牙科陶瓷高速手机调磨研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用高速牙科手机对陶瓷修复体进行口腔调磨是保证修复体按照预期寿命有效行使临床功能的关键环节。本文在国家自然科学基金的资助下,系统研究了牙科切削陶瓷调磨进程中的高速手机性能、陶瓷表面/亚表面质量及调磨参数优化设计等关键科学问题。论文取得以下创造性成果:
     设计了一种新型的模拟牙科调磨的二维体外实验装置,打破国外相关研究装置一维准静态局限。在此基础上,首次结合动态牙科切削实验,对高速牙科手机的性能参数进行了系统的测试和研究,揭示出牙科手机性能参数的主要影响因素及其变化规律,并确定了快速、精细两种典型牙科调磨进程中的高速牙科手机极限应用条件。
     利用压痕断裂力学理论,提出了牙科陶瓷产生横向裂纹的临界载荷模型。借助该模型与表面形貌观察法,揭示了牙科陶瓷在常规、快速、精细三种典型牙科调磨进程条件下的表面生成机理及表面损伤特征。研究结果表明,牙科陶瓷表面修复质量对车针金刚石粒度较敏感,而牙科调磨用量参数对改善牙科陶瓷的表面质量没有明显作用。
     借助有限元软件ANSYS参数化设计语言,提出一种牙科陶瓷调磨亚表面损伤预测模型,并通过实验验证其有效性。利用该模型,系统研究了牙科陶瓷调磨亚表面应力分布规律及损伤深度。研究结果表明,陶瓷修复体在调磨过程中,应力集中在磨粒即将离开材料处。研究还表明,最大主应力准则适合作为牙科陶瓷的损伤判据,牙科陶瓷调磨后的亚表面损伤深度与最大未变形切屑厚度线性正相关,且切削用量参数对其影响显著。
     结合牙科修复体调磨的临床特点,提出一种调磨参数优化设计方法。研究结果表明,该方法可以针对不同的实际临床条件和要求,有效、快速地对牙科调磨参数进行优化设计和求解。
     上述研究成果不仅为指导临床医师合理进行牙科调磨技术提供科学的理论依据,而且为改善牙科陶瓷修复体的临床使用性能开辟一条新的研究途径。
Intraoral resurfacing of ceramic prostheses using dental handpieces/burs is the key in restorative dentistry because the durability of ceramic prostheses depends on the resurfacing processes and quality. This dissertation investigated the critical scientific issues during dental resurfacing of bioceramics using clinical high-speed dental handpieces and diamond burs. The following contributions and conclusions have been made:
     A novel 2-DOF in vitro dental cutting tester has been developed to simulate the clinical intraoral resurfacing operations. The performance of a high-speed dental handpiece was dynamically evaluated using the tester. The application limitations of the dental handpiece in rapid and micro-fine finishing of ceramic prostheses have been proposed. The results demonstrate that the process parameters, including depth of cut, feed rate, cutting direction and material properties were central factors in controlling the clinical performance of a dental handpiece.
     The surface integrity and the removal mechanism in dental resurfacing of ceramic prostheses were investigated based on indenting fracture theory and surface morphology analysis. Consequently, a mathematical expression of a threshold load of lateral cracking for dental resurfacing of dental ceramics was addressed, with which the removal mechanism could be predicted. The results show that the resurfaced surface quality was sensitive to the grit size of dental diamond burs, but insignificantly changing with the depth of cut and the feed rate of dental handpieces.
     The stress fields and the degrees of subsurface damage of ceramic prostheses in simulated dental resurfacing operations were investigated using finite element analysis (FEA). A finite element model was established to predict the stress fields and the depths of subsurface damage in ceramic prostheses as functions of the dental operational conditions. It shows the stresses were all centered at the grit exit point, and the depths of subsurface damage increased with both the depth of cut and the feed rate. The FEA predictions were in agreement with the experimental measurements.
     An approach of optimization of the complex dental resurfacing processes was presented based on the artificial neural network technology and sequential quadratic programming algorithm. It involved a multi-objective function considering both the material removal rate and the subsurface damage degrees to optimize the dental processes. An illustrative example demonstrates that the approach was fast and efficient for optimization of the dental process parameters.
     The above research outcomes have provided the fundamental data and scientific base to restorative dentistry on proper intraoral dental resurfacing of ceramic prostheses.
引文
[1] Kelly J R, Ceramics in restorative and prosthetic dentistry, Annual Review Materials Science, 1997, 27: 443~468
    [2] van Noort R, Dental ceramics, In: van Noort R, editor, Introduction to Dental Materials, 2nd ed, Oxford: Elsevier, 2002, 231~246.
