确性,能够较好地模拟和反映构件在水平地震作用下的抗震性能。
     (4)为保证核心高强混凝土柱发生延性较好的大偏心受压破坏,引入了界限轴压比的概念。界限轴压比是根据大、小偏压破坏界限所确定的轴压比,是提出各抗震等级框架柱轴压比限值的前提和基础。通过程序计算,分析了768种不同工况下核心高强混凝土柱大、小偏压破坏的界限点,得到了各工况下的界限轴压比,并提出了设计用界限轴压比。
Compared with ordinary concrete,high strength concrete is dense in micro-structure and is prone to burst under high temperature.This makes the fire-resistance performance of high strength concrete columns relatively poor. In addition,as concrete strength increases,the concrete stress-strain curve under axial compression will turn steeper and concrete will be more brittle,therefore making a relatively poor seismic capacity for the high strength concrete columns.In order to improve the fire-resistance and seismic behavior of high strength concrete columns and to remain their high bearing capacity, a new concept of columns with high strength concrete core (HSCC columns) is proposed in this paper. HSCC columns are ordinary reinforced concrete columns with high strength concrete core,which has higher bearing capacity, finer fire-resistant performance and seismic behavior. This kind of columns has already been patented in the State Intellectual Property Office of China.A certain thickness ordinary concrete can slow down the bursting of high strength concrete and thus improve the fire-resistance performance of columns.Compared with high strength concrete,the stress-strain curve of ordinary concrete drops slower, which makes HSCC columns conceptually have better seismic behavior. This thesis presents a series work carried out to investigate the mechanical behavior of HSCC columns and to propound the corresponding design method, as shown in the following:
     (1)Due to the different concrete material property, the peak compressive strain in the core high strength concrete and that in the external ordinary concrete are different.In this context,16 plain HSCC columns,3 HSCC columns and 1 ordinary reinforced concrete column are tested to collapse to investigate the strain of the columns corresponding to the peak loading and how to calculate the axial compression bearing capacity. Test results indicate that when axial force of HSCC columns reach to the maximum value,external ordinary concrete stress-strain curve has turned into the drop part, while the core high strength concrete is still in the climbing part of the curve.Considering neither the core high strength concrete nor the external ordinary concrete is in the peak compressive stress state,the coefficient of nc and ne whose formula are regressed from tested and analysis results are introduce into the axial compression bearing capacity predicting equation to adjust the resisting force of core high strength concrete and external ordinary concrete.The results of the bearing capacity calculated by the formula brought up in this paper was in good agreement with the tested results.
     (2)Twelve HSCC columns which has different area of high strength concrete core are tested to failure under eccentric loading with different eccentricity to investigate the failure characteristic of these specimens,the strain distribution in the section of the half-height of columns,and the development of lateral deflections versus the height of column.Test results indicate that failure characteristic of HSCC columns is similar to the ordinary reinforced concrete columns under eccentric loading,the strain distribution along the cross-section is accordance to the plane section assumption,and the lateral deflection curve follows the sinusoidal half-wave curve.Due to the difficulty in giving the coefficient of equivalent rectangular stress block to calculate eccentrically compression bearing capacity of HSCC columns based on the plane section assumption,the relatively simple strength superposition mehod is adopted in this paper. According to the four different reduced height of compressive zone in the HSCC columns, the calculation method is provided to predict their bearing capacity under eccentric loading.It is shown that the predictive results obtained by this method match well with the experimental ones.
     (3)Nine low cyclic loading tests are conducted on HSCC columns with different axial compression ratio and area of high strength concrete core to investigate their failure procedures.The loading-displacement hysteretic curves are measured,and the behavior of energy dissipation,strength degradation,stiffness degradation,skeleton curves and ductility of these specimens are analyzed to evaluate the seismic behavior of HSCC columns.Test results show that when the shear-span ratio is 3 and the axial compression ratio no=0.33~0.42,HSCC columns would undergo compression-flexure failure under low cyclic loading,its hysteretic curve is plump and no pinch phenomenon occurs,excellent ductility is observed with the ductility coefficient greater than 3.A computer program is developed using Matlab to investigate the nonlinear behavior of HSCC columns subjected to the combination of axial compression and bending loads,which has been verified by the test results on the 9 HSCC columns mentioned above.Parametric analysis is then conducted to discuss the influences of axial compression ratio,longitudinal reinforcement ratio,core concrete strength,core concrete area ratio,lateral confinement eigenvalue,outer concrete strength and shear-span ratio on the seismic behavior of HSCC columns.The results indicate that the axial compression ratio, core concrete area ratio and shear-span ratio have significant effect on the seismic behavior of HSCC columns.The seismic behavior of HSCC columns is better than high strength concrete columns, and can be as good as ordinary columns by controlling the core concrete area ratio without losing much lateral bearing capacity. By analysing the load-displacement curves of 112 HSCC columns,the expression for characteristic parameters are given with 3 variables of axial compression ratio, core concrete area ratio and shear-span ratio to determine their skeleton curve.The restoring-force model for HSCC columns is further established.The numerical results based on the restoring-force model are in good agreement with the experimental results,which proves that the established restoring-force model performs well in simulating the seismic behavior of HSCC columns.
