小檗碱促进胰岛素分泌改善胰岛素抵抗的分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分小檗碱对NIT-1细胞胰岛素分泌及葡萄糖激酶活性的影响
     【目的】
     观察小檗碱对NIT-1细胞在不同浓度葡萄糖刺激下胰岛素分泌的影响,检测小檗碱对葡萄糖激酶活性及表达的影响,以初步阐明小檗碱在体外促进胰岛素分泌的可能机制。
     【方法】
     将NIT-1细胞在含不同浓度葡萄糖(高浓度(16.5 mM),低浓度(5.5 mM))的培养基中培养,并用不同浓度小檗碱干预,选用生物素作为阳性对照药。用放免法检测胰岛素浓度,液体闪烁计数法检测葡萄糖利用,生物发光技术检测ATP含量,酶法分析检测葡萄糖激酶活性,Western blot检测葡萄糖激酶(GK)和葡萄糖激酶调节蛋白(GKRP)在蛋白水平表达的变化,并用免疫荧光技术检测葡萄糖激酶在细胞核内外转移。
     【结果】
     在高浓度葡萄糖刺激下,与空白对照组相比较,小檗碱能使葡萄糖刺激下NIT-1细胞胰岛素分泌水平升高,葡萄糖利用增强,ATP含量增加,GK活性提高;同时,小檗碱能使细胞内GK表达增加而GKRP表达减少,还能使GK在细胞浆内的表达增加,小檗碱的这些生物学效应与已被证实的葡萄激酶激活剂生物素相比较无显著差异。在低浓度葡萄糖刺激,小檗碱和生物素的上述活性与空白对照组比较无显著差异。
     【结论】
     小檗碱能促进NIT-1细胞在高浓度葡萄糖刺激下的胰岛素分泌;这种效应的可能机制是:小檗碱作为GK激活剂,使GK表达增强而GKRP表达减少,促进GK向细胞核外转运,从而使GK活性增强,最终使胰岛素分泌增强。
     第二部分小檗碱改善高糖高脂饮食加小剂量STZ诱导的2型糖尿病大鼠靶组织内质网应激的研究
     【目的】
     建立高糖高脂饮食加小剂量STZ诱导的2型糖尿病大鼠模型,观察小檗碱对2型糖尿病大鼠糖脂代谢的影响,同时检测肝脏和脂肪组织中内质网应激相关分子和胰岛素信号转导相关蛋白表达的影响,以探讨小檗碱改善胰岛素抵抗、治疗2型糖尿病的分子机制。
     【方法】
     采用高糖高脂饮食喂养加尾静脉注射小剂量链脲佐菌素(streptozotocin,STZ,15mg/kg)的方法建立2型糖尿病大鼠模型,将造模动物随机分为模型组、小檗碱组、4-苯基丁酸组,另设正常对照组。药物干预治疗6周后,进行口服糖耐量试验(oralglucose tolerance test,OGTT)并检测各组动物空腹血糖(fasting blood glucose,FBG)、空腹血清胰岛素(fasting serum insulin,FINS)、总胆固醇、甘油三酯、低密度脂蛋白和高密度脂蛋白值,并用Western blot检测各组大鼠肝脏和脂肪组织中总JNK和c-Jun-磷酸化水平、总IRS-1和AKT蛋白及磷酸化的水平,用RT-PCR检测GRP78和ORP150基因转录水平。
     【结果】
     与模型组比较,小檗碱能显著改善大鼠OGTT,降低FBG,升高FIN,使总胆固醇、甘油三酯、低密度脂蛋白显著降低,而高密度脂蛋白升高;同时,大鼠肝脏和脂肪组织中JNK活性降低,而GRP78和ORP150基因转录水平显著下调,小檗碱还能使外周组织胰岛素刺激后IRS-1 Ser307磷酸化水平下调,而AKT Ser473磷酸化水平升高;小檗碱的上述效应与已被证实的具有改善内质网应激的4-苯基丁酸治疗组相比无显著差异。
     【结论】
     小檗碱通过减缓2型糖尿病大鼠肝脏和脂肪组织内质网应激并改善胰岛素信号转导从而发挥降糖降脂的生物学活性。
     第三部分小檗碱对衣霉素诱导的肝细胞内质网应激和胰岛素信号转导的影响
     【目的】
     建立衣霉素诱导肝细胞内质网应激的细胞模型,研究小檗碱对肝细胞葡萄糖代谢的效应,并检测小檗碱对内质网应激标志物JNK活性和胰岛素信号转导相关蛋白的影响,探讨小檗碱改善胰岛素抵抗的分子机制。
     【方法】
     分别以0.5μg/ml或2.0μg/ml衣霉素作用于Hep G2肝细胞诱导产生内质网应激,并予以小檗碱预处理,同时选用4-苯基丁酸作为阳性对照药,分别用葡萄糖氧化酶法检测培养液中葡萄糖消耗和葡萄糖合成水平,Western blot检测JNK和c-Jun-磷酸化表达水平,总IRS-1和AKT蛋白表达及其磷酸化水平;并用real time-PCR检测小檗碱对HepG2细胞内质网应激状态下GRP78和ORP150基因表达的影响。
     【结果】
     与模型组比较,小檗碱能显著改善Hep G2细胞胰岛素刺激下葡萄糖消耗,抑制肝细胞葡萄糖合成,并使JNK活性降低、而使GRP78和ORP150基因表达显著降低,同时,小檗碱能使IRS-1 Ser307磷酸化水平减少,而使AKT Ser473磷酸化水平增加;小檗碱的上述生物学效应与4-苯基丁酸治疗组相比无显著差异。
     【结论】
     小檗碱可以明显改善衣霉素诱导的Hep G2细胞内质网应激和胰岛素抵抗,其分子机制可能与小檗碱阻断JNK的激活,抑制内质网应激伴侣分子GRP78和ORP150基因转录,从而增强内质网折叠功能,减少IRS-1 Ser307磷酸化水平,进一步使AKT Ser473磷酸化水平升高;因此我们推测小檗碱增强胰岛素敏感性,改善糖代谢效应可能与其减轻内质网应激有关。
Part 1 Berberine as a novel glucokinase activator modulatesinsulinoma cell function
     【Objective】
     To explore the effect of berberine on insulin secretion on NIT-1 cells line stimulatedwith different concentration of glucose, and to detect the effects of berberine on the activityand expression of glucokinase to reveal the potential mechanism of promoting insulinsecretion of berberine in vitro.
     【Methods】
     NIT-1 cells were stimulated with different concentration of glucose (high concentrationat 16.5 mM and low concentration at 5.5 mM) and were treated with different concentrarionof berberine, while biotin was used as positive control. The concentration of insulin wasmeasured with radioimmunoassay. The glucose utilization of NIT-1 cells was detected withliquid scintillation counting, while cellular ATP content with bioluminescence technique,glucokinase (GK) activity with enzymatic analysis respectively. GK and Glucokinaseregulatory protein (GKRP) expression were determined with Western blot, and GKtranslocation from nucleus to cytoplasm were measured with immunofluorescenece.
