基于波概念迭代法的微波多层电路研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微波电路的迅速发展,能够对其进行高效准确分析的电磁场分析方法得到了广泛的应用。特别是近些年来,单片微波集成电路(MMIC)和平面天线技术的出现和应用对平面电路和多层电路的快速准确计算与仿真提出了更高的要求。因此发展一种原理简单、计算速度快,并能够针对多层电路的电磁计算方法特别是快速算法有着重要的意义。
     波概念迭代法(WCIP)作为一种新颖的基于微波网络中波的概念的迭代方法,能够较好的解决微波电路不连续性所造成的散射问题,同时具有较低的计算复杂度。WCIP通过电场和电流密度引入入射波和散射波,并在第k-1次和k次的入射波和散射波之间建立起转换的递归关系式。当存储的各次叠加波收敛时停止循环,最后可得到电路交界面上的电流密度和电场分布。目前WCIP已在微波单层平面电路中得到了一定的应用,但还没有得到广泛的推广。
     本文引入针对微波多层平面电路分析的WCIP分析方法,该方法将WCIP与广义传输线理论相结合,通过波概念分析每一层平面电路的不连续性,同时利用广义传输线理论来分析层与层之间谱域波的关系,最后利用迭代运算计算出每一层电路的电磁场分布,进而求得电路的特征参数。另外,本文研究了影响WCIP计算速度的因素,对比了WCIP相对于其它电磁场数值方法在计算速度上的优势。
     本文利用WCIP对微波多层平面电路进行了仿真计算,主要分析了几种基于多层平面电路的微波天线。首先求得了多层天线电路表面的电磁场分布、导纳参数、S参数、驻波比(VSWR)、增益(Gain)等;其次将WCIP的仿真结果与Ansoft HFSS仿真结果或已有文献的结果进行对比,证明了WCIP分析微波多层电路的可行性;最后分析对比了WCIP与有限元法(FEM)、矩量法(MOM)的计算复杂度,验证了WCIP分析计算的高效性。
The electromagnetic (EM) field numerical analysis method, which can analyzes the circuit efficiently and accurately, has been widely used with speed development of microwave circuit. Especially over the recent years, the appearance and application of microwave monolithic integrated circuit (MMIC) and flat plane antenna technique advances a higher analysis speed and accuracy demand for planar circuit and multilayer circuit. Consequently there are important implications for developing a new electromagnetic computational method especially fast algorithm which is with simple theory, fast calculating speed and aim at multilayer circuit.
     Wave Concept Iterative Process (WCIP), as a neoteric iterative approach, bases on the wave concept, and can work out the microwave circuit discontinuity scattering problem preferably. At the same time, the method has a lower computation complexity. WCIP introduces the incident wave and scattering wave by electric field and current density, builds the recurrence relation between the kth and (k+1)th incident wave and scattering wave. When the superposed waves are constringency, the iterative approach will stop the loop, then, electric field and current density distribution of the circuit interface are achieved. WCIP has been used in single layer microwave planar circuit, but this method is not widely extended to other area at the moment.
     In this paper, WCIP is introduced to analysis the multilayer microwave planar circuit. The new method combines WCIP with Generalized Transmission Line Theory, analysis the every circuit layer’s discontinuity by wave concept, defines the waves between layers by Generalized Transmission Line Theory, and calculates the electromagnetic distribution of every circuit layer by iterated operation, and then acquires the circuit characteristic parameters. Besides, the factors which affect the calculating speed of WCIP are also analysis in this article, the comparison of computation complexity proves the calculating speed advantage of WCIP.
     In this article, WCIP is used to analysis the multilayer microwave planar circuit such as some microwave antennas which are based on the multilayer circuit. Some circuit characteristic parameters of multilayer circuit antennas are achieved at first, such as electromagnetic distribution, admittance parameter, scattering parameter, VSWR, Gain. Then the simulation results will contrast with Ansoft HFSS’s or the reference results, which prove the feasibility that WCIP can analysis the multilayer microwave planar circuit. At last, the computation complexity of WCIP, FEM, MOM is under consideration and comparison, which validates the efficiency of WCIP.
引文
[1]陈邦媛.射频通信电路.第二版.北京:科学出版社,2006,3-4.
    [2] M. Azizi,M. Boussouis,H. Aubert. A three-dimensional analysis of planar discontinuities by an iterative method. Microwave and optical technology letters,1996, vol.12:372-376.