     (4)The concept of ultimate axial compression ratio is introduced to ensure the HSCC columns collapse in tension failure when subjected to axial compression and bending loads.The ultimate axial compression ratio is defined to specify the ultimate of tension failure and compression failure for columns subjected to axial compression and bending loads,which is the precondition to determine the limit value of axial compression ratio for the columns in the structures under different classes of seismic measure.With the computer program,768 HSCC columns are analyzed to determine the value of the ultimate axial compression ratio for the designing of this kind of columns.
引文
1陈肇元.高强与高性能混凝土的发展及应用.土木工程学报,1997,30(5):3~11
    2丁大钧.高性能混凝土及其在工程中的应用.北京:机械工业出版社2007
    3吴波,袁杰.高温后高强混凝土力学性能的试验研究.土木工程学报,2000,33(2):8~12
    4吴波,袁杰.高温后高强混凝土的微观结构分析.哈尔滨建筑大学学报,1999,32(3):8~12
    5 F. A.Ali,D.O'Connor, A.Abu-Tair. Explosive spalling of high-strength concrete columns in fire.Magazine of Concrete Research,2001,53(3): 197~204
    6 P. Kalifa,F. D.Menneteau, D.Quenard.Spalling and pore pressure in HPC at high temperatures.Cement and Concrete Research,2000,30(12):1915~1927
    7 P. Kalifa, G. Chene, C.Galle.High-temperature behavior of HPC with polypropylene fibers from to spalling to microstructure.Cement and Concrete Research,2001,31(10):1487~1499
    8 L.T. Phan,J.R. Lawson,F. L.Davis.Effects of elevated temperature exposure on heating characteristics,spalling and residual properties of high performance concrete.Materials and Structures,2001,34(2):83~91
    9 L.T. Phan,N.J.Carino.Effects of test conditions and mixture proportions on behavior of high-strength concrete exposed to high temperatures.ACI Materials Journal,2002,99(1):54~66
    10 V. K.R. Kodur, F. P. Cheng,T. C.Wang.Effect of strength and fiber reinforcement on the fire resistance of high strength concrete columns.Journal of Structural Engineering,2003,129(2):1-22
    11 M.Li,C.X.Qian,W. Sun.Mechanical properties of high-strength concrete after fire. Cement and Concrete Research,2004,34(6):1001~1005
    12 V. K. R. Kodur, T. C.Wang, F. P. Cheng. Predicting the Fire Resistance Behaviour of High Strength Concrete Columns.Cement and Concrete Composites,2004,26(2):141~153
    13石东升.火灾下预应力构件混凝土爆裂规律试验研究.哈尔滨工业大学硕 士学位论文,2005
    14陈肇元,朱金铨,吴佩刚.高强混凝土及其应用.北京:清华大学出版社,1992
    15候长欣.高强钢筋混凝土压弯构件抗震性能的试验研究.清华大学硕士学位论文,1993
    16王琳榕.高强混凝土压弯构件抗震性能的试验研究.清华大学硕士学位论文,1996
    17过镇海,时旭东.钢筋混凝土的高温性能及其计算.北京:清华大学出版社,2002
    18 J.B.Mander, M.J.N.Priestley, R.Park.Theoretical Stress-Strain Model for Confined Concrete.Journal of the Structural Engineering,1988,114(8): 1804~1826
    19 J.B.Mander, M.J.N.Priestley, R. Park.Observed Stress-Strain Behavior of Confined Concrete. Journal of the Structural Engineering,1988,114(8): 1827~1849
    20过镇海.混凝土的强度和本构关系——原理与应用.北京:中国建筑工业出版社,2004
