源自动物粪便的Bt分离鉴定及对鸡球虫的作用效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鸡球虫病是一种重要的寄生虫病,分布广,感染率高,常发生在15-50日龄的雏鸡,若不能有效控制,其现场发病率可达50%-70%,死亡率可达20%-30%,严重爆发时其死亡率可高达80%。据统计,全球养鸡业每年仅球虫病造成经济损失就达80亿美元。目前对该病的防治仍以化学合成药及抗生素为主,但由于长期应用,易产生抗药性,且在畜产品中因药物残留而影响人类的健康。因此,人们将目光转向非抗生素防治研究。
     苏云金杆菌(Bacillus thuringiensis,简称Bt)晶体蛋白是广泛使用的微生物杀虫剂,与化学药物相比较,由于其对脊椎动物无毒性而选择性地作用于害虫、对环境无污染且能通过转基因技术应用于农作物而持久地发挥植物保护作用,这些毒素已被应用于有机农业。近些年来的研究证实,其对动物寄生虫也有强效作用。有关Bt对鸡球虫的作用,国内外尚未见报道。为了寻求新的苏云金杆菌菌株,本研究对动物园动物粪便中Bt进行调查。从福建省福州市动物园和三明市动物园41种动物(其中哺乳动物33种、禽类8种)50个粪便样品中共分离到253株芽胞杆菌,其中有15株含有晶体蛋白,确定为Bt,Bt分离率为30%。在所分离的粪便样品中,采自草食动物粪便的Bt分离率最高,达35.5%;其次是杂食动物粪便的Bt分离率为25%,肉食性动物粪便的Bt分离率最低,仅18.2%。结果表明,植物源日粮动物粪便中的Bt含量较高。
     采用单卵囊分离技术,从福建省莆田市、福清市和连江县等地鸡场采集的病鸡盲肠内容物样品中,分离获得3株(PT0705、FQ0709、LJ0711)柔嫩艾美耳球虫(Eimeria tenella)纯种;为比较这三种虫株对雏鸡的毒性,分别用1×104、5×104和10×104个孢子化卵囊的剂量感染14日龄和21日龄健康无球虫感染雏鸡,通过临床表现、死亡率、增重情况、病变计分等指标比较,发现PT0705虫株呈现最强毒性。
     用鸡胚感染柔嫩艾美耳球虫子孢子作为苏云金杆菌晶体蛋白抗球虫活性测定的模型。每一鸡胚接种1×104个子孢子,于感染前24h注入苏云金杆菌晶体蛋白,以不同苏云金杆菌晶体蛋白对鸡胚卵囊所产生的抑制率的差异,判定苏云金杆菌的活性。结果表明,各种苏云金杆菌晶体蛋白对球虫卵囊都有一定抑制作用,其中苏云金杆菌BT6菌株作用尤其明显。根据实验结果,我们认为本方法具有操作简单,结果可信及成本低廉的特点,可作为抗球虫苏云金杆菌的筛选方法。
     为比较苏云金杆菌晶体蛋白和化学抗球虫药对鸡球虫病的疗效。将50只雏鸡随机均分为5组,Ⅰ组为无感染不用药空白对照组,Ⅱ-Ⅳ组各鸡均感染,每只鸡人工感染柔嫩艾美耳球虫PT0705卵囊10×104个,Ⅱ组为不用药对照组,Ⅲ组为苏云金杆菌晶体蛋白组,Ⅳ组为地克珠利组,Ⅴ组为氨丙啉组,观察效果。苏云金杆菌晶体蛋白组与地克珠利组和氨丙啉组的抗球虫指数(ACI)分别为202.3、184.1和128.2,说明苏云金杆菌晶体蛋白的抗球虫效果明显优于这两种化学药物,其中地克珠利仍属高效抗球虫药,但氨丙啉的ACI仅为128.2,为低效抗球虫药;Ⅲ组雏鸡平均增重量为458.9 g,经t检验,与Ⅰ组、Ⅳ组比较差异显著(p<0.05),与Ⅱ组、Ⅴ组比较差异极显著(p<0.01)。试验表明,苏云金杆菌晶体蛋白对雏鸡球虫病有防治作用,并有促进雏鸡生长的作用。
     为了解BT6菌株的生物学特性,对其进行了形态学、生理生化指标研究;通过PCR-RFLP鉴定体系对其cry基因型进行分析。结果表明:该菌株含有cry1Aa,cry1Ba,cry1Ea和cry1Ia类基因。
     所有结果证明,苏云金杆菌BT6是鸡球虫的敏感高效菌株。BT6菌株晶体蛋白对鸡柔嫩艾美耳球虫有较好的毒杀作用,而且对鸡无毒副作用,因而具有广泛地应用于鸡生产的兽医临床实际的前景。
Avian coccidiosis is a remarkable disease that spreads widely with a high incidence in chicken farms and is often found in chicks at 15-day-old to 50-day-old. If it were not controlled effectively, the prevalence of infection would be high up to 50%-70% with a mortality of 20%-30% or even 80% in severe cases. According to the official statistics, the disease could cost an estimated 800 million US$ considerable economic loss around the world. Current control of coccidosis is mainly based on either synthetic chemicals or antibiotics. However, a durable use of the chemical drugs in the poultry industry would easily lead to the resistant strains as well as the drug residues in the chicken and their products are harmful to human beings. Therefore, more and more researches have been focused onto non-antibiotic approaches.
