灯盏花素脂质体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
灯盏花素是从菊科飞蓬属植物灯盏花[Erigeron breviscapus (Vant.) Hand-Mazz]中提取分离的黄酮类有效成份,是以灯盏乙素(scutellarin)为主,含少量甲素(apigenin-7-0-glucuronide)及其它黄酮类成分的混合物。灯盏花素具有扩张血管、增加脑血流量和心脏冠脉流量、降低血液粘度、抑制血小板聚集、改善微循环等作用。其现有制剂,如片剂、注射剂等,临床上主要用于治疗脑血栓、脑梗塞、中风后瘫痪、冠心病、心绞痛等疾病,疗效确切。近几年来,灯盏花素在我国已成为药物研发的一个热点,从2001年起,已经公开的有关灯盏花素的中国专利超过40个,其中一半以上针对灯盏花素的新剂型创新。
     灯盏花素口服给药生物利用度低,注射或口服给药后在体内均迅速消除。本论文的主要研究目的,是通过脂质体新剂型的研究提高灯盏花素口服生物利用度,延长其注射给药的体内滞留时间。为此,在处方前研究的基础上,设计了灯盏花素几种不同类型的脂质体,包括灯盏花素的普通脂质体(CLB)、壳聚糖N-三甲基化衍生物(TMC)包衣脂质体(TLB)和多囊脂质体(MLB)。
     首先,进行了灯盏花素的处方前研究工作,测定了灯盏花素电离常数pKa、真实油水分配系数、在不同溶剂以及不同pH水溶液中的溶解度,同时研究了灯盏花素在水溶液中的稳定性。结果表明,该药物是一个弱酸,pKa为3.29,在水中的溶解度受pH的影响很大,真实正辛醇/水分配系数为0.27,在各种有机溶剂中的溶解度较小。在25℃时,灯盏花素在pH 2~5水溶液中较稳定,在37℃时,pH 3~5较稳定,在水中存在专属性酸、碱催化降解机制。EDTA-2Na和NaHSO_3可以明显提高灯盏花素在水中的稳定性,两者合用比单用其中一种效果更好。
     在乙醇注入法的基础上,采用冷冻干燥-水化重建法制备了用于肌注给药的CLB,采用喷雾干燥-水化重建法制备了用于口服给药的CLB。通过单因素和正交试验,较为细致地考察了各种因素对乙醇注入法制备CLB包封率的影响,结果表明,磷脂浓度、水相介质种类及离子强度对CLB包封率影响较大,而其它因素影响较小,最后得到了包封率高的CLB,并对其性质进行了研究。该脂质体体外药物释放速度较快,室温放置稳定性需要进一步提高。冻干与喷干对脂质体有关性质影响的研究结果表明,采用冻干保护剂后加的方式制备,冻干重建的脂质体包封率高;加入冻干保护剂冻干的脂质体,重建后粒径稍微增大,药物在体外释放也较快。采用支持剂后加、喷前除去乙醇的方法制备,喷干-水化重建的脂质体包封率高;当支持剂用量适当时,喷干对脂质体粒径影响不明显;喷干过程对磷脂和药物的稳定性无显著影响。
     建立了稳定、快速、准确的灯盏花素血浆样品分析方法用于灯盏花素脂质体的药动学评价。通过冷冻贮存前在血浆样品中和在进样分析时用于溶解已处理好的样品的溶剂中加入NaHSO_3和EDTA,提高了样品在贮存和分析放置过程中的稳定性。CLB大鼠口服药物动力学研究表明,CLB和灯盏花素溶液(BS)药物的平均绝对生物利用F(%)分别为14.96%、4.77%,CLB的C_(max)和AUC(0→t)较BS分别提高2.27、2.13倍,统计分析有显著性差异(P<0.001)。大鼠肌肉注射给药的药动学研究结果显示,CLB的药物平均滞留时间(MRT_((0→t))),较BS延长了2.29倍,统计分析有显著性差异(P<0.001)。
     灯盏花素脂质体中,很可能存在药物与磷脂分子之间的相互作用。为了证明这种推测并阐明其机理,并且对研究过程所出现的一些现象进行解释,采用脂质体/水分配系数、顺磁共振(EPR)、热分析(DSC)、红外光谱(IR)等手段,对灯盏花素脂质体中药物与磷脂的相互作用进行了研究。结果表明,在脂质体中灯盏花素与磷脂膜的作用力中疏水力的作用较小,而其它力(如氢键、静电等)占很大比例。在脂质体的脂质双层中,灯盏花素主要处于靠近磷脂极性头基的位置,而没有进入脂质双层的碳氢双链区域。灯盏花素分子中的羧基阴离子与磷脂分子胆碱部分中带正电性的季胺部位可能有离子间静电相互作用,灯盏花素的酚羟基与磷脂的P-O~-基之间形成了氢键。通过以上研究对前面的一些实验结果进行了解释。
     为进一步提高灯盏花素的生物利用度,合成了具有一定吸收促进效应,又有一定生物粘附性的N-三甲基壳聚糖盐酸盐(TMC),并用其对灯盏花素脂质体包衣,以进一步探索提高口服难以吸收的小分子药物生物利用度的方法和手段。研究结果表明,所得合成产物TMC的三甲基取代度为36.8%,TMC在中性或偏碱性介质中的溶解能力较壳聚糖明显提高。随着TMC浓度增加,TLB粒径增大。提示在脂质体表面TMC包衣层的形成。在4℃冰箱6个月的放置期间,不同浓度的TMC包衣所得的TLB均较为稳定。而又以0.5%(w/v)TMC所得的TLB物理稳定性最好。TMC包衣后,脂质体的药物包封率与包衣前相比没有明显变化。采用透射电子显微镜观察结果表明,0.5%TMC所得的TLB没有聚集,形态保持球形。TLB的药物释放总体比CLB慢,而且释放更彻底。在用不同浓度TMC包衣所得的TLB中,0.5%TMC药物释放最慢。TLB显示一定的生物粘附性。TLB提高了灯盏花素的口服生物利用度,TLB大鼠灌胃给药后药物的绝对生物利用度F(%)为21.48%,是BS的4.50倍,CLB的1.44倍。
     CLB肌注后药物平均滞留时间(MRT)虽然较BS延长了2.29倍,但也只有6~7小时,从给药频率看,至少还需要一天一次,比较频繁。为此,在选择合适制备工艺的基础上,通过单因素试验和正交试验筛选优化处方,制备了MLB并对其进行体内外评价,以研究制备效果更好的灯盏花素可注射缓控释新剂型,减少给药次数,方便患者。MLB的制备与性质研究结果表明,磷脂、胆固醇和三甘油酯等的用量在一定范围内对药物包封率影响较大,而脂药比影响较小。最优处方制备的MLB体外释放较慢,持续时间达6 d。大鼠药动学研究结果表明,MLB药物平均滞留时间(MRT)达到32.98 h,是BS的16.6倍,CLB的5.04倍,体内药物缓释的持续时间能够达到4~5 d。MLB的体内外相关性较好(r=0.9834),为选用人血浆作为释放介质的合理性提供了一个佐证。病理切片研究表明,MLB和CLB的生物相容性均良好。
Breviscapine, a well-known bioactive flavonoid ingredient extracted from Erigeron breviscapus (Vant.) Hand.-Mazz., is mainly composed of scutellarin. Recent studies have shown that scutellarin possesses potent pharmacological effects in reducing blood viscosity, dilating blood vessel, increasing cerebral blood flow, inhibiting platelet aggregation, improving microcirculation, etc. The preparations of breviscapine, such as injections, tablets etc., are extensively used in clinic to treat ischemic cerebrovascular and cardiovascular diseases in China, such as cerebral infarction, apoplexy, coronary heart disease and angina pectoris, etc. Due to the prominent efficacy of breviscapine in the clinical treatment of these diseases, the research of breviscapine has become a hot topic in china in recent years. More than forty Chinese patents on breviscapine have been published since 2001. Over half of the patents focus on the renovation of the dosage form of breviscapine.It has been reported that the oral bioavailability of breviscapine is low and the residence time of breviscapine in the circulation is short. Therefore, the purposes of the present study were to increase its bioavailability after oral administration and to prolong its duration in the circulation after im administration. Several kinds of liposomes, including conventional liposomes, N-trimethyl chitosan chloride (TMC) coated liposomes, multivisicular liposomes, were used as the means of fulfilling the two purposes.Before the design of the liposomal formulations for breviscapine, the ionization constant (pKa), the true n-octanol/water partition coefficient, the solubilities of scutellarin in various organic solvent and at various pH aqueous media were determined. Meanwhile, the stability of scutellarin in aqueous media was investigated. The results indicated those as follows: Scutellarin is a weak acid, its pKa was 3.29, and its solubility was markedly affected by the pH of the environment. Its true n-octanol/water partition coefficient was 0.27. The solubilities of scutellarin in various organic solvents were low. Scutellarin was more stable at pH 2-5 at 25℃and at pH 3-5 at 37℃than at the other pH aqueous media at the same temperature. The mechanism of degradation of scutellarin can be explained by specific acid/base catalysis. The addition of EDTA-2Na or/and NaHSO_3 can improve the stability of scutellarin at aqueous media, especially the addition of both EDTA-2Na and NaHSO_3.The conventional liposomes containing breviscapine (CLB) were prepared by ethanol injection method. Based on this, the liposomes for oral and