     【Results】
     Compared to blank group, berberine could promote GSIS, fercilitate glucose utilization,increase ATP content and GK activity, it could can improve GK expression, whereas theGKRP expression was inhibited, GK translocation from nucleus to cytoplasm was enhancedwhen cells were stimulated with high concentration of glucose, there were no significantdeviation for these effects when compared to biotin-a reagent which was been confirmed asGK activator. However, when NIT-1 cells were stimulated with low concentration ofglucose, all these activities of berberine or biotin were not been detected in comparison with blank group.
     【Conclusion】
     Berberine could promote GSIS, this action may be closely related to that berberineworked as GK activator, thus increasing the expression of GK but decreasing the expressionof GKRP, improving GK translocation from nucleus to cytoplasm thereby augmente GKactivity and promote insulin secretion ultimately when cells were stimulated with highconcentration of glucose.
     Part 2 Ameliorative Effect of berberine on endoplasmicreticulum stress in periphery organs of T2DM rats induced byhigh sucrose-fat diet and low-dose STZ
     【Objective】
     To observe the effects of berberine on glycolipids metabolism in rat with type 2diabetes mellitus (T2DM) induced by high sucrose-fat diet and low-dose STZ, and to detectthe effects of berberine on the expression of markers of endoplasmic reticulum stress andproteins related with insulin signal transduction in liver and adipose tissue to reveal themechanism of berberine on the therapeutic mechanism of type 2 diabetes mellitus.
     【METHODS】
     The rats with T2DM were induced by high sucrose-fat diet and the intravenousinjection of low-dose streptozotocin (STZ, 15mg/kg). Then modeled diabetic animals weredivided into model, berberine and 4-phenyl butyric acid (PBA) group, normal rats fed withcommon chow were designated as normal group. Six weeks later, the oral glucose tolerancetest (OGTT) was performed in all animals, the changes of routine body weight, fastingblood glucose (FBG), fasting serum insulin (FINS), total cholesterol (TC), triglyceride(TG), low density lipoprotein (LDL) and high density lipoprotein (HDL) were measuredrespectively, the expression of JNK and c-Jun-phosphorylation,total IRS-I and AKT, IRS-1ser307 and AKT phosphorylation were detected with Western blot, the expression ofGRP78和ORP150 were measured with RT-PCR.
     【RESULTS】
     Compared with the model group, the result of OGTT was improved, the levels of thebody weights and FBG was decreased, FIN was increased, while TC, TG, LDL weredecreased and HDL was enhanced, meanwhile, the activity of JNK was reduced, GRP78and ORP150 transduction were down-regulated significantly after treated with berberine.Berberine could inhibite IRS-1 Ser307 after stimulation with insulin. It also enhanced the expression of AKT Ser473 obviously; there were no significant difference of these effectsas compared to PBA group.