     The crystal proteins produced by Bacillus thuringiensis (Bt) are the most widely used biological pesticides. These toxins, used by organic farmers, offering a remarkable alternative to chemical pesticides cause of nontoxic to vertebrates, generally targeting insects within a single order, are more benign to the environment, and can be genetically engineered into crops to provide constant protection. The later studies demonstrated that the spore-crystal proteins are effective to helminthes in animals.
     Something about that Bt targeted at avain coccidiosis had not been reported. In order to find novel Bacillus thuringiensis (Bt) strains, we investigated Bt from the feces of zool maintained animals. 253 selected colonies of the Bacillus cereus- B. thuringiensis group from 50 fecal samples obtained from 41 species of animals (33 mammals and 8 avians) were isolated. The animals were residents of the Fuzhou Zoo and the Sanming Zoo, Fujian, China. Of all these colonies, 15 were assigned to Bt on the basis of the formation of parasporal inclusions. The organism was detected in 15 (30%) samples. Fecal samples from herbivorous, omnivorous and carnivorous animals contained Bt frequencies 35.5%, 25% and 18.2%, respectively. The results suggested that a daily food intake of plant origin yielded the feces containing Bt at high levels.
     Using single oocyst infected techniques, three strains of Eimeria tenella, PT0705, FQ0709 and LJ0711, were obtained from classically symptomic coccidian chicken in Putian, Fuqing and Lianjiang Couties, Fujian Province. In order to compare their toxicity against chicken, healthy chicken of 14th-day and 21th-day were artificially infected with 1×104, 5×104 and 10×104 coccidian oocysts of PT0705, FQ0709 and LJ0711, respectively. The results showed that the strain PT0705 was the most toxic to tested chicken based on the clinical symptom, survival rate, weight increment and lesion grade investigations.
     Chick embryos inoculated with sporozoites of E. tenella were used as a model for testing the activity of Bt crystal proteins. Each embryo were inoculated by a dose of 1×104 pure sporozoites was injected with testing Bt crystal proteins before 24 hours. The varying oocyst inhibition rates of embryos brought about by Bt crystal proteins that were given at various doses were used as a criterion for determining the activity of Bt crystal proteins. The results demonstrated that BT6 was the most effective isolate among the 15 strains.