    21余志武,丁发兴.混凝土受压力学性能统一计算方法.建筑结构学报,2003,24(4):41~46
    22王勇威,蒲心诚,王志军.单轴压力下56,3~164.9MPa混凝土的应力-应变关系.建筑结构学报,2005,26(1):97~102
    23 J.Liu, S.J.Foster, M. M.Attard. Strength of tied high-strength concrete columns loaded in concentric compression.ACI Structural Journal,2000,97(1): 149~156
    24 S.J.Foster, J.Liu, M.M.Attard. Experimental tests on eccentrically loaded high-strength concrete columns.ACI Structural Journal,1997,94(3):295~303
    25 S.J.Foster, J.Liu, S.A.Sheikh.Cover spalling in HSC columns loaded in concentric compression.Journal of Structural Engineering,1998,124(12): 1431~1437
    26 Y. Xiao,H.W. Yun.Experimental studies on full-scale high-strength concrete columns.ACI Structural Journal,2002,99(2):199~207
    27 Joint ACI-ASCE Committee-441.High-Strength Concrete Columns:State of the Art.ACI Structural Journal,1997,94(3):323~335
    28 D.Cusson,P. Paultre.High-strength concrete columns by rectangular ties. Journal of Structural Engineering,1994,120(3):783~804
    29 M.P. Collins,D.Mitchell,J. G.MacGregor. Structural Design Considerations for High-Strength Concrete.Concrete International:Design and Construction, 1995,15(5):27~34
    30 S.R.Razvi,M.Saatcioglu.Strength and deformability of confined high-strength concrete columns.ACI Structural Journal,1994,91(2):678~687
    31 S.R. Razvi,M.Saatcioglu. Circular high-strength concrete columns under concentric compression.ACI Structural Journal,1999,96(5):817~825
    32 M.Saatcioglu, S.R. Razvi.Strength and ductility of confined concrete.Journal of Structural Engineering,1992,118(6):1590~1607
    33 M.Saatcioglu.Behavior and Design of Confined High-Strength Concrete Columns.ASCE Special Publication,1998
    34 M.Saatcioglu, S.R. Razvi.High-Strength Concrete Colunms with Square Section under Concentric Compression.Journal of Structural Engineering, 1998,124(12):1438~1447
    35 D.Cusson,F. D.Larrard, C.Boulay, P. Paultre.Strain Localization in Confined High-Strength Concrete Columns.Journal of Structural Engineering,1997, 123(9):1055~1061
    36 H.H. H. Ibrahim, J. G. MacGregor. Tests of Eccentrically Loaded High-Strength Concrete Columns.ACI Structural Journal,1996,93(5):585~594
    37 Y. Xiao,A.Martirossyan.Seismic Performance of High-Strength Concrete Columns.Journal of Structural Engineering,1998,124(3):241~251
    38 S.A. Sheikh, D.V. Shah, S.S.Khoury. Confinement of High-Strength Concrete Columns. ACI Structural Journal,1994,91(1):100~111
    39 G. Ozcebe,U.Ersoy, T.Tankut.Evaluation of minimum shear reinforcement requirements for higher strength concrete.ACI Structural Journal,1999,96(3): 361-368
    40时旭东.周期反复荷载下钢筋混凝土压弯构件的受力性能.清华大学硕士学位论文,1988
    41林昊俊.周期反复荷载下约束高强混凝土压弯构件的受力性能.清华大学硕士学位论文,1989
    42叶列平,丁大钧,程文壤.高强混凝土框架柱抗震性能的试验研究.建筑 结构学报,1992,12(4):41~48
    43王清湘,赵国藩,林立岩.高强混凝土柱延性的试验研究.建筑结构学报,1995,16(4):22~31