     [CONCLUSION]
     It is suggested that the therapeutic effects of berberine on T2DM might be related to itsability of alleviating endoplasmic reticulum stress and improve insulin resistance.
     Part 3 Berberine reduces endoplasmic reticulum stress andimproves insulin signal transduction in Hep G2 cells
     【Objective】
     This study was carried out to investigate the effect of berberine on glucose metabolismon Hep G2 cells on the condition of endoplasmic reticulum stress induced withtunicamycine, and to detect the effects of berberine on markers of endoplasmic reticulumstress and insulin resistance to reveal the possible molecular mechanism of berberine onimprove insulin resistance.
     【Methods】
     Hep G2 cells were exposed to tumicamycin to induce tthe endoplasmic reticulum stress,the cells were pretreated with berberine or PBA. Glucose metabolism were measured withglucose oxidase method, the markers of ER stress-JNK were assessed with Western blot.The chaperones of ER stress -GRP78, ORP150 were detected with real time-PCR.Moreover, Ser~(307) phosphorylations of IRS-1, Ser473 phosphorylation of AKT weredetermined with Western blot.
     【Results】
     Berberine could enhance glucose uptake and inhibit glucose production when Hep G2cells were stimulated with insulin after the cells were exposed to tunicamycineo Meanwhile,the activity of JNK was blocked, Ser~(307) phosphorylations of IRS-1 was decreased whileasSer473 phosphorylation of AKT were increased, while GRP78 and ORP150 transductionwere down-regulated when cells wre treated with berberine.
     【Conelution】
     Berberine could alleviate the endoplasmic reticulum stress and insulin resistance inHep G2 cells induced with tunicamycine, the potential therapeutic mechanism of berberinemight be related with its inhibiting the activity of JNK and the transduction of GRP78 and ORP150. Therefore, it is suggested that berberine might improve ER folding capacity, andreduce IRS-1 Ser~(307) phosphorylation and enhance AKT Ser~(473) phosphorylation. Thus wepresume that the antidiabetic effect of berberine may be related to the reduction of ERstress and improvement of insulin signal transduction in Hep G2 cells.
引文
1. Grimsby J, Sarabu R, Corbett WL, Haynes NE, Bizzarro FT, Coffey JW, et al. Allosteric activators of glucokinase: potential role in diabetes therapy. Science.2003; 301(5631):370-373.
    2. Kamata K, Mitsuya M, Nishimura T, Eiki J, Nagata Y. Structural basis for allosteric regulation of the monomeric allosteric enzyme human glucokinase. Structure.2004; 12(3):429-438.
    3. Baltrusch S, Francini F, Lenzen S, Tiedge M. Interaction of glucokinase with the liver regulatory protein is conferred by leucine-asparagine motifs of the enzyme. Diabetes 2005; 54(10):2829-2837.
    4. Brocklehurst KJ, Payne VA, Davies RA, Carroll D, Vertigan HL, Wightman HJ, et al. Stimulation of hepatocyte glucose metabolism by novel small molecule glucokinase activators. Diabetes 2004; 53(3):535-541.
    5. Davis EA, Cuesta-Munoz A, Raoul M, Buettger C, Sweet I, Moates M, et al. Mutants of glucokinase cause hypoglycaemia- and hyperglycaemia syndromes and their analysis illuminates fundamental quantitative concepts of glucose homeostasis. Diabetologia 1999; 42(10):l 175-1186.
    6. Vionnet N, Stoffel M, Takeda J, Yasuda K, Bell GI, Zouali H, et al. Nonsense mutation in the glucokinase gene causes early-onset non-insulin-dependent diabetes mellitus. Nature 1992; 356(6371):721-722.
    7. Christesen HB, Jacobsen BB, Odili S, Buettger C, Cuesta-Munoz A, Hansen T, et al. The second activating glucokinase mutation (A456V): implications for glucose homeostasis and diabetes therapy. Diabetes 2002; 51(4): 1240-1246.
    8. Glaser B, Kesavan P, Heyman M, Davis E, Cuesta A, Buchs A, et al. Familial hyperinsulinism caused by an activating glucokinase mutation. N Engl J Med. 1998; 338(4):226-230.
    9. Chen QM, Xie MZ. [Studies on the hypoglycemic effect of Coptis chinensis and berberine]. Yao Xue Xue Bao.1986; 21(6):401-406.
    10. Kong W, Wei J, Abidi P, Lin M, Inaba S, Li C, et al. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat Med. 2004 Dec; 10(12): 1344-1351.
    11. Lee YS, Kim WS, Kim KH, Yoon MJ, Cho HJ, Shen Y, et al. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes. 2006; 55(8):2256-2264.