     According to the experimental results mentioned above, we believe that the use of chicken embryo infection with E. tenella sporozites for the determination of the activity of Bt crystal proteins is an efficacious method, which offers some advantages, such as simplicity of operation, good accuracy and only small requirement of expenses.
     In order to compare the efficacy of Bt crystal proteins and chemical medicine against avian coccidiosis. Chicken (n=50) were randomly grouped in control (Ⅰ), control (Ⅱ), Bt crystal proteins- treated (Ⅲ), Diclazuril-treated (Ⅳ), and Amprolium-treated (Ⅴ) group. GroupⅡ,Ⅲ,Ⅳ, andⅤwere inoculated with 10×104 sporulated E. tenella PT0705 occysts per bird. The results showed that the anticoccidia indexes (ACI) of the Bt crystal proteins,Diclazuril and Amprolium were 202.3,184.1 and 128.2 respectively. This meant that the efficacy of Bt crystal proteins against avian coccidiosis was more excellent than that of chemical Diclazuril, which has been proved to have a high efficacy against coccidiostat while Amprolium only has low efficacy against coccidiosis. The average body weight in groupⅢincreased by 458.9g, while according to t test, the value of p was less then 0.05 as compared with that in groupⅠandⅣ, and less then 0.01 as compared with that in groupⅡandⅤ. It could draw a conclusion that the Bt crystal proteins had the effect of prevention and treatment of avian coccidiosis and improved the growth of chicken.
     In order to understand the physiological characteristics of BT6, its morphology and biochemical reaction were studied, and cry-type genes had been identified by using PCR-RFLP identification system. The evidence showed that this isolate harbored cry1Aa, cry1Ba, cry1Ea and cry1Ia.
     In a word, we thought that strain BT6 was the especially effective on avian coccidiosis in all the 15 strains. The crystal proteins of strain BT6, which was toxic to E. tenella with no side effect to chicken, could be applied in avian clinical practice.
引文
Agata N, Ohta M, Arakawa Y, et al. The bceT gene of Bacillus cereus encodes an enterotoxic protein[J]. Microbiology. 1995, 141: 983-988.
    Allen P C, Fetterer R H. Recent advances in biology and immunobiology of Eimeria species and in diagnosis and control of infection with these coccidian parasites of poultry[J]. Clin Microbiol Rev. 2002, 15: 58-65.
    Anwar M I. Field trials of gametocytes vaccine (Local isolate)and its comparative efficacy with imported vaccine against coccidiosis in poultry [D]. University of Agriculture, Faisalabad, Pakistan, 2008.
    Anwar M I, Akhtar M, Hussain I, et al. Field evaluation of Eimeria tenella (local isolates) gametocytes vaccine and its comparative efficacy with imported live vaccine[J]. Parasitol Res. 2008, 104: 135-143.
    Asano S I, Nukumizy Y, Bando H, et al. Cloning of Novel Enterotoxin Genes from Bacillus cereus and Bacillus thuringiensis[J]. Appl Environ Microbiol. 1997, 63: 1054-1057.
    Ash C, Farrow J A E, Wallbanks S. Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences[J]. Lett Appl Microbiol. 1992, 13: 202-206.
    Barjac H D, Frachon E. Classification of Bacillus thuringiensis strains[J]. Entomophaga. 1990, 35(2): 233-240.
    Beecher D J, Wong A C L. Tripartite hemolysin BL from Bacillus cereus: hemolytic analysis of component interactions and a model for its characteristic paradoxical zone phenomenon[J]. Biol Chem. 1997, 272: 233-239.
    Brade D G, Thaler R, Evenson D P. Evaluation of Bt (Bacillus thuringiensis) corn on mouse testicular development by dual parameter flow cytometry [J]. Agric Food Chem. 2004, 52 (7): 2097-2102.
    Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry. 1976, 72: 248-254.