intramuscular injection administration were prepared by spray-drying-reconstitution, and lyophilization-reconstitution, respectively. Single factor experiments and orthogonal experimental design were used to optimize the formulation and investigate the effects of various factors on the encapsulation efficiency (EE) of CLB. The results indicated that the concentration of phosphatidylcholine (PC), different medium and its ionic strength had larger effect on EE than the other factors. The high EE above 80% could be obtained in the optimized formulation. Then its characteristics were investigated. The results indicated that the drug release rate from the liposomes in vitro was rapidly, and that the store stability of the liposomes at room temperature was not quite good. The effects of lyophilization and spray-drying on the characteristics of liposomes were studied. As for lyophilization-reconstitution liposomes, the higher EE could be obtained by the addition of sugars to the prepared liposomes by ethanol injection method. The particle size after reconstitution became a little larger, and the drug release in vitro from the reconstitution liposomes became faster. As for spray-drying-reconstitution liposomes, the higher EE could be obtained when the sugars were added to the prepared liposomes by ethanol injection method and the ethanol was removed before spray-drying. At appropriate amount of sugar, spray-drying had no significant effect on the particle size. No significant effects on the stability of both PC and drug were found during spray-drying.
     To study the pharmacokinetics behaviour of liposomal breviseapine, a stable, rapid, and accurate method was developed for the determination of scutellarin in rat plasma. By the addition of both NaHSO_3 and EDTA, the sample stability in both store and analysis process was improved to be suitable for the determination of scutellarin in the pharmacokinetic studies. The analytic time was shortened using scoparone (6, 7-dimethoxyeoumarin) as the internal standard. The results obtained from oral pharmacokinetics study of CLB indicated that the oral absolute bioavailabilities of scutellarin for CLB and breviscapine solution (BS) were 14.96 and 4.77%, respectively. The mean C_(max) and AUC_((0→t)) of CLB were 3.3 and 3.1-fold higher than those of BS, respectively. The two parameters between CLB and BS showed a highly significant difference (P<0.001). The results obtained from pharmacokinetics study of CLB via im administration indicated that the mean MRT_(0→t) of CLB had a 3.29-fold increase compared with that of BS, so the MRT_((0→t)) of CLB were significantly prolonged (P<0.001).
     In the study process, we felt that the molecular interaction between breviseapine and PC might exist. To confirm and then illuminate that, and to give some explains for some results obtained in earlier studies, the molecular interaction between breviscapine and PC was investigated by liposome/water partition coefficient, electron paramagnetic resonance (EPR), DSC, and IR. The results indicated those as follows: The other interaction besides hydrophobic interaction, such as ionic interaction, hydrogen bond etc, play a main role in the molecular interaction between breviscapine and PC membrane. Breviscapine was mainly located at the polar phospho-diester groups, closed to the surface of the lipid bilayers, and did not enter the hydrocarbon chain region, especially the end of the hydrophobic chain. The anion of carboxy group in scutellarin molecule and cation of quaternary amine in PC molecule might exist electrostatic interaction. Hydrogen-bond might be formed between phenolic hydroxyl group in scutellarin molecule and P-O~- group in PC molecule. All of these could be used to explain some of the earlier results partly.
     The oral bioavailability of breviscapine was improved using conventional liposomal formulation. However, it was still only 14.96%. To increase it further, TMC, a polymeric absorption enhancer with mucoadhesive property, was synthesized and used to prepare TMC-coated liposomes. Then the characteristics of TMC-coated liposomes containing breviscapine (TLB) were evaluated in vitro and in vivo. The results indicated those as follows: The degree of quatemization of TMC was 36.8%. The solubilities of TMC at pH 7.4 aqueous media were significantly increased compared with those of ehitosan. The particle size of TLB was increased with the increasing concentration of TMC solution used in the coating, suggesting the formation of coating layer on the surface of the liposomes. All of TLBs coated with TMCs of different concentration were stable during the six-month storage at 4℃, especially with 0.5% (w/v) TMC. The TMCs coating did not change EE significantly. The liposomes kept sphericai and no significant aggregation was observed by transmission electron microscopy after coated with 0.5% (v/w) TMC. TMCs coating made the drug release from liposome became a little slower, especially 0.5% TMC coating, however, the maximum of accumulative release became larger. TLB showed mucoadhesive property. The absolute oral bioavailability was 21.48%, which was 4.50-fold and 1.44-fold increase as compared with BS and CLB, respectively; so oral absorption of breviscapine was further improved by the TMC-coated liposome formulation.