    12. Leng SH, Lu FE, Xu LJ. Therapeutic effects of berberine in impaired glucose tolerance rats and its influence on insulin secretion. Acta Pharmacol Sin. 2004; 25(4):496-502.
    13. Turner N, Li JY, Gosby A, To SW, Cheng Z, Miyoshi H, et al. Berberine and its more biologically available derivative, dihydroberberine, inhibit mitochondrial respiratory complex Ⅰ: a mechanism for the action of berberine to activate AMP-activated protein kinase and improve insulin action. Diabetes. 2008; 57(5): 1414-1418.
    14. Arden C, Harbottle A, Baltrusch S, Tiedge M, Agius L. Glucokinase is an integral component of the insulin granules in glucose-responsive insulin secretory cells and does not translocate during glucose stimulation. Diabetes. 2004; 53(9): 2346-2352.
    15. Rabaglia ME, Gray-Keller MP, Frey BL, Shortreed MR, Smith LM, Attie AD. Alpha-Ketoisocaproate-induced hypersecretion of insulin by islets from diabetes-susceptible mice. Am J Physiol Endocrinol Metab. 2005; 289(2):E218-224.
    16. Garcia-Ocana A, Vasavada RC, Cebrian A, Reddy V, Takane KK, Lopez-Talavera JC, et al. Transgenic overexpression of hepatocyte growth factor in the beta-cell markedly improves islet function and islet transplant outcomes in mice. Diabetes. 2001; 50(12): 2752-2762.
    17. Yang J, Wong RK, Wang X, Moibi J, Hessner MJ, Greene S, et al. Leucine culture reveals that ATP synthase functions as a fuel sensor in pancreatic beta-cells. J Biol Chem. 2004; 279(52):53915-53923.
    18. Aalinkeel R, Srinivasan M, Kalhan SC, Laychock SG, Patel MS. A dietary intervention (high carbohydrate) during the neonatal period causes islet dysfunction in rats. Am J Physiol. 1999; 277(6 Pt 1): E1061-1069.
    19. Chu CA, Fujimoto Y, Igawa K, Grimsby J, Grippo JF, Magnuson MA, et al. Rapid translocation of hepatic glucokinase in response to intraduodenal glucose infusion and changes in plasma glucose and insulin in conscious rats. Am J Physiol Gastrointest Liver Physiol. 2004; 286(4):G627-634.
    20. Efanov AM, Barrett DG, Brenner MB, Briggs SL, Delaunois A, Durbin JD, et al. A novel glucokinase activator modulates pancreatic islet and hepatocyte function. Endocrinology. 2005; 146(9):3696-3701.
    21. Schuit FC, Huypens P, Heimberg H, Pipeleers DG. Glucose sensing in pancreatic beta-cells: a model for the study of other glucose-regulated cells in gut, pancreas, and hypothalamus. Diabetes. 2001; 50(1):1-11.
    22. Yi P, Lu FE, Xu LJ, Chen G, Dong H, Wang KF. Berberine reverses free-fatty-acid-induced insulin resistance in 3T3-L1 adipocytes through targeting IKKbeta. World J Gastroenterol. 2008; 14(6):876-883.
    23. Romero-Navarro G, Cabrera-Valladares G, German MS, Matschinsky FM, Velazquez A, Wang J, et al. Biotin regulation of pancreatic glucokinase and insulin in primary cultured rat islets and in biotin-deficient rats. Endocrinology. 1999; 140(10):4595-4600.
    24. Matschinsky FM. Regulation of pancreatic beta-cell glucokinase: from basics to therapeutics. Diabetes. 2002; 51 Suppl 3:S394-404.
    25. Heissig H, Urban KA, Hastedt K, Zunkler BJ, Panten U. Mechanism of the insulin-releasing action of alpha-ketoisocaproate and related alpha-keto acid anions. Mol Pharmacol. 2005; 68(4):1097-1105.
    26. Liang Y, Najafi H, Smith RM, Zimmerman EC, Magnuson MA, Tal M, et al. Concordant glucose induction of glucokinase, glucose usage, and glucose-stimulated insulin release in pancreatic islets maintained in organ culture. Diabetes. 1992; 41(7):792-806.
    1.Turner N, Li JY, Gosby A, To SW, Cheng Z, Miyoshi H, et al. Berberine and its more biologically available derivative, dihydroberberine, inhibit mitochondrial respiratory complex I: a mechanism for the action of berberine to activate AMP-activated protein kinase and improve insulin action. Diabetes. 2008;57(5):1414-1418.
    2.Kong W, Wei J, Abidi P, Lin M, Inaba S, Li C, et al. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat Med. 2004;10(12):1344-1351.
    3.Zhou L, Yang Y, Wang X, Liu S, Shang W, Yuan G, et al. Berberine stimulates glucose transport through a mechanism distinct from insulin. Metabolism. 2007;56(3):405-412.
    4.Lee YS, Kim WS, Kim KH, Yoon MJ, Cho HJ, Shen Y, et al. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes. 2006;55(8):2256-2264.