    [3] S. Akatimagool,D. Bajon,H. Baudrand. Analysis of Multi-layer Integrated Inductor with Wave Concept Iterative Procesdure (WCIP). in:Microwave Symp. Digest. USA:IEEE MTT-S Intern,2001,1941-1944.
    [4] L.P.Hong,S.K.Park,H.K.Park. Analysis on the effect of metal penetrating depth into the anisotropic substrate in a shielded microstripline. RF and Microwave CAE,1999,vol.9:49-53.
    [5] W. Heinrich. Quasi-TEM description of MMIC coplanar lines including conductor-loss effects. Microwave Theory and Techniques,l993,vol.41:249-255.
    [6]金建铭.电磁场有限元方法.第一版.西安:西安电子科技大学出版社,1998,45-67.
    [7] Christ A.,Hannagel H.. Three-dimensional finite-difference method for the analysis of microwave-device embedding. Microwave Theory and Techniques,1987,vol.35:688-696.
    [8] M. Krumphotz,P. Russet. A field theoretical derivation of TLM. Microwave Theory and Techniques,1994,vol.42:1660-1668.
    [9]李忠元.电磁场边界元素法.第一版.北京:北京工业出版社,1987,5-8.
    [10] K.C.Gupta. Emerging trends in millimeter-wave CAD. Microwave Theory and Techniques,1998,vol.46:747-755.
    [11] George D,Vendelin,Anthony M. Pavio. Microwave circuit design using linear and nonlinear techniques. New York:John Wiley&Sons,1990,361-475.
    [12] J. L. Volakis,T.Ozdemir,J. Gong. Hybrid finite-element methodologies for antennas and scattering. Antennas and Propagation,1997,vol.45:493-507.
    [13] D. Crawford , M. Davidovitz. Semi-discrete finite element analysis of zero-thickness inductive strips in a rectangular waveguide. Microwave Theory and Techniques,1993,vol.41:523-527.
    [14] Luca Pierantoni,Stefan Lindenmeier,Peter Russer. Efficient analysis and modeling of the radiation of microstrip lines and patch antennas by the TLM-integralequation (TLM-IE) method. Electronic Networks,Devices and Fields,1999, vol.12:329-340.
    [15] R. F. Harrington. Field computation by moment method. New York:Wiley-IEEE Press,1993,98-102.
    [16] D.M. Sheen,S.M.D. Abouzahra,J.A. Kong. Application of the three dimensional finite difference time domain method to the analysis of planar microstrip circuit. Microwave Theory and Techniques,1990,vol.38:849-857.
    [17] J. Jin. The finite element method in electromagnetic. New York:John Wiley & Sons,1993,142-156.
    [18] A. Mami,H. Zairi,A. Gharsallah. Analysis of Microwave Components and Circuits Using the Iterative Method, Wiley Periodicals. RF and Microwave CAE,2004,vol.14:404-414.
    [19] A. Mami,H. Zairi,A. Gharsallah. Analysis of Microstrip Spiral Inductor by Using Iterative Method. Microwave and Optical Technology Letters,2002,vol. 35:302-306.
    [20] A. Gharsallah,A. Mami,R. Douma. Analysis of a Microstrip Antenna with Fractal Multilayer Substrate Using Iterative Method. RF and Microwave CAE,2001,vol.11:212-218.
    [21] A. Gharsallah,A. Gharbi,L. Desclos. Analysis of interdigital capacitor and quasi-lumped miniaturized filters using iterative method. Electronic Networks,Devices and Fields,2002,vol.15:169-179.
    [22] Y. Ounejjar,R. Douma,A. Gharsallah. Analysis of passive planar microstrip circuits using the iterative technique. in:EUPSICO 2000. Finlande:European signal processing conference,2000,2509-2512.
    [23] R. Bedira,A. Gharsallah,L. desclos. The wave concept iterative process: Scattrring of a conducting target coated by a thin dielectric layer. Antennas and Propagation Society International Symposium IEEE,2002,vol.2:98-101.
    [24] F. Surre,H. Baudrand. Study of diffraction by metallic objects by an Iterative Procedure Based on Wave Concept. in:Theory and Applications VIGO,Spain:4th conference on Electromagnetic and light Scattering by non spherical Particles,1999,20-21.