     Although the mean MRT_(0→t) of CLB had a 3.29-fold increase compared with that of BS, it was only 6~7h. The frequency of injection administration needs to be at least once a day if CLB is used to clinic. This motivated us to design a better formulation for breviscapine in order to provide a longer sustained-delivery duration, reduce the frequency of injection administration and therefore afford patient compliance. Multivesicular liposome, a unique lipid-based depot-delivery system, was utilized as drug delivery vehicles for the purpose. Single factor experiments and orthogonal experimental design were used to optimize the formulation based on the selection of feasible preparation technology. Then the characteristics of multivesicular liposome containing breviscapine (MLB) were evaluated in vitro and in vivo. The results indicated those as follows: Within a certain scope, the amounts of PC, cholesterol, and triglycerides used in the experiment have larger effect on EE than the other factors, such as the ratio of drug/PC. The drug durations both in vitro and in vivo were significantly prolonged for MLB, and that the drug release in vitro and the absorption in vivo showed a good linear correlation (R=0.9834), which provided an evidence for the suitability to select human plasma as the medium of drug release from MLB in vitro. Drug release from MLB (triolein/tricaprylin 10/0) in vitro extended a long period of 5~6 days. The MRT_(0→t) obtained from the pharmacokinetics study of MLB after im administration was about 16.6-fold and 5.04-fold longer than those of BS and CLB, respectively. A duration in vivo for a period of 4~5 day was fulfilled for MLB. The results from light micrographs of pathological section of rat thigh muscle indicated that both MLB and CLB were well biocompatible.
引文
[1] 冉先德主编.中华药海.哈尔滨出版社,1993:pp739
    [2] 江苏新医学院编.中药大辞典(上册).上海科学技术出版社,1986:pp 948-949
    [3] 云南省第一人民医院治瘫小组.治疗瘫痪的中草药—灯盏花.中草药通讯,1972(2):47
    [4] 官碧琴.治疗瘫痪的新药灯盏花素鉴定会在昆明召开.中草药,1980,11(10):480
    [5] 崔建梅、吴松.灯盏花素的研究进展.天然产物研究与开发,2003,15(3):255-258
    [6] 王桂霞.灯盏花素药理及临床应用.时珍国医国药,1999,10(8):639
    [7] 丁国华.灯盏花素药理研究和临床应用进展.时珍国医国药,1999,10(4):303
    [8] 何蔚、曾繁典.灯盏花素治疗缺血性脑血管病的药理作用和临床研究.中国临床药理学杂志,2002,18(6):458-461
    [9] 李文杰、曹力.灯盏花素注射液药理作用与治疗脑梗塞的临床疗效评价.时珍国医国药,2002,13(3):171
    [10] 石森林、徐莲英.灯盏花素制剂防治脑血管疾病的现状与前景.中国中医药科技,2004,11(6):382-385
    [11] 韦宁.灯盏花素的临床应用进展与不良反应.中国药师,2001,4(2):144-146
    [12] 邓黎宁、黄青萍、蔡乐,等.灯盏花素注射液的临床应用.基层中药杂志,2001,15(1):56-57
    [13] 邓廷飞.灯盏花素注射液在临床中的应用.中国药业,2002,11(9):72-73
    [14] 师冰.灯盏花及其制剂临床应用综述.云南中医中药杂志,2004,25(5):46-47
    [15] 苏金祥.灯盏花素注射液的临床用途.现代中西医结合杂志,2004,13(20):2798
    [16] 石森林、徐莲英.灯盏花制剂的临床应用.中国临床药学杂志,2004,13(6):379-382
    [17] 葛庆华、周臻、支晓瑾,等.灯盏花素在犬体内的药动学和绝对生物利用度研究.中国医药工业杂志,2003,34(12):618-620
    [18] Zhong DF, Yang BH, Chen XY, et al. Determination of scutellarin in rat plasma by high-performance liquid chromatography with ultraviolet detection. Journal of Chromatography B, 2003, 796(2): 439-444
    [19] 蒋学华、李素华、兰轲,等.灯盏花素在家犬体内的药代动力学.药学学报,2003,38(5):371-373
    [20] Suhua Li, Xuehua J iang, Ke Lan, et al. Pharmacokinetics of Scutellarin in Dogs, Journal of Chinese Pharmaceutical Sciences, 2003, 12(3): 127-130
    [21] 李素华、蒋学华、杨强,等.灯盏花素在家兔体内的药动学研究.生物医学工程学杂志,2003,20(4):692—694
    [22] 刘奕明、林爱华、陈汇,等.灯盏乙素在兔体内药代动力学.药学学报,2003,38(10):775-778
    [23] Hao X, Cheng G, Sun J. Validation of an HPLC method for the determination of scutellarin in rat plasma and its pharmacokinetics. J Pharm Biomed Anal, 2005, 38(2): 360-363
    [24] 钟海军、邓英杰.灯盏花素新剂型研究进展.中成药(出版中)
    [25] 李建明、魏莉.一种含灯盏花素的滴丸及制备方法.中国专利:03151101.5,2005-3-23
    [26] 曹美云、曹明成、沈善等.灯盏花素滴丸成型工艺研究.中国现代应用药学杂志,2004,21(3):237-239
    [27] 曹美云、陈斌、曹明成.灯盏花素滴丸质量标准研究.安徽中医学院学报,2004,23(5):39-40
    [28] 张峻颖、郭健新、黄罗生.灯盏花素分散片的制剂工艺研究.海峡药学 2004,16(1):27-28
    [29] 张彦青、解军波、陈大为.灯盏花素骨架缓释微丸释药机制的研究.中草药,2004,35(5):517-519
    [30] 吕文莉、郭健新、平其能.灯盏花素脂质体的制备及其理化性质的测定.中国天然药物,2004,2(5):289-292
    [31] 熊非、朱家壁、王维,等.灯盏花素纳米脂质体包封率测定方法研究.药学学报,2004,39(9):755-757
    [32] 熊非、朱家壁、田熙等,RP-HPLC法测定灯盏花素纳米脂质体药物含量及包封率.药物分析杂志,2004,24(4):364-366
    [33] 熊非、朱家壁、汪豪,等.灯盏花素前体纳米脂质体的质量评价.中国药科大学学报,2004,35(6):513-516
    [34] 黄桂华、张娜、李爱国,等.灯盏花素磷脂复合物的制备及溶解性能.中国医药工业杂志,2005,36(2):84-86
    [35] 唐小荞、杨祥良.灯盏花素磷脂复合物改善大鼠小肠吸收的研究.中国中药杂志,2005,30(3):222-225
    [36] 王兵、张丽娟、于琳,等.灯盏花素自乳化软胶囊及其制备方法.中国专利:200410027881.2,2005-03-16
    [37] 木拉提·克扎衣别克,高晓黎.脂质体口服给药研究进展.实用药物与临床,2004,7(4):99-101
    [38] 陆彬.药物新剂型与新技术.北京,人民卫生出版社,1998,pp 107-164
    [39] 盛剑秋、罗向东.口服脂质体研究进展.胃肠病学和肝病学杂志,1999,8(1):73-75
    [40] Woodley JF. Liposomes for oral administration of drugs. Crit Rev Ther Drug Carrier Syst 1985, 2: 1-18
    [41] Rogers JA, Anderson KE. The potential of liposomes in oral drug delivery. Crit Rev Ther Drug Carrier Syst 1998, 15: 421-80
    [42] Zeisig R, Ruckerl D, Fichtner I. Reduction of tamoxifen resistance in human breast carcinomas by tamoxifen-containing liposomes in vivo. Anticancer Drugs, 2004, 15(7): 707-14