    5.Reed MJ, Meszaros K, Entes LJ, Claypool MD, Pinkett JG, Gadbois TM, et al. A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism. 2000;49(11):1390-1394.
    6.Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K, et al. A central role for JNK in obesity and insulin resistance. Nature. 2002;420(6913):333-336.
    7.Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science. 2004;306(5695):457-461.
    8.Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001;414(6865):799-806.
    9. Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest. 2000 Jul;106(2): 171-176.
    10. Robertson RP, Harmon J, Tran PO, Poitout V. Beta-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes. Diabetes. 2004 ;53 Suppl1 :S119-124.
    11. Weir GC, Laybutt DR, Kaneto H, Bonner-Weir S, Sharma A. Beta-cell adaptation and decompensation during the progression of diabetes. Diabetes. 2001;50 Suppl 1:S154-159.
    12. Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science. 2006;313(5790): 1137-1140.
    13. Ma Y, Hendershot LM. The unfolding tale of the unfolded protein response. Cell. 2001;107(7):827-830.
    14. Kaufman RJ, Scheuner D, Schroder M, Shen X, Lee K, Liu CY, et al. The unfolded protein response in nutrient sensing and differentiation. Nat Rev Mol Cell Biol. 2002;3(6):411-421.
    15. Eizirik DL, Cardozo AK, Cnop M. The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev. 2008;29(l):42-61.
    16. Krauss S, Zhang CY, Lowell BB. The mitochondrial uncoupling-protein homologues. Nat Rev Mol Cell Biol. 2005;6(3):248-261.
    17. Muoio DM, Newgard CB. Mechanisms of disease: molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nat Rev Mol Cell Biol. 2008; 9(3): 193-205.
    18. Yi P, Lu FE, Xu LJ, Chen G, Dong H, Wang KF. Berberine reverses free-fatty-acid-induced insulin resistance in 3T3-L1 adipocytes through targeting IKKbeta. World J Gastroenterol. 2008 14;14(6):876-883.
    19. Leng SH, Lu FE, Xu LJ. Therapeutic effects of berberine in impaired glucose tolerance rats and its influence on insulin secretion. Acta Pharmacol Sin. 2004;25(4):496-502.
    20. Pascoe WS, Jenkins AB, Kusunoki M, Storlien LH. Insulin action and determinants of glycaemia in a rat model of type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1992;35(3):208-215.
    21. Kraegen EW, Clark PW, Jenkins AB, Daley EA, Chisholm DJ, Storlien LH. Development of muscle insulin resistance after liver insulin resistance in high-fat-fed rats. Diabetes. 1991 ;40(11): 1397-1403.
    22. Ota T, Gayet C, Ginsberg HN. Inhibition of apolipoprotein B100 secretion by lipid-induced hepatic endoplasmic reticulum stress in rodents. J Clin Invest. 2008;118(l):316-332.
    23. Gao Z, Zuberi A, Quon MJ, Dong Z, Ye J. Aspirin inhibits serine phosphorylation of insulin receptor substrate 1 in tumor necrosis factor-treated cells through targeting multiple serine kinases. J Biol Chem. 2003;278(27):24944-24950.
    24. Aguirre V, Uchida T, Yenush L, Davis R, White MR The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem. 2000;275(12):9047-9054.
    25. Collins QF, Xiong Y, Lupo EG, Jr., Liu HY, Cao W. p38 Mitogen-activated protein kinase mediates free fatty acid-induced gluconeogenesis in hepatocytes. J Biol Chem. 2006;281(34):24336-24344.
    26. Lee YH, Giraud J, Davis RJ, White MF. c-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade. J Biol Chem. 2003;278(5):2896-2902.
    27. Storling J, Zaitsev SV, Kapelioukh IL, Karlsen AE, Billestrup N, Berggren PO, et al. Calcium has a permissive role in interleukin-1 beta-induced c-jun N-terminal kinase activation in insulin-secreting cells. Endocrinology. 2005;146(7):3026-3036.
    28. Kim AJ, Shi Y, Austin RC, Werstuck GH. Valproate protects cells from ER stress-induced lipid accumulation and apoptosis by inhibiting glycogen synthase kinase-3. J Cell Sci. 2005; 118(Pt l):89-99.
    29. Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y, Jungreis R, et al. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 2004;18(24):3066-3077.
    30. Sun FC, Wei S, Li CW, Chang YS, Chao CC, Lai YK. Localization of GRP78 to mitochondria under the unfolded protein response. Biochem J. 2006;396( 1 ):31 -39.
    31. Kuwabara K, Matsumoto M, Ikeda J, Hori O, Ogawa S, Maeda Y, et al. Purification and characterization of a novel stress protein, the 150-kDa oxygen-regulated protein (ORP150), from cultured rat astrocytes and its expression in ischemic mouse brain. J Biol Chem. 1996 ;271(9):5025-5032.
