高效率AC/DC反激变流器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为给便携式数据处理设备的供电系统,AC/DC适配器随着便携式微处理设备不断小型化和轻型化的发展趋势,也面临着新的挑战。
     反激变流器是小功率AC/DC适配器中应用最广的拓扑。本文以高效率反激变流器为研究对象,内容主要包括以下三个方面:
     第二章介绍了一种变频控制的副边采用二极管结构的反激变流器。采用二极管整流,结构最简单,一般适用于输出电流较小的场合。为了减小原边的开关损耗,可以采用变频控制,通过检测原边电流过零点,可以实现原边开关在振荡谷底开通,从而开通损耗最低,甚至在低端输入情况下通过合理设计参数可以实现零电压开通。但采用二极管输出整流结构,整机效率很难提高。因此很难实现高功率密度。论文对变频控制的二极管整流AC/DC反激变流器进行了效率评估。最后制作了一台样机进行了实验验证。
     第三章主要介绍了外驱动同步整流驱动方案在反激变流器中的应用。外驱动同步整流方案具有电路实现简单,电路成本较低等优点。缺点是副边同步管的驱动需要从原边PWM经过反相隔离得到,增加电路的成本以及复杂性。另外一个缺点是待机损耗很难降低。虽然采用降频或者burst模式两种方法理论上可以减少其待机损耗,但是会产生一些新的问题,效果并不好。论文从理论上对外驱动同步整流方案进行了详细分析,并进行了效率评估以及实验验证。
     第四章主要介绍了电流型同步整流驱动方案在反激变流器中的应用。在电流型同步整流驱动方案中,同步管的驱动信号都是在副边产生。与变频控制方法结合,还能实现原边开关管ZVS开通。待机功耗也能满足要求,并且没有产生其它问题。电流型同步整流驱动的另一个显著优点是同步管驱动不受原边拓扑影响。论文对各种电流型同步整流方案进行了总结,分析了各自的优缺点。然后针对其中比较优选的一种方案进行了详细分析,包括参数优化选择等。其后进行了效率计算和分析。最后进行了实验验证。
     在文章最后,论文对文章中介绍过的三种反激变流器进行了性能比较,并对其中较优选的一种拓扑性能改善的可能性作了进一步分析。
The ever-present trend of reducing the size and weight of the portable data-processing equipment has created new challenges to the design of their power systems-AC/DC adapters.The flyback converter is the most well-used topology for the low power AC/DC adapters. In this dissertation, the flyback converter is processed as the main research object, and the application of synchronous rectification technique in flyback converter is focused. The main contents of the dissertation include:In chapter I, a varied-frequency flyback converter with diodes output rectifiers is introduced. The flyback converter with diodes output rectifiers has the simplest structure. Combined with varied frequency control, low switching loss of the primary switches can be achieved. With optimized parameters, ZVS even can be achieved for the primary switch under low input voltage. Evaluation on losses is presented and an experimental prototype is built up.In chapter II, the external-driven synchronous rectification method applied in a fixed frequency flyback converter is introduced. The external-driven method is attractive for its simplicity and low cost. However, the driven signal should be inverted and isolated before it is sent to drive the SR. Another limitation is the stand-by loss is large with this driven method and is difficult to be reduced. Theoretically, two methods can be adopted to reduce the standby power loss, i.e. frequency reduction and burst mode. But it will bring some new problems if those two methods are adopted. Detailed theoretical analysis and evaluation on losses are presented. An experimental prototype is built up.Current driven methods for SR applied in flyback converters are introduced in chapter III. In current driven methods of SR, the driving signal is fully achieved in the secondary side. Combined with varied frequency method, ZVS for the primary switch can be achieved. Furthermore, the stand-by loss can satisfy the design specification and no other problems occur. In this chapter all kinds of current driven methods are summarized. The merits and limits of these methods are analyzed. An optimum-selected driven method is singled out for detailed analysis. Parameters optimization and loss evaluation for the converter is presented. At last, an experimental prototype is built up to verify the theoretical analysis.In the final part of the dissertation, the mentioned three flyback topologies are summarized and evaluated and an optimum topology is singled out. Furthermore, possibilities to improve the performance of the optimum-selected current driven method for SR are analyzed.
引文
[1] 张占松,蔡宣三,“开关电源的原理与设计”,电子工业出版社。
    [2]. L. Huber, Milan M. Javanovic, "Evaluation of Flyback Topologies for Notebook AC/DC Adapter/Charger Applications", HFPC'95, pp.284-294
    [3]. M.T. Zhang, Milan M. Javanovic, F.C. Lee, "Design Consideration and Performance Evaluations of Synchronous Rectification in Flyback Converters", IEEE Trans. on PE, Vol. 13, No. 3, May 1998.