    Broderick N A, Goodman R M, Raffa K F. Synergy between Zwittermici A and Bacillus thuringiensis subsp. kurstaki against Gypsy moth (lepidoptera: lymanriidae)[J]. Enriron Entomol. 2000, 29: 101-107.
    Carlson C R, Caugant D A, Kolsto A. Genotypic Diversity among Bacillus cereus and Bacillus thuringiensis Strains[J]. Appl Environ Microbiol. 1994, 60: 1719-1725.
    Chapman H D. Anticoccidial drugs and their effects upon the development of immunity to Eimeria infections in poultry[J]. Avian Pathol. 1999, 28: 521-535.
    Cherif A, Ouzari H, Daffonchio D, et al.Thuricin 7:a novel bacteriocin produced by Bacillus thuringiensis BMG1.7, a new strain isolated from soil[J]. Lett Appl Microbiol. 2001, 32: 243-247.
    Cherifi A, Chehimil S, Limem F, et al. Detection and characterization of the novel bacteriocin entomocin 9, and safety evaluation of its producer, Bacillus thuringiensis subsp. entomocidus HD9[J]. Journal of Applied Microbiology. 2003, 95: 990-1000.
    Crickmore N, Wheeler V C, Ellar D J. Use of an operon fusion to induce expressing and crystallization of a Bacillus thuringiensisδ-endotoxin encoded by a cryptic gene [J]. Mol Gen Genet. 1994, 242: 365-368.
    Dalloul R A, Lillehoj H S. Recent advances in immunomodulation and vaccination strategies against coccidiosis[J]. Avian Dis. 2005, 49: 1-8.
    Damgaard P H. Diarrhoeal enterotoxin production by strains of Bacillus thuringiensis isolated from commercial Bacillus thuringiensis-based insecticides[J]. FEMS Immun Med Microbiol. 1995, 12: 245-50.
    Danforth H D. Use of live oocyst vaccines in the control of avian coccidiosis: experimental studies and field trials[J]. Int J Parasitol. 1998, 28: 1099-1109.
    Erlendur H, Dominique A C, Ingar O, et al. Genetic Structure of Population of Bacillus cereus and B. thuringiensis Isolates Associated with Periodontitis and Other Human Infections [J]. Clin Microbiol. 2000, 38 (4): 1615-1622.
    Erlendur H, Ole A, Dominique A C, et al. Bacillus anthracis, Bacillus cereus, andBacillus thuringiensis—One Species on the Basis of Genetic Evidence[J]. Appl Environ Microbiol. 2000, 66: 2627-2630.
    Estruch J J, Warren G W, Mullinis M A, et al. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects[J]. Proc Natl Acad Sci USA. 1996, 93: 5389-5394.
    Etienne D, Poncet S, Klier A, et al. Transcriptional regulation of the cryIVD gene operon from Bacillus thuringiensis subsp. israelensis[J]. Bacteriol, 1995: 2283-2291.
    Fares N H, Sayed A K. Fine structural changes in the ileum of mice fed on delta- endotoxin treated potatoes and transgenic potatoes[J]. Nat Toxins, 1998(6): 219- 233.
    Fitz-Coy H, Edger S A. Pathogenicity and control of E. mitis infection in broiler chickens[J]. Avian Dis. 1992, 36: 44-48.
    Gannon R G. Bacillus thuringiensis use in agriculture: a molecular perspective [J ]. Biol Rev Cambridge Phil Soc. 1996, 71: 561-636.
    Gaviria R A M, Granum P E and F G Priest. Common occurrence of enterotoxin genes and enterotoxicity in Bacillus thuringiensis[J]. FEMS Microbiol Lett. 2000, 190(1): 151-155.
    Gert B J, Preben L , Bodil L J, et al. Bacillus thuringiensis in Fecal Samples from Greenhouse Workers after Exposure to B. thuringiensis-Based Pesticides[J]. Appl Environ Microbiol. 2002, 68(10): 4900-4905.