    32. Kovacs P, Yang X, Permana PA, Bogardus C, Baier LJ. Polymorphisms in the oxygen-regulated protein 150 gene (ORP150) are associated with insulin resistance in Pima Indians. Diabetes. 2002;51 (5): 1618-1621.
    33. Pessin JE, Saltiel AR. Signaling pathways in insulin action: molecular targets of insulin resistance. J Clin Invest. 2000; 106(2): 165-169.
    1.DeFronzo RA. Pathogenesis of type 2 diabetes mellitus. Med Clin North Am. 2004;88(4):787-835, ix.
    2.Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001;414(6865):799-806.
    3.Poitout V, Robertson RP. Minireview: Secondary beta-cell failure in type 2 diabetes-a convergence.of glucotoxicity and lipotoxicity. Endocrinology. 2002;143(2):339-342.
    4.Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444(7121):840-846.
    5.Sakuraba H, Mizukami H, Yagihashi N, Wada R, Hanyu C, Yagihashi S. Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese Type Ⅱ diabetic patients. Diabetologia. 2002;45(l):85-96.
    6.Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003;52(1):102-110.
    7.Lillioja S, Mott DM, Howard BV, Bennett PH, Yki-Jarvinen H, Freymond D, et al. Impaired glucose tolerance as a disorder of insulin action. Longitudinal and cross-sectional studies in Pima Indians. N Engl J Med. 1988;318(19):1217-1225.
    8.Eizirik DL, Cardozo AK, Cnop M. The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev. 2008;29(l):42-61.
    9.Riggs AC, Bernal-Mizrachi E, Ohsugi M, Wasson J, Fatrai S, Welling C, et al. Mice conditionally lacking the Wolfram gene in pancreatic islet beta cells exhibit diabetes as a result of enhanced endoplasmic reticulum stress and apoptosis. Diabetologia. 2005;48(ll):2313-2321.
    10.Ladiges WC, Knoblaugh SE, Morton JF, Korth MJ, Sopher BL, Baskin CR, et al. Pancreatic beta-cell failure and diabetes in mice with a deletion mutation of the endoplasmic reticulum molecular chaperone gene P58IPK. Diabetes. 2005;54(4):1074-1081.
    11.Yusta B, Baggio LL, Estall JL, Koehler JA, Holland DP, Li H, et al. GLP-1 receptor activation improves beta cell function and survival following induction of endoplasmic reticulum stress. Cell Metab. 2006;4(5):391-406.
    12. Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science. 2004;306(5695):457-461.
    13. Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science. 2006;313(5790):1137-1140.
    14. Aguirre V, Uchida T, Yenush L, Davis R, White MR The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem. 2000;275(12):9047-9054.
    15. Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K, et al. A central role for JNK in obesity and insulin resistance. Nature. 2002 Nov 21;420(6913):333-336.
    16. Ozawa K, Miyazaki M, Matsuhisa M, Takano K, Nakatani Y, Hatazaki M, et al. The endoplasmic reticulum chaperone improves insulin resistance in type 2 diabetes. Diabetes. 2005;54(3):657-663.
    17. Han KL, Choi JS, Lee JY, Song J, Joe MK, Jung MH, et al. Therapeutic potential of peroxisome proliferators-activated receptor-alpha/gamma dual agonist with alleviation of endoplasmic reticulum stress for the treatment of diabetes. Diabetes. 2008;57(3):737-745.
    18. Nakatani Y, Kaneto H, Kawamori D, Yoshiuchi K, Hatazaki M, Matsuoka TA, et al. Involvement of endoplasmic reticulum stress in insulin resistance and diabetes. J Biol Chem. 2005;280(l):847-851.
    19. Xie Q, Khaoustov VI, Chung CC, Sohn J, Krishnan B, Lewis DE, et al. Effect of tauroursodeoxycholic acid on endoplasmic reticulum stress-induced caspase-12 activation. Hepatology. 2002;36(3):592-601.
    20. Takano K, Tabata Y, Kitao Y, Murakami R, Suzuki H, Yamada M, et al. Methoxyflavones protect cells against endoplasmic reticulum stress and neurotoxin. Am J Physiol Cell Physiol. 2007;292(l):C353-361.
    21. Kong W, Wei J, Abidi P, Lin M, Inaba S, Li C, et al. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat Med. 2004; 10(12): 1344-1351.
    22. Zhang CY, Parton LE, Ye CP, Krauss S, Shen R, Lin CT, et al. Genipin inhibits UCP2-mediated proton leak and acutely reverses obesity- and high glucose-induced beta cell dysfunction in isolated pancreatic islets. Cell Metab. 2006;3(6):417-427.
    23. Lee YS, Kim WS, Kim KH, Yoon MJ, Cho HJ, Shen Y, et al. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes. 2006;55(8):2256-2264.