    [43] Choudhari KB, Labhasetwar V, Dorle AK. Liposomes as a carrier for oral administration of insulin: effect of formulation factors. J Microencapsul, 1994, 11(3): 319-325
    [44] Dobre V, Simionescu L, Stroescu V, et al. The entrapment of biological active substances into liposomes. Ⅱ. Effects of oral administration of liposomally entrapped insulin in normal and alloxanized rats. Endocrinologie. 1984, 22(4): 253-260
    [45] Stefanov AV, Kononenko IN, Lishko Vk, et al. Effect of liposomally entrapped insulin administered per os on the blood glucose level in normal and diabetic rats. Ukr Biokhim Zh. 1980, 52(4): 497-500
    [46] H Stefanov AV, Lishko VK, Shevchenko AV, et al. ypoglycemic effect of insulin incorporated into liposomes after oral administration to animals with different types of experimental diabetes. Ukr Biokhim Zh. 1986, 58(2): 58-64
    [47] Nakashima K, Miyagi M, Goto K, et al. Hybrid liposomes as a drug carrier for the oral administration of insulin in diabetic rats. Yakugaku Zasshi. 2004, 124(4): 231-235
    [48] Muramatsu K, Maitani Y, Nagai T. Dipalmitoylphosphatidylcholine liposomes with soybean-derived sterols and cholesterol as a carrier for the oral administration of insulin in rats. Biol Pharm Bull, 1996, 19(8): 1055-1058
    [49] Onaga IC, Oyenuga KO. Quantitative effects of interacting variables on vitamin K1, phylloquinone, entrapment in liposumes. Afr J Med Med Sci. 2001, 30(3): 157-160
    [50] Li H, Song JH, Park JS, Han K. Polyethylene glycol-coated liposomes for oral delivery of recombinant human epidermal growth factor. Int J Pharm, 2003 Jun 4; 258(1-2): 11-19
    [51] Anderson KE, Eliot LA, Stevenson BR, et al. Formulation and evaluation of a folic acid receptor-targeted oral vancomycin liposomal dosage form. Pharm Res, 2001, 18(3): 316-322
    [52] Bontempo V, Baldi A, Cheli F, et al. Kinetic behavior of three preparations of alpha-tocopherol after oral administration to postpubertal heifers. Am J Vet Res, 2000, 61(5): 589-593
    [53] Maitani Y, Moriya H, Shimoda N. Distribution characteristics of entrapped recombinant human erythropoietin in liposomes and its intestinal absorption in rats. Int J Pharm, 1999, 185(1): 13-22
    [54] Maitani Y, Hazama M, Tojo Y, et al. Oral administration of recombinant human erythropoietin in liposomes in rats: influence of lipid composition and size of liposomes on bioavailability. J Pharm Sci, 1996, 85(4): 440-445
    [55] McAlister VC, Keshavamurthy M, Lee TD. Oral delivery of liposumal tacrolimus: increased efficacy and reduced toxicity. Transplant Proc, 1999, 31(1-2): 1110
    [56] Wen H, New RR, Muhmut M, et al. Pharmacology and efficacy of liposome-entrapped albendazole in experimental secondary alveolar echinococcosis and effect of co-administration with cimetidine. Parasitology, 1996, 113 (2): 111-121
    [57] 王建华、温浩、高晓黎,等.口服阿苯达唑脂质体大鼠体内药物动力学的研究.地方病通报,2001, 16(2):78-82
    [58] 张金辉、温浩、栾梅香,等.阿苯达唑新剂型抗包虫病的药效学实验研究.中国寄生虫病防治杂志,2003,16(3):162-166
    [59] 刘章锁、杨文光、温浩,等.阿苯达唑脂质体对泡状棘球蚴作用的病理形态学观察.新疆医科大学学报,2000,23(4):291-293
    [60] 刘章锁、杨文光、温浩,等.阿苯达唑脂质体治疗小鼠继发性肝、腹腔泡状棘球蚴病的动物实验研究.新疆医科大学学报,2000,23(3):259-260
    [61] 敖其尔、温浩、杨文光.口服和注射阿苯达唑脂质体治疗小鼠肝及腹腔细粒棘球蚴感染的比较观察.地方病通报,2003,18(1):20-24
    [62] 李海涛、柯山、邵英梅.阿苯达唑脂质体治疗66例人体包虫病的疗效观察①.地方病通报,2004,19(1):16-19
    [63] 柯山、李海涛、温浩,等.阿苯达唑脂质体治疗包虫病的初期临床观察.新疆医科大学学报,2002,25(4):365-367
    [64] Regnault C, Soursac M, Roch-Arveiller M, et al. Pharmacokinetics of superoxide dismutase in rats after oral administration. Biopharm Drug Dispos, 1996, 17(2): 165-174
    [65] Regnault C, Roch-Arveiller M, Tissot M, et al. Effect of encapsulation on the anti-inflammatory properties of superoxide dismutase after oral administration. Clin Chim Acta, 1995, 240(2): 117-127
    [66] Fukunaga M, Miller MM, Deftos LJ. Liposome-entrapped calcitonin and parathyroid hormone are orally effective in rats. Horm Metab Res, 1991, 23(4): 166-167
    [67] Katare OP, Vyas SP, Dixit VK. Proliposomes of indomethacin for oral administration. J Microencapsul, 1991, 8(1): 1-7
    [68] Soehngen EC, Godin-Ostro E, Fielder FG, et al. Encapsulation of indomethacin in liposomes provides protection against both gastric and intestinal ulceration when orally administered to rats. Arthritis Rheum. 1988, 31(3): 414-422
    [69] Stozek T, Borysiewicz J. Bioavailability of griseofulvin in the form of liposomes. Pharmazie. 1991, 46(1): 39-41
    [70] Stozek T, Krowczynski L. The bioavailability of dipyridamole in the form of liposomes. Pharmazie. 1986, 41(9): 645-647
    [71] Roman V, Bocquier F, Leterrier F, et al. Radioprotective effect of cysteamine entrapped in liposomes orally administered to the mouse. C R Seances Acad Sci Ⅲ. 1982, 295(3): 191-193
    [72] Jaskierowicz D, Genissel F, Roman V, et al. Oral administration of liposome-entrapped cysteamine and the distribution pattern in blood, liver and spleen. Int J Radiat Biol Relat Stud Phys Chem Med. 1985, 47(6): 615-619