    [4]. Y. Panov, Milan M. Javanovic, "Performance Evaluation of 70-W Two-Stage Adapters fro Notebook Computers", APEC'99, pp.1059-1065
    [5]. G.Spiazzi, D.Tagliavia, S.Spampinato, "DC-DC Flyback Converters in the Critical Conduction Mode: a Re-examination", IAS'2000, pp.2426-2432
    [6]. D.H. Seo, S.H. Lim, J.S. Park, "Asymmetrical PWM Flyback Converter", PESC'00, pp. 848-852
    [7]. S.H. Lim, "Asymmetrical Duty Cycle Flyback Converter", USA patent No. 5959850, Sep. 28, 1999
    [8]. K. Yoshida, T. Ishii, N. Nagagata, "Zero Voltage Switching Approach for Flyback Converter", INTELEC'92, pp.324-329
    [9]. David A. Cross, "Clamped Continuous Flyback Power Converter", USA patent No. 5570278, Oct. 29, 1996
    [10]. R. Waston, F.C. Lee, G.C. Hua, "Utilization of an Active-Clamp Circuit to Achieve Soft Switching in Flyback Converters", IEEE Trans. on PE, Vol. 11, No. 1, Jan. 1996
    [11]. S.Y. Lee, "Synchronous Rectifier Flyback Circuit for Zero Voltage Switching", USA patent No. 6198638 B1, Mar. 6, 2001
    [12]. N.K. Pooh, Xuefei Xie, C.P. Liu, M.H. Poon, "Synchronous Rectification in Power Modules Design", Fourth Hong Kong IEEE Workshop on Switch Mode Power Supplies, 3~(rd) Nov. 2000, pp.56-64.
    [13]. Ramesh Srinivasan, Ramesh Oruganti, "Analysis and design of power Factor Correction using Half Bridge Boost Topology", APEC'97, pp. 489-499
    [14]. R Vinciarelli, Skillman, "Optimal Resetting of the Transformer's Core in Single Endded Forward Converters", USA patent No. 4441146, Apr. 3, 1984
    [15] Fernandez, A.;Sebastian, J.;Hemando, M.M.;Villegas, R;Garcia, J.;New self-driven synchronous rectification system for converters with a symmetrically driven transformer[C], In: Proceedings of IEEE-APEC, 2003:352-358.
    [16] Y. Kubota, K. Nishimura, K. Kobayashi, Synchronous Rectification Circuit Using a Current Transformer[C], In: Proceedings of IEEE-INTELEC, 2000:267-273
    [17] Xufei Xie, Joe Chui Pong Liu, Franki Ngai Kit Poon, Man Hay Pong, "Current-Driven synchronous rectification technique for flyback topology", APEC'01
    [18] Zhang j,m, Xiaogao Xie, "A high efficiency adapter with novel current driven synchronous rectifier" , In: Proceedings of IEEE-INTELEC, 2003.
    [19] 林渭勋,“现代电力电子技术”,浙江大学出版社
    [20] 董文辉 陈辉明,“一种在全负载范围内实现ZVS的有源箝位反激变换器”,电源技术应用.2005,8(7).-9-13,18
    [21] 张海涛 陈道炼 张兰红 尹春,“有源钳位反激变换器稳态分析与小信号特性”,电气传动.2005,35(3).-36-39
    [22] 张宇翔 王晖辉 卢景霄 郭敏,“宽工作电压反激式变换器的设计”,电力电子技术.2004,38(4).-59-61
    [23] 张先进 周平森 王慧贞,“双管反激变换器研究分析”,电源世界.2004(8).-36-38
    [24] 鲁维德,“高效紧凑反激式变换器电信电源的设计”,电源世界.2004(7).-45-49
    [25] 刘胜利,“反激变换器副边同步整流控制器STSR3应用电路详解(1),电源技术应用.2004,7(6).-364-369
    [26] 刘胜利,“反激变换器副边同步整流控制器STSR3应用电路详解(2),电源技术应用.2004,7(7).-401-404
    [27] 孙定浩,“准谐振反激变换器问题的解析解及其几何特征”,航天控制.2004,22(2).-72-75,80
    [28] 毛兴武,闫小娟,“新型反激变换器准谐振控制器ICElQS01及其应用电路与设计”,电源技术应用.2004,7(5).-270-274
    [29] RalphLocher,“功率半导体应用专栏(连载)(十二)应用于反激变换器中的BIMOSFET的相关性能”,电源世界.2004(12).-71-73,67
    [30] 刘剑 陈道炼,“电流型控制反激DC/DC变换器的设计与实现”,电源技术应用.2003,6(8).-12-14
    [31] 豆飞进 王俊 穆新华,“采用WVC技术的多路输出反激变换器的小信号分析与设计”,通信电源技术.2003(3).-1-3
    [32] 陈丹江 张仲超,“电流驱动同步整流反激变换器的研究”,电源技术应用.2003,6(6).-21-23
    [33] 滕妨华 张仲超,“准谐振软开关反激变换器的研究”,电源技术应用.2003,6(1).-9-11
    [34] 徐龙祥,“RCD箝位反激变换器的设计与实现”,电源技术应用.2002,5(10).-33-35
    [35] 张兰红,陈道炼,“反激变换器不同工作模式时的稳态分析与设计”,盐城工学院学报:自然科学版.2002,15(4).-5-8
    [36] 阙师鹏[1] 胡健[2],“零电流反激变换器电路元件参数的优化分析”,南方冶 金学院学报.2002,23(1).-43-45,57
    [37] 张兰红,陈道炼,,“反激变换器开关应力控制技术研究”,电力电子技术.2002,36(2).-29-31,35
    [38] 赵伟光,“高耐压重叠式反激DC—DC变换器设计”,电工技术杂志.2001(5).-7-9
    [39] 周继华 李治典,“ZVT—PWM反激变换电路研究与设计”,电力电子技术.1999,33(2).-34-36
    [40] 陈军霞 于锦华,“一种新型ZVT—PWM反激变换器”,辽宁工学院学报.1998,18(3).-24-26
    [41] 高曾辉 侯振程,用状态空间平均法分析单端反激变换器”,核工业自动化.1997(3).-46-48,F003
    [42] 桂兹杰,“高频大功率单端反激变换器的分析与应用”,航空精密制造技术.1995,31(6).-39-42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700