    24. Turner N, Li JY, Gosby A, To SW, Cheng Z, Miyoshi H, et al. Berberine and its more biologically available derivative, dihydroberberine, inhibit mitochondrial respiratory complex I: a mechanism for the action of berberine to activate AMP-activated protein kinase and improve insulin action. Diabetes. 2008;57(5):1414-1418.
    25. Leng SH, Lu FE, Xu LJ. Therapeutic effects of berberine in impaired glucose tolerance rats and its influence on insulin secretion. Acta Pharmacol Sin. 2004;25(4):496-502.
    26. Yi P, Lu FE, Xu LJ, Chen G, Dong H, Wang KF. Berberine reverses free-fatty-acid-induced insulin resistance in 3T3-L1 adipocytes through targeting IKKbeta. World J Gastroenterol. 2008;14(6):876-883.
    27. Yin J, Hu R, Chen M, Tang J, Li F, Yang Y, et al. Effects of berberine on glucose metabolism in vitro. Metabolism. 2002;51(ll):1439-1443.
    28. Berg AH, Combs TP, Du X, Brownlee M, Scherer PE. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med. 2001 ;7(8):947-953.
    29. Seoane J, Trinh K, O'Doherty RM, Gomez-Foix AM, Lange AJ, Newgard CB, et al. Metabolic impact of adenovirus-mediated overexpression of the glucose-6-phosphatase catalytic subunit in hepatocytes. J Biol Chem. 1997;272(43):26972-26977.
    30. Zhou L, Yang Y, Wang X, Liu S, Shang W, Yuan G, et al. Berberine stimulates glucose transport through a mechanism distinct from insulin. Metabolism. 2007;56(3):405-412.
    31. Vilatoba M, Eckstein C, Bilbao G, Smyth CA, Jenkins S, Thompson JA, et al. Sodium 4-phenylbutyrate protects against liver ischemia reperfusion injury by inhibition of endoplasmic reticulum-stress mediated apoptosis. Surgery. 2005; 138(2):342-351.
    32. Ota T, Gayet C, Ginsberg HN. Inhibition of apolipoprotein B100 secretion by lipid-induced hepatic endoplasmic reticulum stress in rodents. J Clin Invest. 2008;118(1):316-332.
    33. Basu R, Chandramouli V, Dicke B, Landau B, Rizza R. Obesity and type 2 diabetes impair insulin-induced suppression of glycogenolysis as well as gluconeogenesis. Diabetes. 2005;54(7):1942-1948.
    34. Savage DB, Petersen KF, Shulman GI. Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol Rev. 2007;87(2):507-520.
    35. Collins QF, Xiong Y, Lupo EG, Jr., Liu HY, Cao W. p38 Mitogen-activated protein kinase mediates free fatty acid-induced gluconeogenesis in hepatocytes. J Biol Chem. 2006;281(34):24336-24344.
    36. Cherrington AD. Banting Lecture 1997. Control of glucose uptake and release by the liver in vivo. Diabetes. 1999;48(5):1198-1214.
    37. Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y, Jungreis R, et al. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 2004;18(24):3066-3077.
    38. Werstuck GH, Lentz SR, Dayal S, Hossain GS, Sood SK, Shi YY, et al. Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways. J Clin Invest. 2001;107(10):1263-1273.
    39. Sun FC, Wei S, Li CW, Chang YS, Chao CC, Lai YK. Localization of GRP78 to mitochondria under the unfolded protein response. Biochem J. 2006;396(l):31-39.
    40. Kuwabara K, Matsumoto M, Ikeda J, Hori O, Ogawa S, Maeda Y, et al. Purification and characterization of a novel stress protein, the 150-kDa oxygen-regulated protein (ORP150), from cultured rat astrocytes and its expression in ischemic mouse brain. J Biol Chem. 1996;271(9):5025-5032.
    41. Ozawa K, Kondo T, Hori O, Kitao Y, Stern DM, Eisenmenger W, et al. Expression of the oxygen-regulated protein ORP150 accelerates wound healing by modulating intracellular VEGF transport. J Clin Invest. 2001;108(l):41-50.
    42. Kovacs P, Yang X, Permana PA, Bogardus C, Baier LJ. Polymorphisms in the oxygen-regulated protein 150 gene (ORP150) are associated with insulin resistance in Pima Indians. Diabetes. 2002;51(5): 1618-1621.
    43. Yuan M, Konstantopoulos N, Lee J, Hansen L, Li ZW, Karin M, et al. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science. 2001 ;293(5535): 1673-1677.
    44. Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature. 1997;389(6651):610-614.
    45. Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med. 2005;ll(2):183-190.
    46. Lee YH, Giraud J, Davis RJ, White MF. c-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade. J Biol Chem. 2003;278(5):2896-2902.
    47. Gao Z, Zuberi A, Quon MJ, Dong Z, Ye J. Aspirin inhibits serine phosphorylation of insulin receptor substrate 1 in tumor necrosis factor-treated cells through targeting multiple serine kinases. J Biol Chem. 2003;278(27):24944-24950.