    Glare T R, O’Callaghan M. Bacillus thuringiensis: Biology, Ecology and Safety[M]. London: John Wiley and Sons, 2000.
    Granum P E, Anderson A, Gayther C. The sequence of the non-haemolytic enterotoxin operon from Bacillus cereus[J]. FEMS Microbiol Lett. 1996,141: 145-149.
    Johnson J, Reid W M. Anticoccidial drugs: lesion scoring techniques in battery and floor pen experiments with chickens [J]. Exp Parasitol. 1970,28:30-36.
    Jurgen K, Ralf J H, Aimdip N M, et al. Excystation of Eimeria tenella Sporozoites Impaired by Antibody Recognizing Gametocyte/Oocyst Antigens GAM22 andGAM56[J]. Eukaryotic Cell. 2008, 7: 202-211.
    Kuo W, Chak K. Identification of novel cry-type genes from Bacillus thuringiensis strains on the basis of restriction fragment length polymorphism of the PCR-amplified DNA[J]. Appl Environ Microbiol, 1996, 62: 1369-1377.
    Lee D H, Cha I H, Woo D S, et al. Microbial ecology of Bacillus thuringiensis: fecal populations recovered from wildlife in Korea[J]. Microbiol, 2003b, 49: 465-471.
    Lee D H, Machii J, Ohba M. High frequency of Bacillus thuringiensis in feces of herbivorous animals maintained in a zoological garden in Japan[J]. Appl. Entomol Zool. 2002, 37: 509-516.
    Lee D H, Shisa N, Wasano N, et al. Characterization of flagellar antigens and insecticidal activities of Bacillus thuringiensis populations in animal feces[J]. Curr. Microbiol. 2003, 46: 287-290.
    Lee E H. Immune variants in live coccidiosis vaccines. Proceedings of the VIth International Coccidiosis Conference[C]. Univeristy of Guelph. Guelph, 1993: 118-121.
    Ling K H, Rajandream M A , Pierre R, et al. Sequencing and analysis of chromosome 1 of Eimeria tenella reveals a unique segmental organization [J]. Genome Res. 2007, 17: 311-319.
    Maagd R A, Bosch D, Stiekema W. Bacillus thuringiensis toxin imediated insect resistance in plants [J]. Trends Plant Sci. 1999, 31: 9-13.
    Manasherob R, Zaritsky A, Metzler Y, et al. Compaction of the Escherichia coli nucleoid by CytlAa[J]. Microbiology. 2003, 149(12): 3553-3564.
    Mantynen V, Linstrom K. A Rapid PCR-Based DNA Test for Enterotoxic Bacillus cereus [J]. Appl Environ Microbiol Lett. 1999, 178: 255-229.
    McClintock J T, Schaffer C R , Sjoblad R D. A comparative review of the mammalian toxicity of Bacillus thuringiensis- based pesticides [J]. Pestic Sci. 1995, 45:95-105.
    McEvoy J. Safe limits for veterinary drug residues: what do they mean[J]. Northern Ireland Veterinary Today. 2001: 37-40.
    Mizuki M, Ohba M, Akao T. Unique activity associated with noninsecticidal Bacillus thuringiensis Parasporal inclusions: In vitro cell-killing action on human cancer cells[J]. J. Appl. Microbiol., 1999, 86: 477-486.
    Narva K E, Payne J M,Schwab G E, et al. Novel Bacillus thuringiensis microbes active against Nematodes, and genes encoding novel nematode-active toxins cloned from Bacillus thuringiensis isolates[P]. European Patent Office:EP 0462721 , 1991.
    Ohba M,Lee D H. Bacillus thuringiensis associated with faeces of the Kerama-jika, Cervus nippon keramae, a wild deer indigenous to the Ryukyus, Japan[J]. Basic Microb. 2003, 43: 158-162.