    [73] Bayomi MR, Al-Angary AA, Al-Meshal MA, et al. In vivo evaluation of arteether liposomes. International Journal of Pharmaceutics, 1998, 175: 1-7
    [74] 翟光喜、陈国广、赵焰,等.低分子肝素纳米脂质体的制备及大鼠口服吸收.中国药科大学学报,2002,33(3):200-202
    [75] 李际强、符林春.中药脂质体口服制剂的研究进展.中国中医药信息杂志,2001,8(6):21-22
    [76] 薛玉英、翁帼英、何俊峰,等.口服硫酸氢黄连素脂质体的研制.中国中药杂志,1995,20(12):730-731
    [77] 刘衍兴、郭辉.小檗碱及其脂质体降血糖作用实验研究.基层中药杂志,1999,13(1):18-19
    [78] 孙志良、刘湘新、林亲录,等.脂质体儿茶素在家兔体内的生物利用度与药物动力学.茶叶科学2004,24(1):44-48
    [79] Takeuchi H, Yamamoto H, Niwa T, et al. Enteral absorption of insulin in rats from mucoadhesive chitosan-coated liposomes. Pharm Res, 1996, 13(6): 896-901
    [80] Takeuchi H, Matsui Y, Yamamoto H, et al. Mucoadhesive properties of carbopol or chitosan-coated liposomesand their effectiveness in the oral administration of calcitonin to rats. J Control Release, 2003, 86: 235-242
    [81] 吴正红、平其能、雷晓敏,等.TMC包覆胰岛素脂质体的研究.中国药学杂志,2003,38(9):678-682
    [82] Senior JH, Radomsky M, (Ed. ). Sustained-release Injection Products. Interpharm Press, Denver, Colorado, 2000, pp. 137-180
    [83] Kim S, Turker MS, Chi EY, et al. Preparation of multivesicular liposomes. Biochim Biophys Acta, 1983, 728: 339-348
    [84] 李春雷、邓英杰.国外部分公司脂质体药物研发现状.中国药剂学杂志,2004,2(3):73-78
    [85] Mantripragada SA. lipid based depot (DepoFoam technology) for sustained release drug delivery. Prog Lipid Res, 2002, 41: 392-406
    [86] Roehrborn AA, Hansbrough JF, Gualdoni B, et al. Lipid-based slow-release formulation of amikacin sulfate reduces foreign body-associated infections in mice. Antimicrob Agents Chemother, 1995, 39: 1752-1755
    [87] Huh J, Chen JC, Furman GM, Malki C, et al. Local treatment of prosthetic vascular graft infection with multivesicular liposome-encapsulated amikacin. J Surg Res, 1998, 74: 54-58
    [88] Chatelut E, Suh P, Kim S. Sustained-release methotrexate for intracavitary chemotherapy. J Pharm Sci, 1994, 83: 429-432
    [89] Grayson LS, Hansbrough JF, Zapata-Sirvent RL, et al. Pharmacokinetics of Depo Foam gentamicin delivery system and effect on soft tissue infection. J Surg Res, 1993, 55: 559-564
    [90] Xiao CJ, Qi XR, Maitani Y, et al. Sustained release of cisplatin from multivesicular liposomes: potentiation of Antitumor Efficacy against S180 Murine Carcinoma. J Pharm Sci, 2004, 93: 1718-1724
    [91] Kim, T, Kim J, Kim S. Extended-release formulation of morphine for subcutaneous administration. Cancer Chemother Pharmacol, 1993, 33: 187-190
    [92] Kim T, Murdande S, Gruber A, et al. Sustained-release morphine for epidural analgesia in rats. Anesthesiology, 1996, 85: 331-338
    [93] Langston MV, Ramprasad MP, Kararli TT, et al. Modulation of the sustained delivery of myelopoietin (Leridistim) encapsulated in multivesicular liposomes (DepoFoam). J Control Release, 2003, 89: 87-99
    [94] Ramprasad MP, Amini A, Kararli T, et al. The sustained granulopoietic effect of progenipoietin encapsulated in multivesicular liposomes. Int. J. Pharm, 2003, 261: 93-103
    [95] Ramprasad MP, Anantharamaiah GM, Garber DW, et al. Sustained-delivery of an apolipoprotein E-peptidomimetic using multivesicular liposomes lowers serum cholesterol levels. J Control Release, 2002, 79: 207-218
    [96] Bonetti A, Kim S. Pharmacokinetics of an extended-release human interferon alpha-2b formulation, Cancer Chemother Pharmacol. 1993, 33: 258-261
    [1] 毕殿洲主编.药剂学(第四版).人民卫生出版社,1999,pp 13-29
    [2] 杭州大学化学系分析化学教研室编.分析化学手册(第二版,第一分册).化学工业出版社,1997,pp 335-349
    [3] 郑俊民主编.经皮给药新剂型.人民卫生出版社,1997,pp 280-281
    [4] Carstensen JT(Ed. ). Drug stability: principle and practices (2nd). Marcel Dekker, Inc. New York, 1995, pp 55-56
    [5] 王泓、陈济民、张清民.黄芩苷的物化常数测定.沈阳药科大学学报,2000,17(2):105-106
    [6] 张卫东、张川、苏娟,等.一种稳定的灯盏花素注射液的制备方法.中国专利:03141614.4,2004-02-25
    [7] 林启寿编著.中草药成分化学.科学出版社,1977,pp 282
    [8] 钟桂芳、伊家德.灯盏花素注射液生产处方及工艺的确定.黑龙江医药,1999,12(1):6-7
    [1] Naeff R. Feasibility of topical liposome drugs produced on an industrial scale. Adv Drug Deliv Rev, 1996, 18: 343-347
    [2] Wagner A, Vorauer-Uhl K, Kreismayr G, et al. The crossflow injection technique: an improvement of the ethanol injection method. J Liposome Res, 2002, 12: 259-270
    [3] 陆彬,药物新剂型与新技术,北京,人民卫生出版社,1998,pp 107-164
    [4] 熊非、朱家壁、王维,等.灯盏花素纳米脂质体包封率测定方法研究.药学学报,2004,39(9):755-757
    [5] 熊非、朱家壁、田熙,等.RP-HPLC法测定灯盏花素纳米脂质体药物含量及包封率.药物分析杂志,2004,24(4):364-366
    [6] 熊非、朱家壁、汪豪,等.灯盏花素前体纳米脂质体的质量评价.中国药科大学学报,2004,35(6):513—516
    [7] New RRC (Ed. ). Liposomes: a practical approach, Oxford unxversity press, 1990, pp 19-21
    [8] Batzri S, Korn ED. Single bilayer liposomes prepared without sonication. Biochim Biophys Acta, 1973, 298: 1015-1019
    [9] Kremer JMH, Van der Esker MWJ, Pathmamancharan C, et al. Vesicles of Variable Diameter Prepared by a Modified Injection Method. Biochemistry, 1977, 16(17): 3932-3935
    [10] Pons M, Foradada M, Estelrich J. Liposomes obtained by the ethanol injection method. Int J Pharm, 1993, 95: 51-56