    48. Pessin JE, Saltiel AR. Signaling pathways in insulin action: molecular targets of insulin resistance. J Clin Invest. 2000;106(2):165-169.
    49. Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest. 2000; 106(2): 171-176.
    1.陈其明,谢明智.小檗碱对正常小鼠血糖调节的影响.药学学报,1987,22(3):161-165.
    2.陈其明,谢明智.黄连及小檗碱降血糖作用的研究.药学学报,1986,21(6):401-406.
    3.王晓新,金小平,徐志红.黄连素治疗2型糖尿病116例疗效观察.内蒙古医学杂志,2003,35(2):141-142.
    4.谢培凤,周晖,高彦彬.小檗碱治疗2型糖尿病40例疗效观察.中国临床保健杂志,2005,8(05):402-403.
    5.段秀菊.黄连素片治疗2型糖尿病36例.中原医刊,2004,31(16):52-53.
    6. Yin J, Xing HL, Ye JP, et al. Efficacy of berberine in patients with type 2 diabetes mellitus. Metabolism Clinical and Experimental, 2008, 57:712-717.
    7.荣太梓,陆付耳,陈广,等.小檗碱对胰岛素分泌缺陷型糖尿病大鼠葡萄糖激酶相关糖代谢的影响.中草药,2007,38(5):725-728.
    8.殷峻,胡仁明,陈名道,等.二甲双胍、曲格列酮和小檗碱对HepG2细胞耗糖作用比较.中华内分泌代谢杂志,2002,18(6):488-489.
    9. Kong WJ, Wei J, Abidi P, et al. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. NATURE MEDICINE. 2004, 10(12): 1344-1351.
    10. Zhang YF, Li XY, Zou D J, et al. Treatment of type 2 diabetes and dyslipidemia with the natural plant alkaloid berberine. J Clin Endocrin Metab. 2008
    11.刘礼乐,张少君,罗婵清,等.盐酸小檗碱治疗非酒精性脂肪肝34例.实用医学杂志,2006,22(21):2519-2520.
    12.魏敬,蒋建东,吴锦丹,等.盐酸小檗碱的调脂作用的研究.中华糖尿病杂志,2005 13(1):49-51.
    13.殷峻,陈名道,唐金凤,等.小檗碱对实验大鼠糖脂代谢的影响.中华糖尿病杂志,2004,12(3):215-218.
    14.何明坤,陆付耳,王开富,等.小檗碱对高脂血症伴胰岛素抵抗大鼠糖脂代谢的影 响.中国医院药学杂志,2004,24(7):389-391.
    15.李柱,刘丽华.黄连素联合格列吡嗪对2型糖尿病治疗效果的研究.医学临床研究,2007,24(1):61-64.
    16.魏敬,吴锦丹,蒋建东,等.盐酸小檗碱治疗2型糖尿病合并脂肪肝的临床研究.中西医结合肝病杂志,2004,14(6):334-336.
    17. Lee YS, Kim WS, Kim KH, et al. Berberine, a Natural Plant Product, Activates AMP-Activated Protein Kinase With Beneficial Metabolic Effects in Diabetic and Insulin-Resistant States. Diabetes, 2006, 55:2256-2264.
    18. Yi P, Lu FE, Xu LJ, et al. Berberine reverses free-fatty-acid-induced insulin resistance in 3T3-L1 adipocytes through targeting IKKβ. World J Gastroenterol, 2008,14(6): 876-883.
    19. Turner N, Li JY, Gosby A, et al. Berberine and Its More Biologically Available Derivative, Dihydroberberine, Inhibit Mitochondrial Respiratory Complex Ⅰ: A Mechanism for the Action of Berberine to Activate AMP-Activated Protein Kinase and Improve Insulin Action. Diabetes, 2008; 57 (5): 1414-1418.
    20. Brusq JM, Ancellin N, Grondin P,et al. Inhibition of lipid synthesis through activation of AMP kinase: an additional mechanism for the hypolipidemic effects of berberine. J.Lipid Res. 2006.47:1281-1288
    21.陈德元.黄连素治疗2型糖尿病50例观察.现代中西医结合杂志,2001,10(2):138-139.
    22. Leng SH, Lu FE, Xu LJ. Therapeutic effects of berberine in impaired glucose tolerance rats and its influence on insulin secretion. Acta Pharmacol Sin, 2004,25(4):496-502.
    23. Ko BS, Choi SB, Park SK, et al. Insulin Sensitizing and Insulinotropic Action of Berberine from Cortidis Rhizoma. Biol Pharm Bull.2005, 28(8): 1431-1437.
    24.余琛,张慧,洪有采,等.健康人口服盐酸黄连素片剂后的尿药分析与药物代谢初步研究.中国临床药理学杂志,2000,16(1):36-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700