    Regev A, Keller M, Strizhov N, et al. Synergistic activity of a Bacillus thuringiensis delta-endotoxin and a bacterial endochitinase against Spodoptera littoralis larvae[J]. Appl Environ Microbiol. 1996, 62 (10): 3581-3586.
    Schnepf E, Crickmore N, van Rie J, et al. Bacillus thuringiensis and its pesticidal crystal proteins[J]. Microbiol Mol Biol Rev. 1998, 62: 772-806.
    Shirley M W, Ivens A, Gruber A, et al. The Eimeria genome projects: a sequence of events[J]. Trends Parasitol. 2004, 20: 199-201.
    Siegel J P. The mammalian safety of Bacillus thuringiensis-based insecticides[J]. J. Invertebr Pathol. 2001, 77: 13-21.
    Song F, Zhang J, Gu A, et al. Identification of cry1I-type genes from Bacillus thuringiensis strains and characterization of a novel cry1I-type gene[J]. Appl Environ Microbiol. 2003, 69: 5207-5211.
    Swiecicka I, Fiedoruk K, Bednarz G. The occurrence and properties of Bacillus thuringiensis isolated from free-living animals[J]. Let App Microbiol. 2002, 34: 194-198.
    Wang L, Sun M, Yu Z N. Capacity of Bacillus thuringiensis S-layer protein displaying olyhistidine peptides on the cell surface[J]. Applied Biochemistry and Biotechnology. 2004, 119(2): 133-143.
    Wang Z H, Wang Y, Cui H R, et al. Toxicological evaluation of transgenic rice flour with a synthetic gene cry1Ab gene from Bacillus thuringiensis[J]. Sci Food Ag. 2002, 82: 738- 744.
    Warren R E, Rubenstein D J, Kramer J M, et al. Bacillus thuringiensis var. israelensis protoxin activation and safety[J]. Lancet. 1984, 83(78): 678-679.
    Williams R B. Safety of the attenuated anticoccidial vaccine Paracox in broiler chickens isolated from extraneous coccidial infection[J]. Vet Res Commun. 1994, 18: 189-198.
    Williams R B, Carlyle W W, Bond D R, et al. The efficacy and economic benefits of Paracox, a live attenuated anticoccidial vaccine, in commercial trials with standard broiler chickens in the United Kingdom[J]. Parasitol. 1999, 29: 341-355.
    Yu C G, Mullins M A, Warren G W, et al. The Bacillus thuringiensis vegetative insecticidal protein Vip 3A lyses midgut epithelium cells of susceptible insects[J]. Appl Environ Microbiol. 1997, 63(2): 532-536.
    Yudian T F, Salamakha O V, Olekhnovich E V, et al. Influence of the carbon source on biological activity and morphology of Bacillus thuringiensis parasporal crystals [J]. Microbiology(Moscow). 1992, 61: 577-584.
    陈国英,黄光全,李松增,等.苏云金杆菌以色列变种187株对哺乳动物亚急性毒性试验[J].湖北预防医学杂志. 1999, 10(6): 59-61.
    陈汉忠,李桂庆,李致宝,等.中药与化学药物对鸡球虫病的疗效对比试验[J]. 中国家禽学报. 2004, 8(1): 22-24.
    陈建武,余健秀,胡晓晖,等.苏云金芽孢杆菌营养期杀虫蛋白的研究[J].中国生物工程杂志. 2002, 22(3): 33-36.
    邓干臻,姚宝安,冯汉利,等. 25株苏云金芽孢杆菌伴胞晶体蛋白对猪蛔虫第4期幼虫的毒性比较[J].中国兽医学报. 2004, 24(4): 449-450.
    樊生超,姚惠娟,陈金伟,等.抗球虫药在鸡胚球虫感染中活性峰期测定方法的研究[J].中国兽医寄生虫病. 1995, 3(3): 1-6.
    冯汉利,姚宝安,周艳琴,等.苏云金芽孢杆菌伴胞晶体毒素对小鼠体内猪蛔虫三期幼虫的作用及其免疫组织化学定位[J].中国兽医学报. 2007, 27(2): 192- 194.