    44谢涛.高强混凝土柱抗震性能的试验研究.清华大学硕士学位论文,1997
    45谢涛,陈肇元.高强混凝土柱抗震性能的试验研究.建筑结构,1998,12:3~11
    46李立仁,支运芳等.低周反复荷载作用下高强混凝土柱受力性能的试验研究.重庆建筑大学学报,1996,18(4):94~100
    47张国军.大型火力发电厂高强混凝土框架柱的抗震性能研究.西安建筑科技大学博士学位论文,2003
    48张国军,白国良,刘伯权,陈秋艳.高轴压比高强砼短柱抗震性能试验研究.西安建筑科技大学学报,2003,35(2):116~119
    49张国军,吕西林.高轴压比高强混凝土短柱力学性能的试验研究.工业建筑,2005,35(3):20~22
    50张国军,吕西林,白国良.周期反复荷载作用下高轴压比框架柱抗震性能的试验研究.地震工程与工程振动,2005,25(6):70~75
    51刘伯权,白国良,张国军.高轴压比高强混凝土框架柱抗震性能试验研究.土木工程学报,2005,38(1):45~50
    52张国军,白国良,刘伯权.高强混凝土框架柱的研究与进展.西安建筑科技大学学报,2002,34(1):53~56
    53张国军,吕西林,刘健新.高强约束混凝土框架柱基于位移的抗震设计.同济大学学报(自然科学版),2007,35(2):143~148
    54肖潇.配有高强钢筋的高强混凝土柱的抗震性能研究.沈阳建筑大学硕士学位论文,2004
    55阎石,肖潇,张曰果,阚立新.高强钢筋约束混凝土矩形截面柱的抗震性能试验研究.沈阳建筑大学学报(自然科学版),2006,22(1):7~10
    56阎石,肖潇,张曰果,郑文泉.高强混凝土柱滞回性能数值分析.沈阳建筑大学学报(自然科学版),2006,22(3):353~356
    57阎石,张曰果,王旭东.圆形截面高强混凝土柱抗震性能试验研究.沈阳建筑大学学报(自然科学版),2006,22(4):538~542
    58贾金青.钢骨高强混凝土短柱及高强混凝土短柱力学性能的研究.大连理工大学博士学位论文,2000
    59贾金青,赵国藩.高强混凝土框架短柱力学性能的试验研究.建筑结构学 报,2001,22(3):43~47
    60贾金青,姜睿,徐世娘等.超高强混凝土短柱抗震性能的试验研究.地震工程与工程振动,2006,26(6):120~126
    61李惠.高强混凝土及其组合结构.北京:科学出版社,2004
    62李惠.预留压应变柱抗震性能研究.哈尔滨建筑工程学院硕士学位论文,1991
    63王震宇.钢管高强混凝土叠合柱抗震性能与设计方法的研究.哈尔滨工业大学博士学位论文,2001
    64刘克敏.钢骨高强混凝土叠合柱抗震性能与设计方法的研究.哈尔滨建筑大学硕士学位论文,2000
    65 C.Claeson,K.Gylltoft.Slender high-strength concrete columns subjected to eccentric loading.Journal of Structural Engineering,1998,124(3):233~240
    66 O.Bayrak,S.A.Sheikh.Confinement reinforcement design consideration for ductile HSC columns.Journal of Structural Engineering,1999,124(9): 999~1010
    67 M.Saatcioglu,S.R.Razvi.Displacement based design of reinforced concrete columns for confinement.ACI Structural Journal,2002,99(1):3~31
    68 A.B.Matamoros,M.A.Sozen.Drift limits of high-strength concrete columns subjected to load reversals.Journal of Structural Engineering,2003,129(3): 297~313
    69 L.Brachmann,J.Browning,A.Matamoros.Drift-dependent confinement requirements for reinforced concrete columns under cyclic loading.ACI Structural Journal,2004,101(5):669~677
    70 G. R.Pandey, H.Mutsuyoshi,T. Maki.Seismic performance of bond controlled RC columns.Engineering Structures,2008,30(9):2538~2547
    71 P. C.Jennings.Periodic response of a general yielding structure.Journal of Engineering Mechanical Division,1964,90(EM2):131~165
    72 R.W. Clough,S.B.Johnston.Effect of stiffness degradation on earthquake ductility requirements.Proc.2th Jappan Earth.Engng.Symp,1966,Tokyo Japan
    73 T. Takeda, M. A. Sozen, N. N. Nielson.Reiforced concrete response to simulated earthquakes.Journal of Structural Division,1970,96(ST12): 2557~2572
    74 M.Saiidi.Hysteresis modals for Reinforced concrete.Journal of Structure Division,1982,108(ST5):1077~1087
    75 Y. J.Park, A.M.Reinhorn,S.K.Kunnath.IDARC:inelastic damage analysis of reiforced concrete frame-shear-wall structures.Technical Report.No. NCEER-87-00008,State UNIV.of New York,1987