    [11] Burke TG, Mishra AK, Wani MC, et al. Lipid bilayer partitioning and stability of camptothecin drugs. Biochemistry, 1993, 32: 5352-5364
    [12] Vanleberghe G, Handjani RM. Improving and storage stability of aqueous dispersions of spherules by lyophilisation. UK. Pat. Appl. 1978, 2013 609
    [13] Crowe JH, Crowe, LC, Carpenter JF, et al. Interaction of sugars with membranes. Biochim Biophys Acta, 1988, 947: 367-384
    [14] Koster KL, Webb MS, Bryant G, et al. Interaction between soluble sugars and POPC (1-palmitoyl-2-oleylphatidylcholine) during dehydration: vitrification of sugars alters the phase behavior of the phospholipid. Biochim Biophys Acta, 1994, 1193: 143-150
    [15] Andrew SJ. Liposomes Ration Design. Marcel Dekker, Inc. 1999, pp 261-282
    [16] Senior JH, Radomsky M (Ed. ). Sustained-release Injection Products. Interpharm Press, Denver, Colorado, 2000, pp 137-180
    [17] Glavas-Dodov M, Fredro-Kumbaradzi E, Goracinova K, et al. The effects of lyophilization on the stability of liposomes containing 5-Fu. Int J Pharm, 2005, 291: 79-86
    [18] van Winden ECA, Zhang W, Crommelin DJA. Effect of freezing rate on the stability of liposomes during freeze-drying and rehydration. Pharm Res, 1997, 14: 1151-1160
    [19] Crowe JH, crowe LM. Factors affecting the stability of dry liposomes. Biochim Biophys Acta, 1988, 939: 327-334
    [20] Zhang W, van Winden ECA, Bouwstra JA, et al. Enhanced permeability of freeze-dried liposomal bilayers upon rehydration. Cryobiology, 1997, 35: 277-289
    [21] Van Winden ECA, Crommelin DJA. Short term stability of freeze-dried, lyoprotected liposomes. J Control release, 1999, 58: 69-86
    [22] Van Winden ECA, Crommelin DJA. Long term stability of freeze-dried, lyoprotected doxorubicin liposomes. Eur J Pharm Biopharm, 1997, 43: 295-307
    [23] Wang W. lyophilization and development of solid protein pharmaceuticals. Int J Pharm, 2000, 203: 1-60
    [24] 王俊平、顾学裘、苏德森.喷雾干燥制备阿霉素前体脂质体的研究.中国药学杂志,1994,29(3):149-151
    [25] 翁帼英,陈明非、王玲玲.脂质体中卵磷脂的氧化产物与溶血关系.生物化学与生物物理进展,1990,17(1):76-77
    [26] Gregoriadis G(Ed. ). Liposome technology (2nd edition), vol. Ⅰ. CRC Press, Inc. 1993, pp 197-208
    [27] Hauser H, Strauss G. Stabilization of small unilamellar phospholipid vesicles during spray-drying. Biochim Biophys Acta, 1987, 897: 331-334
    [28] 陈骐、黄芸、顾学裘.喷雾干燥法制备前体脂质体的基础研究.沈阳药科大学学报,1997,14(3):166-169
    [29] Lo YL, Tsai JC, Kuo JH. Liposomes and disaccharides as carriers in spray-dried powder formulations of superoxide dismutase. J Control Release, 2004, 94(2-3): 259-72
    [1] 钟大放.以加权最小二乘法建立生物分析标准曲线的若干问题.药物分析杂志,1996,16:343-346.
    [2] 萧参,陈坚行.生物药剂分析方法的认证.中国药学杂志,1993,24:425-426.
    [3] 国家药典委员会编.药物制剂人体生物利用度和生物等效性试验指导原则.中华人民共和国药典(2000年版,二部),附录pp 193-197.
    [4] Karnes HT, March C. Precision, accuracy and data acceptance criteria in biopharmaceutical analysis. Pharm Res, 1993, 10: 1420-1422.
    [5] Shah YP, Midha KK, Hulse JD, et al. Bioanalytical methods validation-a revisit vith a decade of progress. Pharm Res, 2000, 17: 1551-1557
    [6] 钟桂芳、伊家德.灯盏花素注射液生产处方及工艺的确定.黑龙江医药,1999,12(1):6-7
    [7] 蒋学华、李素华、兰轲,等.灯盏花素在家犬体内的药代动力学.药学学报,2003,38(5):371-373
    [8] Suhua Li, Xuehua J iang, Ke Lan, et al. Pharmacokinetics of Scutellarin in Dogs. Journal of Chinese Pharmaceutical Sciences, 2003, 12(3): 127-130
    [9] 刘奕明、林爱华、陈汇,等.灯盏乙素在兔体内药代动力学.药学学报,2003,38(10):775-778
    [10] Zhong DF, Yang BH, Chen XY, et al. Determination of scutellarin in rat plasma by high-performance liquid chromatography with ultraviolet detection. Journal of Chromatography B, 2003, 796(2): 439-444
    [11] 李素华、蒋学华、杨强,等.灯盏花素在家兔体内的药动学研究.生物医学工程学杂志,2003,20(4):692-694
    [12] 葛庆华、周臻、支晓瑾,等.灯盏花素在犬体内的药动学和绝对生物利用度研究.中国医药工业 杂志,2003,34(12):618-620
    [13] Hao X, Cheng G, Sun J. Validation of an HPLC method for the determination of scutellarin in rat plasma and its pharmacokinetics. J Pharm Biomed Anal, 2005, 38(2): 360-363
    [14] Wen H, New RR, Muhmut M, et al. Pharmacology and efficacy of liposome-entrapped albendazole in experimental secondary alveolar echinococcosis and effect of co-administration with cimetidine. Parasitology, 1996, 113(2): 111-121
    [15] 王建华、温浩、高晓黎,等.口服阿苯达唑脂质体大鼠体内药物动力学的研究.地方病通报,2001,16(2):78-82
    [16] 孙志良、刘湘新、林亲录,等.脂质体儿茶素在家兔体内的生物利用度与药物动力学.茶叶科学2004,24(1):44-48
    [17] Stozek T, Borysiewicz J. Bioavailability of griseofulvin in the form of liposomes. Pharmazie, 1991, 46(1): 39-41
    [18] Stozek T, Krowczynski L. The bioavailability of dipyridamole in the form of liposomes. Pharmazie, 1986, 41(9): 645-647
    [19] Senior JH, Radomsky M (Ed.). Sustained-release Injection Products. Interpharm Press, Denver, Colorado, 2000, pp 137-180
    [20] Arrowsmith M, Hadgraft J, Kellaway IW. The in vivo release of cortisone esters from liposomes and the intramuscular clearance of liposomes. Int J Pharm, 1984, 20: 347-362
    [1] Van Balen GP, Martinet CM, Caron CM, et al. Liposome/water lipophilicity: methods, information content, and pharmaceutical applications. Med Res Rev, 2004, 24(3): 299-324.