    [25] L. Cohen,R. S. N’Gongo,R. Garcia. Equivalent impedance boundary conditions for refined meshes applied to planar circuits. Microwaves , Antennas and Propagation,2003,vol.150:237-243.
    [26] H. Trabelsi,A. Gharsallah,H. Baudrand. Analysis of Microwave Circuits IncludingLumped Elements Based on the Iterative Method. RF and Microwave CAE,2003,vol.13:269-275.
    [27]冯鹤,谢拥军,王元源等.基于低温共烧陶瓷工艺的一种新型层叠式多层结构的波概念迭代方法研究.物理学报,2009,第58卷:4590-4597.
    [28] N. Raveu,T. P. Vuong,I. Terrasse. Wave concept iterative procedure applied to cylinders. Microwaves,Antennas and Propagation,2004,vol.151:409-416.
    [29] N. Raveu,T. P. Vuong,I. Terrasse. Near Fields Evaluated With The Wave Concept Iterative Procedure Method For an E-Polarisation Plane Wave Scattered By Cylindrical Strips. Microwave and Optical Technology Letters,2003,vol. 38:403-406.
    [30] Tarek Bdour,Noemen Ammar,Taoufik Aguili. Modeling of Wave Penetration through Cylindrical Aperture using an Iterative Method Based on Transverse Wave Concept. in:KJMW 2007. Korea:Korea-Japan Microwave Conference,2007,45-48.
    [31] Hajlaoui,E. A. Trabelsi,H. Gharsallah. Analysis of Novel Dual-Resonant and Dual-Polarized Frequency Selective Surface using Periodic contribution of Wave Concept Iterative Process:PPMS-WCIP. in:Information and Communication Technologies: From Theory to Applications. Syria:3rd International Conference on ICTTA,2008,1-6.
    [32] Mohammed Titaouine,Alfrêdo Gomes Neto,Henry Baudrand. Analysis of Frequency Selective Surface on Isotropic/Anisotropic Layers Using WCIP Method. ETRI Journal,2007,vol.29:36-44.
    [33] M. titaouine,A.Gomes Neto,H. Baudrand. WCIP Method Applied to Active Frequency Selective Surfaces. Journal of Microwave and Optoelectronics,2007,vol.6:1-16.
    [34] E. Richalot,M.F. Wong,H. Baudrand. Modeling of Arbitrary Shaped Radiating Structures by the Wave Concept Iterative Process. in:Microwave Symposium Digest. USA:IEEE MTT-S International,2000,113-116.
    [35] M. Kaddour,A. Gharsallah,A. Mami. Iterative Method Formulation for Analysis of Air-Bridge in Coplanar Waveguide. Journal of Microwaves and Optoelectronics,2004,vol.3:16-28.
    [36] A. Mami,H. Zairi,A. Gharsallah. Analysis of Microstrip Spiral Inductor by Using Iterative Method. Microwave and Optical Technology Letters,2002,vol.35:302-306.
    [37] N.Sboui,A.Gharsallah,A.Gharbi. Global modelling of microwave active circuitsby an efficient iterative procedure. Microwaves,Antennas and Propagation,2001,vol.148:209-212.
    [38] Akatimagool,S.Bajon,D.Baudrand. Analysis of multi-layer integrated inductors with wave conceptiterative procedure (WCIP). in:Microwave Symposium Digest. USA:IEEE MTT-S International,2001,1941-1945.
    [39] M. Kaddour,A. Mami,A. Gharsallah. Aanlysis of Multilayer Microstrip Antennas by Using Iterative Method. Journal of Microwaves and Optoelectronics,2003,vol.3:39-52.
    [40]廖承恩.微波技术基础.第一版.西安:西安电子科技大学出版社,1994,16-18.
    [41] Tentzeris,E.,Li R.L. Design of compact stacked-patch antennas on LTCC technology for wireless communication applications. Antennas and Propagation Society International Symposium,2002,vol.2:500-503.
    [42] T. Kim,B. Lee. Metamaterial-based compact zeroth-order resonant antenna. Electronics Letters,2009,vol.15:12-13.
    [43] Ghassemi N.,Neshati M.H.,Rashed-Mohassel. Investigation of Multilayer Probe-Fed Microstrip Antenna for Ultra Wideband Operation. in:Microwave Conference,Asia-Pacific,2007. Thailand:APMC 2007,2007,1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700