    关雄.苏云金芽孢杆菌8010的研究[M].北京:科学出版社,1997, 16.
    韩玲,李培英,顾有方,等.柔嫩艾美耳球虫合肥(HF)株的分离与鉴定[J].安徽科技学院学报. 2006, 20(1):1-4.
    黄兵,韩红玉,董辉,等.鸡球虫的分离与保存[J].中国寄生虫学与寄生虫病杂志, 2006, 24: 82-84.
    姜永萍,张洪波,李承军,等. HA基因密码子及表达载体优化的H5亚型禽流感DNA疫苗免疫保护效果比较[J].农业生物技术学报. 2006, 14(3): 301-306.
    角田·清(陈谊,明如镜译).鸡球虫病[M].上海:上海科学技术文献出版社, 1986:89-92.
    孔繁瑶.家畜寄生虫学[M].北京:中国农业大学出版社, 1997.
    李碧春,刘小林.一套完整的鸡胚培养体系[J].畜牧兽医杂志. 1996, 15:50-52.
    李佩国,李蕴玉,张文香,等. 3种药物对河北秦皇岛鸡球虫分离株的疗效试验[J].中国兽医学报. 2005, 25(6): 652-654.
    李淑华,李宏伟.改良鸡胚培养法[J].锦州医学院学报. 2003, 24(6):74.
    林青,于三科,张彦明,等.柔嫩艾美耳球虫杨陵株对几种抗球虫药的耐药性研究[J].中国农学通报. 2005, 21(3): 45-47, 73.
    林毅,关雄.苏云金杆菌几丁质酶新基因的筛选和全长基因的扩增[J].生物技术. 2004, 14(3): 1-2.
    刘春勇,张文成,任改新.苏云金芽孢杆菌与蜡状芽孢杆菌基因组DNA同源型及多态性的研究.南开大学学报(自然科学版). 1999, 32(2): 98-32.
    刘梅,李淑云,赵昌明,等.利用苏云金杆菌细胞表面展示系统表达禽流感病毒NP蛋白[J].微生物学报. 2007, 47(3): 486-491.
    刘梅,卢林静,黄军艳,等. H5N1亚型禽流感病毒血凝素HA1蛋白在苏云金杆菌细胞表面的展示及其对小鼠的免疫原性[J].农业生物技术学报. 2007, 15(3): 371-377.
    刘元元,薛飞群. 2005.鸡抗球虫药的体外筛选综述[J].中国兽医寄生虫病, 13 (3):34-37.
    刘志勇,李启富,周银平,等.苏云金杆菌的急性毒性及致敏实验观察[J].上海实验动物科学, 2004, 3: 157-159.
    卢伟,蔡峻,陈月华.苏云金芽孢杆菌几丁质酶的研究进展[J].微生物通报. 2007, 34(1): 143-147.
    宁长申,孔繁瑶,殷佩云,等.四株柔嫩艾美尔球虫对四种抗球虫药的抗药性研究[J].河南畜牧兽医. 1994, 15(2): 14-17.
    彭东海,陈守文,阮丽芳,等.苏云金芽胞杆菌基因工程菌BMB696B对实验动物的安全性评估[J].安全与环境学报. 2006, 6(6): 87-90.
    饶丽娟,安铁洙,张利莉.苏云金芽孢杆菌在动物医学领域中的研究进展[J].黑龙江畜牧兽医. 2005, 8: 82-83.
    沈杰,黄兵.中国家畜家禽寄生虫名录[M].北京:中国农业科学技术出版社, 2004: 9-18.
    宋福平,张杰,黄大昉.苏云金芽孢杆菌cry基因PCR-RFLP鉴定体系的建立[J]. 中国农业科学. 1998, 31(3): 13-18.