    [2] Taillardat-Bertschinger A, Martinet CA, Carrupt PA, et al. Molecular factors influencing retention on immobilized artificial membranes (IAM) compared to partitioning in liposomes and n-octanol. Pharm Res, 2002, 19(6): 729-737.
    [3] Fruttero R, Caron G, Fornatto E, et al. Mechanisms of liposomes/water partitioning of (p-methylbenzyl) alkylamines. Pharm Res, 1998, 15(9): 1407-1413.
    [4] Pauletti GM, Wunderli-Allenspach H. Partition coefficients in vitro: artificial membranes as a standardized distribution model. Eur J Pharm Sci, 1994, 1(5): 273-282.
    [5] Huang C, Mason JT. Geometric packing constraints in egg phosphatidylcholine vesicles. Proc Natl Acad Sci USA, 1978, 75(1): 308-310.
    [6] 张建中、赵保路、张清刚编.自旋标记ESR波谱的基本理论和应用.科学出版社,1987
    [7] 徐广智编著,电子自旋共振波谱基本原理.科学出版社,1978
    [8] Hubbell WL, McConnell HM. Molecular motion in spin-labelled phospholipids and membranes. J Am Chem Soc, 1971, 93: 314-326.
    [9] Quan D, Maibach HI. An electron spin resonance study: Ⅰ. Effect of azone on 5-doxyl stearic acid-labelled human stratum corneum. Int J Pharm, 1994, 104: 61-72.
    [10] Nagumo A, Sato Y, Suzuki Y. Electron spin resonance studies of phosphatidylcholine interacted with cholesterol and with hopanoid in liposomal membrane. Chem Pharm Bull, 1991, 39: 3071-3074.
    [11] Budai a M, Szabo Zs, Zimmer A, et al. Studies on molecular interactions between nalidixic acid and liposomes. International Journal of Pharmaceutics, 2004, 279: 67-79
    [12] 赵瑶兴、孙祥玉编著.光谱解析与有机结构鉴定.中国科学技术出版社,1992,pp 97-172
    [13] 谢晶曦编著.红外光谱在有机化学和药物化学中的应用.科学出版社,1987
    [14] 王宗明、何欣翔、孙殿卿编.实用红外光谱学.石油化学工业出版社,1978
    [15] Harborne JB, Williams CA. Advances in flavonoid research since 1992. Phytochemistry, 2000, 55: 481-504
    [16] Hodek P, Trefil P, Stiborova M. Flavonoids-potent and versatile biologically active compounds interacting with cytochromes P450. Chem Biol Interact, 2002, 139: 1-21
    [17] Arora A, Byrem TM, Nair MG, et al. Modulation of liposomal membrane fluidity by flavonoids and isoflavonoids. Arch Biochem Biophys, 2000, 373(1): 102-109
    [18] Tsuchiya H. Stereospecificity in membrane effects of catechins. Chem Biol Interact, 2001, 134: 41-54
    [19] Kato R, Kajiya K, Tokumoto H, et al. Affinity of isoflavonoids for lipid bilayers evaluated with liposomal systems. Biofactors, 2003, 19: 179-187
    [20] Saija A, Bonina F, Trombetta D, et al. Flavonoid-biomembrane interactions: A calorimetric study on dipalmitoylphosphatidylcholine vesicles. Int J Pharm, 1995, 124: 1-8
    [21] Hendrich AB, Malon R, Pola A, et al. Differential interaction of Sophora isoflavonoids with lipid bilayers. Eur J Pharm Sci, 2002, 16: 201-208
    [22] LehtonenJY, Adlercreutz H, Kinnunen PK. Binding of daidzein to liposome. Biochim Biophys Acta, 1996, 13, 1285: 91-100
    [23] Tsuchiya H, Iinuma M. Reduction of membrane fluidity by antibacterial sophoraflavanone G isolated from Sophora exigua. Phytomedicine, 2000, 7(2): 161-165
    [24] 上海师范大学、河北师范大学、华中师范大学,等合编.物理化学(第二版、下册).高等教育出版社,1985,pp 114
    [1] Sieval AB, Thanou M, Kotze AF, et al. Preparation and NMR characterization of highly substituted N-trimethyl chitosan chloride. Carbohydrate Polymers, 1998, 36: 157-165
    [2] Hamman JH, Kotze AF. Effect of the type of base and number of reaction steps on the degree of quaternization and molecular weight of N-trimethyl chitosan chloride. Drug Dev Ind Pharm, 2001, 27: 373-380
    [3] 赵瑶兴、孙祥玉编著.光谱解析与有机结构鉴定.中国科学技术出版社,1992,pp 97-172
    [4] 谢晶曦编著.红外光谱在有机化学和药物化学中的应用.科学出版社,1987
    [5] 董炎明、王勉、吴玉松,等.壳聚糖衍生物的红外光谱分析.纤维素科学与技术,2001,9:42-56
    [6] 杨建红、杜予民、覃彩芹.红外光谱与核磁共振波谱在甲壳素结构研究中的应用.分析科学学报,2003,19(3):282-287
    [7] van der Merwe SM, Verhoef JC, Verheijden JH, et al. Trimethylated chitosan as polymeric absorption enhancer for improved peroral delivery of peptide drugs. Ear J Pharm Biopharm, 2004. 58(2): 225-235
    [8] 王立强、崔福德、高平.壳聚糖及其衍生物在药血研究领域中的新进展.中国新药杂志,2004,13(3):211—215
    [9] Artursson P, Lindmark T, Davis SS, et al. Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2). Pharm Res, 1994, 11: 1358-1361
    [10] Kotze AF, Lueβen HL, de Boer AG, et al. Chitosan for enhanced intestinal permeability: prospects for derivatives soluble in neutral and basic environments. Eur J Pharm Sci, 1999, 7(2): 145-151
    [11] Hejazi R, Amiji M. Chitosan-based gastrointestinal delivery systems. J Control Release, 2003, 89(2): 151-165
    [12] Thanou T, Verhoef, JC, Junginger HE. Oral drug absorption enhancement by chitosan and its derivatives. Adv Drug Oeliv Rev, 2001, 52: 117-126
    [13] Zhanou M, Florea BI, Langemeyer MW, et al. N-trimethylated chitosan chloride (TMC) improves the intestinal permeation of the peptide drug buserelin in vitro (Caco-2 cells) and in vivo (rats). Pharm Res, 2000, 17(1): 27-31
    [14] Zhanou M, Verhoef JC, Verheijden JH, et al. Intestinal absorption of octreotide using trimethyl chitosan chloride: studies in pigs. Pharm Res, 2001, 18(6): 823-828