    76朱伯龙,张琨联.矩形及环形截面压弯构件恢复力特性的研究.同济大学学报,1981,9(2):1~10
    77成文山,邹银生.钢筋混凝土压弯构件恢复力特性的研究.湖南大学学报,1983,10(4):13~22
    78郭子雄,吕西林等.高轴压比下RC框架柱恢复力模型试验研究.土木工程学报,2004,37(5):32~38
    79阎石,肖潇,阚立新,孟庆国.高强钢筋高强混凝土柱的恢复力模型.沈阳建筑大学学报(自然科学版),2005,21(2):81~85
    80 O.Chaallal,M.Shahawy. Performance of fiber-reinforced polymer-wrapped reinforced concrete column under combined axial-flexural loading.ACI Structure Journal,2000,97(4):659~668
    81 P. Rochette,P. Labossiere.Axial testing of rectangular column models confined with composite.Journal of Composite for Construction,2000,4(3):129~136
    82 J.F. Berthet, E.Ferrier, P. Hamelin. Compressive behavior of concrete externally confined by composite jackets.Part A:experimental study. Construction and Building Materials,2005,3(19):223~232
    83 L.H.Han,W. Liu, Y. F. Yang.Behavior of thin walled steel tube confined concrete stub columns subjected to axial local compression.Thin-walled Structures,2008,46(2):155~164
    84刘界鹏,张素梅,郭兰慧.方钢管约束高强混凝土短柱轴压力学性能.哈尔滨工业大学学报,2008,40(10):1542~1545
    85江韩,储良成,左江,程文瀼.轴心受压双钢管混凝土短柱正截面受压承载力理论分析及试验研究.建筑结构学报,2008,29(4):96~105
    86谭军.碳纤维布加固预应力混凝土梁抗弯性能试验与分析.哈尔滨工业大学博士学位论文,2008
    87郭兰慧.矩形钢管混凝土构件力学性能的理论分析与试验研究.哈尔滨工业大学博士学位论文,2006
    88黄宏.中空夹层钢管混凝土压弯构件的力学性能研究.福州大学博士学位论文,2006
    89姚民乐,高金良.偏心受压矩形钢管混凝土短柱承载力研究.建筑材料学报,2009,12(2):148~151
    90余志武,丁发兴.圆钢管混凝土偏压柱的力学性能.中国公路学报,2008,21(2):40~46
    91曹双寅,敬登虎,孙宁.碳纤维布约束加固混凝土偏压柱的试验研究与分析.土木工程学报,2006,39(8):26~32
    92 A.Parvin, W. Wang.Behavior of FRP jacketed concrete columns under eccentric loading.Journal of Composites for Construction,2001,5(3):146~152
    93 J.Li,M.N.S.Hadi.Behavior of externally confined high-strength concrete columns under eccentric loading.Composites Structures,2003,62(2):145~153
    94 D.L.Liu.Behaviour of eccentrically loaded high-strength rectangular concrete-filled steel tubular columns.Journal of Constructional Steel Research, 2006,62(8):839~846
    95 M.N. S.Hadi.Behaviour of FRP strengthened concrete columns under eccentric compression loading.Composite Structures,2007,77(1):92~96
    96叶列平,赵树红,方鄂华.钢骨混凝土构件正截面承载力计算.工程力学,1999,16(2):29~36
    97李少泉,沙镇平.钢骨混凝土柱正截面承载力计算的叠加方法.建筑结构学报,2002,23(3):27~31
    98王全凤,沈章春,杨勇新,黄奕辉,曾志兴.HRB400级钢筋混凝土短柱抗震试验研究.建筑结构学报,2008,29(2):114~117
    99郭军庆,雷自学,陈鹏郎,周天华.高轴压比下加芯混凝土框架柱延性与承载力试验研究.建筑结构学报,2008,29(4):89~95
    100钱稼茹,康洪震.钢管高强混凝土组合柱抗震性能试验研究.建筑结构学U,2009,30(4):85~93
    101 L.P. Ye,K.Zhang, S.H.Zhao,P. Feng.Experimental study on seismic strengthening of RC columns with wrapped CFRP sheets.Construction and Building Materials,2003,17(6):499~506
    102S.Shimizu,T. Watanabe.Behaviour of concrete-filled steel columns under the seismic loading.Thin-walled Structures,2007,45(10):921~926
    103 J.Z.Xiao,C.Zhang.Seismic behavior of RC columns with circular, square and diamond sections.Construction and Building Materials,2008,22(5): 801~810