    索勋.鸡球虫病学[M].中国农业大学出版社, 1991.
    索勋,李国清.鸡球虫病学[M].北京:中国农业大学出版社, 1999.
    唐仲璋,唐崇惕.人畜线虫学[M].北京:科学出版社, 1987:324-345.
    王祥,姚宝安,夏雪山,等.苏云金芽孢杆菌伴胞晶体蛋白对捻转血矛线虫第四期幼虫的毒杀作用[J].中国兽医科技. 1999, 29(6): 32-33.
    王瑛,白成,温洁.苏云金杆菌晶体与芽孢分离的研究[J].微生物学报. 1980, 20(3): 285-288.
    王赟,靳亚平,利光辉,等.隐性乳腺炎乳牛样中苏云金芽孢杆菌的分离与鉴[J]. 中国兽医科技. 2004, (9): 78-79.
    吴昌标,邱津津,关雄.苏云金芽孢杆菌及其在动物疾病防治上的应用[J].中国农学通报. 2008, 24(7): 17-21.
    吴昌标.禽流感的流行特点及防制[J].福建畜牧兽医. 2003, 25(2): 31-32.
    姚宝安,钟勤,王乾兰,等.对捻转血矛线虫幼虫有杀灭作用的苏云金芽孢杆菌的筛选[J].华中农业大学学报. 1995, 14(2): 177-179.
    姚江.高效广谱苏云金芽孢杆菌Ly30株的分子生物学研究[D].中国农业科学院博士学位论文,2002.
    余丽芸,汪明,蒋金书,等.柔嫩艾美耳球虫拉沙里菌素抗性虫株的实验室诱[J].中国兽医学报. 1999, 19(1): 35-37.
    喻子牛,孙明.苏云金芽孢杆菌的分类及生物活性蛋白基因[J].中国生物防治. 1996, 12(2): 85-89.
    喻子牛.苏云金杆菌[M].北京:科学出版社, 1990.
    袁志明,蔡全信, Andrup L,等.苏云金芽孢杆菌肠毒素基因的PCR检测[J].微生物学报. 2001, 41(2): 148-154.
    张勤,赵洪明.用柔嫩艾美耳球虫感染鸡胚测定和评价抗球虫药的效力[J].中国兽医科技. 1997, 27(11): 28-30.
    张文成,董小青,马一兵.苏云金芽孢杆菌在生态环境中的分布及其作用研究进展[J].武警医学院学报. 2004, 13(5): 409-411.
    张严峻,谭军,林玉清.低温和几丁质酶处理对棉铃虫围食膜的影响[J].中国生物防治. 2000, 16(4): 152-155.
    中国科学院微生物研究所.伯杰氏细菌鉴定手册[M].北京:科学出版社, 1984.
    周林,刘秀廷,贾葵苍.苏云金芽孢杆菌伴胞晶体毒素对捻转血矛线虫第3期幼虫杀灭作用的研究[J].邯郸农业高等专科学校学报. 1999, 16(4): 10-12.
    周学永.苏云金芽胞杆菌喷雾干燥工艺和杀虫蛋白纳米材料吸附剂型的研究[D].华中农业大学博士学位论文, 2004.
    周艳琴,姚宝安,夏雪山,等. Bt伴胞晶体毒素对小鼠体内不同时期日本血吸虫的作用[J].华中农业大学学报. 2005, 24(5): 492-494.
    周艳琴,姚宝安,赵俊龙,等.苏云金芽孢杆菌晶体毒素引发的日本血吸虫超微结构改变[J].中国兽医学报. 2007, 27(4): 503-506.
    祖国掌,李槿年,余为一,等.河蟹细菌病病原分离与鉴定[J].水产养殖. 2007, 28(2): 1-4.
    卓勤,陈小平,朴建华,等.转豇豆胰蛋白酶抑制剂大米90天喂养实验研究[J]. 卫生研究. 2004, 33(2): 176-179.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700