    [15] Schipper NG, Olsson S, Hoogstraate JA, et al. Chitosans as absorption enhancers for poorly absorbable drugs 2: mechanism of absorption enhancement. Pharm. Res, 1997, 14(7): 923-929
    [16] Dodane V, Amin Khan M, Merwin JR. Effect of chitosan on epithelial permeability and structure. Int J Pharm, 1999, 182(1): 21-32
    [17] Snyman D, Hamman JH, Kotze AF. Evaluation of the mucoadhesive properties of N-trimethyl chitosan chloride. Drug Dev Ind Pharm, 2003, 29(I): 61-69
    [18] Hamman JH, Schultz CM, Kotze AF. N-trimethyl chitosan chloride: optimum degree of quaternization for drug absorption enhancement across epithelial cells. Drug Dev Ind Pharm, 2003, 29(2): 161-172
    [19] Snyman D, Hamman JH, Kotze JS, et al. The relationship between the absolute molecular weight and the degree of quaternisation of N-trimethyl chitosan chloride. Carbohydrate Polymers, 2002, 50(2): 145-150
    [20] Stewart JCM. Colorimetric determination of phosphilipids with ammonium ferrothiocyanate. Analytical biochemisty, 1980, 104: 10-14
    [21] Takeuchi H, Yamamoto H, Niwa T, et al. Enteral absorption of insulin in rats from mucoadhesive chitosan-coated liposomes. Pharm Res, 1996, 13(6): 896-901
    [22] Galovic Rengel R, Barisic K, Pavelic Z, et al. High efficiency entrapment of superoxide dismutase into mucoadhesive chitosan-coated liposomes. Eur J Pharm Sci, 2002, 15: 441-448
    [23] Guo J, Ping Q, Jiang G, et al. Chitosan-coated liposomes: characterization and interaction with leuprolide. Int J Pharm, 2003, 260: 167-173
    [24] Takeuchi H, Yamamoto H, Niwa T, et al. Mucoadhesion of polymer-coated liposomes to rat intestine in vitro. Chem Pharm Bull, 1994, 42: 1954-1956
    [25] Takeuchi H, Matsui Y, Yamamoto H, et al. Mucoadhesive properties of carbopol or chitosan-coated liposomes and their effectiveness in the oral administration of calcitonin to rats. J Control Release, 2003, 86: 235-242
    [26] Perugini P, Genta I, Pavanetto F, et al. Study on glycolic acid delivery by liposomes and microspheres. Int J Pharm, 2000, 196(1): 51-61
    [27] 魏农农、陆彬.结肠定位壳聚糖包衣氟尿嘧啶脂质体的制备、形态与体外释放.药学学报,2003,38(1):53—56
    [28] Henriksen I, Smistad G, Karlsen J. Interactions between liposomes and chitosan. Int J Pharm, 1994, 101: 227-236
    [29] Henriksen I, Vagen SR, Sande SA et al. Interactions between liposomes and chitosan Ⅱ: Effect of selected parameters on aggregation and leakage. Int J Pharm, 1997, 146: 193-203
    [30] Filipovic-Grcic J, Skalko-Basnet N, Jalsenjak I. Mucoadhesive chitosan-coated liposomes: characteristics and stability. J Microencapsul, 2001, 18(1): 3-12.
    [1] Kim S, Turker MS, Chi EY, et al. Preparation of multivesicular liposomes. Biochim Biophys Acta, 1983, 728: 339-348
    [2] Katre NV, Asherman J, Schaefer H, et al. Multivesicular liposome (DepoFoam) technology for the sustained delivery of insulin-like growth factor-Ⅰ (IGF-Ⅰ). J Pharm Sci, 1998, 87: 1341-1346.
    [3] Mantripragada SA. lipid based depot (DepoFoam technology) for sustained release drug delivery. Prog Lipid Res, 2002, 41: 392-406
    [4] Hartounian H, Meissner D, Pepper CB. Production of multivesicular liposomes. Patent, US 2002/0039596 A1
    [5] Florence AT, Whitehill D. The formulation and stability of multiple emulsions. Int J Pharm, 1982: 277-308
    [6] Huang J, Buboltz JT. Feigenson GW. Maximum solubility of cholesterol in phosphatidylcholine and phosphatidylethanolamine bilayers. Biochim Biophys Acta, 1999, 1417: 89-100
    [7] Ramprasad MP, Amini A, Kararli T, et al. The sustained granulopoietic effect of progenipoietin encapsulated in multivesicular liposomes. Int J Pharm, 2003, 261: 93-103
    [8] Ellena JF, Le M, Cafiso D, et al. Distribution of phospholipids and triglycerides in multivesicular lipid particles. Drug Deliv, 1999, 6: 97-106.
    [9] Gibaldi M, Perrier D. Absorption kinetics and bioavailability. In: Gibaldi M, Perrier D (Ed. ), Pharmacokinetics, 2nd ed, Dekker, New York, 1982, pp 155-161
    [10] 蒋学华、李素华、兰轲,等.灯盏花素在家犬体内的药代动力学.药学学报,2003,38(5):371-373
    [11] Suhua Li, Xuehua J iang, Ke Lan, et al. Pharmacokinetics of Scutellarin in Dogs. Journal of Chinese Pharmaceutical Sciences, 2003, 12(3): 127-130
    [12] 刘奕明、林爱华、陈汇,等.灯盏乙素在兔体内药代动力学.药学学报,2003,38(10):775-778
    [13] Hao X, Cheng G, Sun J. Validation of an HPLC method for the determination of scutellarin in rat plasma and its pharmacokinetics. J Pharm Biomed Anal, 2005, 38(2): 360-363
    [14] 李素华、蒋学华、杨强,等.灯盏花素在家兔体内的药动学研究.生物医学工程学杂志,2003,20(4):692-694
    [15] 葛庆华、周臻、支晓瑾,等.灯盏花素在犬体内的药动学和绝对生物利用度研究.中国医药工业杂志,2003,34(12):618-620
    [16] Hao X, Cheng G, Sun J. Validation of an HPLC method for the determination of scutellarin in rat plasma and its pharmacokinetics. Journal of Pharmaceutical and Biomedical Analysis. 2005, 38(2): 360-363
    [17] 江明性主编.新编实用药物学(第二版).科学出版社,2005,pp 324
    [18] 周新腾.注射用雌二醇生物可降解缓释微球的研究.沈阳药科大学博士学位论文,2003,pp102-105
    [19] Ye Q, Asherman J, Stevenson M, et al. DepoFoam technology: a vehicle for controlled delivery of protein and peptide drugs. J Control Release 2000, 64: 155-166

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700