    104 J. P. Liu, S.M. Zhang, X. D. Zhang, L.H. Guo.Behavior and strength of circular tube confined reinforced-concrete(CTRC)columns.Journal of Constructional Steel Research,2009,65(7):1447~1458
    105 M.Tomii,K.Sakino,Y. Xiao,K. Watanabe.Earthquake resisting hysteretic behavior of reinforced concrete short columns confined by steel tube. Proceeding of the international speciality conference on concrete filled steel tubular dtructures,Harbin,China,August,1985:119~125
    106 R. S.Aboutaha, R. I.Machado.Seismic Resistance of Steel-Tubed High-Strength Reinforced-concrete Columns.Journal of Structural Engineering,1999, 125(5):485~494
    107S.K.Hwang,H.D.Yun,W. S.Park, B.C. Han.Seismic performance of high-Strength Reinforced-concrete Columns.Magazine of Concrete Research,2005, 57(5):247~260
    108 R.S. Regan,N.W. Krahl.Behavior of Prestressed Composite Beams.Journal of the Structural Division,2003,93(6):87~108
    109 H.Saadatmanesh,P. Albrechl,B.M.Ayywb.Experimental Study of Prestressed Composite Beams. Journal of the Structural Engineering,2004,15(9): 2364~2381
    110H.Saadatmanesh,P. Albrechl,B.M.Ayywb.Analytical Study of Prestressed Composite Beams.Journal of the Structural Engineering,2002,125(2): 314~318
    111B.M.Ayywb,Y. G. Sohn,H.Saadatmanesh.Prestressed Composite Girders under Positive Moment.Journal of the Structural Engineering,2005,116(11): 2931~2951
    112B.M.Ayywb,Y.G. Sohn,H.Saadatmanesh.Prestressed Composite Girders Ⅰ: Experimental Study for Negative Moment.Journal of the Structural Engineering,2003,118(10):2763~2773
    113B.M.Ayywb,Y.G. Sohn,H.Saadatmanesh.Prestressed Composite Girders Ⅱ: Analytical Study for Negative Moment.Journal of the Structural Engineering, 2003,118(10):2774~2783
    114李俊华.低周反复荷载作用下钢骨高强混凝土柱性能研究.西安建筑科技大学博士学位论文,2005
    115计静.套建增层预应力钢骨混凝土框架抗震性能与设计方法研究.哈尔滨 工业大学博士学位论文,2008
    116叶家喜.钢管约束钢筋高强混凝土短柱抗震性能试验研究.哈尔滨工业大学硕士学位论文,2008
    117Y. C.Zhang,C.Xu,X.Z.Lu.Experimental Study of Hysteretic Behaviour for Concrete-Filled Square Thin-walled Steel Tubular Columns.Journal of Constructional Steel Research,2007,63(3):317~325
    118W. Z.Zheng,J.Ji.Dynamic performance of angle-steel concrete columns under low cyclic loading-I:Experimental study. Earthquake Engineering and Engineering Vibration,2008,7(1):67~75
    119抗震性能专题组.钢筋混凝土压弯剪构件抗震性能试验研究.建筑结构学报,1992,13(2):2~10
    120姜维山,白国良.配复合箍、螺旋箍、X形筋钢筋混凝土短柱的抗震性能及抗震设计.建筑结构学报,1994,15(1):2~16
    121 P. Paultre,F. Legeron, D.Mongeau.Influence of Concrete Strength and Transverse Reinforcement Yield Strength on Behavior of High-Strength Concrete Columns.ACI Structural Journal,2001,98(4):490~501
    122 F. Legeron,P. Paultre.Behavior of High-Strength Concrete Columns under Cyclic Flexure and Constant Axial Load. ACI Structural Journal,2000,97(4): 591~601
    123朱伯龙,余安东.钢筋混凝土框架非线性全过程分析.同济大学学报,1983,11(3):21~30
    124阮兵峰.GFRP套管钢筋混凝土短柱偏压力学性能研究.大连理工大学硕士学位论文,2009
    125胡海涛,叶知满.轴心受压下高强约束混凝土强度和变形的试验研究.青岛建筑工程学院学报,1993,14(1):1~8
    126 B.Lakshmi,N.E.Shanmugam.Nonlinear Analysis of In-Filled Steel-Concrete Composite Columns Journal of Structural Engineering,2002,128(7):922~933
    127 Q.Q.Liang.Nonlinear analysis of short concrete-filled steel tubular beam-columns under axial load and biaxial bending.Journal of Constructional Steel Research,2008,64(3):295~304
    128 W. Z.Zheng,J.Ji.Dynamic performance of angle-steel concrete columns under low cyclic loading-Ⅱ:parametric study. Earthquake Engineering and Engineering Vibration,2008,7(2):137~146
    129屠永清.钢管混凝土压弯构件恢复力特性的研究.哈尔滨建筑大学博士学位论文,1994
    130韩林海,陶忠,阎维波.圆钢管混凝土压弯构件荷载—位移滞回性能分析.地震工程与工程振动,2001,21(1):64~73
    131刘界鹏.钢管约束钢筋混凝土和型钢混凝土构件静动力性能研究.哈尔滨工业大学博士学位论文,2006
    132徐亚丰,赵敬义,李宁,卢小一.钢骨—钢管混凝土柱恢复力模型.沈阳建筑大学学报(自然科学版),2009,25(3):482~485
    133王文达,韩林海.钢管混凝土框架实用荷载—位移恢复力模型研究.工程力学,2008,25(11):62~69
    134赵忠虎,谢和平,许博,刘志宝.钢筋混凝土压弯构件恢复力特性研究状况.工业建筑,2006,36(1):62~65
    135 S.Morino,J.Kawaguchi,C.Yasuzaki.Behavior of concrete filled steel tubular 3-D sub-assemblages.Proceedings of the Engineering Foundation Conference on Composite Construction in Steel and Concrete Ⅱ.Potosi, USA,1993: 726~741
    136 J.Kawaguchi,S.Morino,T. Sugimoto.Elastoplastic behavior of concrete-filled steel tubular frames.Proceedings of the Engineering Foundation Conference on Steel and Concrete Composite Construction Ⅲ.New York, USA,1997: 272~281
    137 T. Kabeyasawa, H.Shioara,S.Otani.US-Japan cooperative research on RC full scale building test-Part 5:discussion on dynamic response system.Proc. 8th WCEE,1984,S.Francisco.
    138 G. Ozcebe,M.Saatcioglu.Hysteretic shearmodel for reinforced concrete menbers.Journal of Structural Engineering,1989,115(1):132~148
    139 T. Takayanagi,W. C.Schrobrich.Non-linear analysis of coupled wall systems. Earthquake Engineering and Structural Dynamics,1979,7(1):1~22
    140李国强,崔大光.钢骨混凝土梁柱框支剪力墙试验与恢复力模型研究.建筑结构学报,2008,29(4):73~80
    141徐超,张耀春,卢孝哲.方形设肋薄壁钢管混凝土柱的恢复力研究.哈尔滨工业大学学报,2008,40(4):514~520
    142陈轩.FRP约束钢筋混凝土圆柱恢复力模型的研究.哈尔滨工业大学硕士学位论文,2009
    143 S.Watson, R. Park.Simulated seismic load tests on reinforced concrete columns.Journal of Structural Engineering,1994,120(6):1825~1849
    144 S.Watson,F. A.Zahn,R.Park.Confined reinforcement for concrete columns. Journal of Structural Engineering,1994,120(6):1798~1824
    145 S.A.Sheikh,C.C.Yeh.Tied concrete columns under axial load and flexure. Journal of structural engineering,1990,116(10):2780~2800
    146 S.A.Sheikh,S.S.Khoury.Confined concrete columns with stubs.ACI Structural Journal,1993,90(4):414~431
    147姜睿.超高强混凝土组合柱抗震性能的试验研究.大连理工大学博士学位论文,2007
    148徐亚丰,赫芳,向常艳等.钢管—钢骨混凝土组合柱轴压比限值的研究.沈阳建筑大学学报(自然科学版),2006,22(5):740~744
    149刘伟.型钢高强混凝土柱轴压比限值的试验研究.重庆大学硕士学位论文,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700