    [3] Leinfelder K F, Porcelain esthestics for the 21st century, Journal of the American Dental Association, 2000, 131: 47~51
    [4] http://www.beiyizx.com/kouqiang/ tk/html/xiufu.html
    [5] http://www.dentasia.com.cn/frasaco/frasaco_com3.files/frasaco.files/yk4.htm
    [6] Lawn B R, Deng Y, Miranda P, et al, Overview: damage in brittle layer structures from concentrated loads, Journal of Materials Ressearch, 2002, 17: 3019~3036
    [7] Lawn B R, Deng Y, Lloyd I K, et al, Materials design of ceramic-based layer structures for crowns, Journal of Dental Rearch, 2002, 81: 433~438
    [8] Jung Y-G, Wuttiphan S, Peterson I M, et al, Damage modes in dental layer structures, Journal of Dental Rearch, 1999, 78: 887~897
    [9] Jung Y-G, Peterson I M, Kim D K, et al, Lifetime-limiting strength degradation from contact fatigue in dental ceramics, Journal of Dental Research, 2000, 79(2): 722~731
    [10] Hankinson J A, Cappetta E G, Five year clinical experience with a leucite-reinforced porcelain crown system, International Journal of Periodontics & Restorative Dentistry, 1994, 14: 138~153
    [11] Rekow D, Thompson V P, Engineering long term clinical success of advanced ceramic prostheses, Journal of Materials Science: Materials in Medicine, 2007, 18: 47~56
    [12] Solution for Reliable Metal-Free Restorations, at: http://www.ceramco.com/ prod_cerconz_aacd.shtml
    [13] http://www.marottadental.com/Procera_Prep.htm
    [14] Kelly J R, Lüthy H, Gougoulakis A, et al, Machining effects on feldspathic porcelain and glass ceramic: fracture analysis, In: Mormann W H, editor, International Symposium on Computer Restorations, Berlin: Quintessence, 1991, 253~273
    [15] Kelly J R, Giordano R, Pober R, et al, Fracture surface analysis of dental ceramics: Clinically failed restorations, The International Journal of Prosthodontics, 1990, 3: 430~440
    [16] Anusavice K J, Degradability of dental ceramics, Advances in Dental Research, 1992, 6: 82~89
    [17] Nagarajan V S, Jahanmir S, The relationship between microstructure and wear of mica-containing glass-ceramics, Wear, 1996, 200:176~185
    [18] Lawn B R, Deng Y, Thompson V P, Use of contact testing in the characterization and design of all-ceramic crownlike layer structures: A review, The Journal of Prosthetic Dentistry, 2001, 86(5): 495~510
    [19] Zhang Y, Lawn B R, Long-term strength of ceramics for biomedical applications, Journal Biomedical Material Research, 2004, 69B:166~172
    [20] Rhee Y-W, Kim H-W, Deng Y, et al, Contact-induced damage in ceramic coatings on compliant substrates: fracture mechanics and design, Journal of the American Ceramic Society, 2001, 84(5): 1066~1072
    [21] Miranda P, Antonia P, Guiberteau F, et al, Designing damage-resistant brittle-coating structures: I. Bilayers, Acta Materialia, 2003, 51: 4347~4356
    [22] Miranda P, Pajares A, Guiberteau F, et al, Designing damage-resistant brittle-coating structures: II. Trilayers, Acta Materialia, 2003, 51: 4357~4365
    [23] Sindel J, Petschelt A, Grellner F, et al, Evaluation of subsurface damage in CAD/CAM machined dental ceramics, Journal of Materials Science: Materials in Medicine, 1998, 9(5): 291~295
    [24] Cao Y, Stress and crack analyses of ceramic crowns in contact and characterization of material removal in machining of dental ceramics (PhD), MD, University of Maryland, 2000
    [25] Yin L, Song X F, Song Y L, et al, An overview of in vitro abrasive finishing & CAD/CAM of bioceramics in restorative dentistry, International Journal of Machine Toos & Manufacture, 2006, 46: 1013~1026
    [26] Dong X, Yin L, Jahanmir S, et al, Abrasive machining of glass-ceramics with a dental handpiece, Machining Science and Technology, 2000, 4: 209~233
    [27] Huang M, Thompson V P, Rekow E D, et al, Modeling of water absorption induced cracks on resin-based composite supported ceramic layer structures, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2008, 84(1): 124~130
    [28] Li H, Zhou Z R, On the friction and wear behavior of human tooth enamel and dentin, Wear, 2003, 255: 967~974
    [29] Cai H, Kalceff M A S, Hooks B, et al, Cyclic fatigue of a mica-containing glass-ceramic at Hertzian contacts, Journal of Materials Research, 1994, 9(10): 2654~2660
    [30] Gibbs C H, Anusavice K J, Young H M, Jones J S, Esquivel-Upshaw J F, Maximum clenching force of patients with moderate loss of posterior tooth support: A pilot study, The Journal of Prosthetic Dentistry, 2002, 88(5): 498~502
    [31] Rekow E D, Erdman A G., Riley D R, CAD/CAM for dental restorations-some of the current challenges, IEEE Trans. Biomedical Engineering, 1991, 38(4): 414~318
    [32] Bindl A, Lüthy H, M?rmann W H, Strengh and fracture pattern of monolithic CAD/CAM-generated posterior crowns, Dental Material, 2006, 22(1): 29~36
    [33] Zhao H, Miranda P, Lawn B R, et al, Cracking in ceramic/metal/polymer trilayer systems, Journal of Materials Ressearch, 2002, 17: 1102~1111
    [34] Oh W, G?tzen N, Anusavice K J, Infuence of connector design on fracture probability of ceramic fixed-partial dentures, Journal of Dental Research, 2002, 81: 623~627
    [35] Geng J P, Tan K B, Liu G R, Application of finite element analysis in implant dentistry: a review of the literature, The Journal of Prosthetic Dentistry, 2001, 85, 585~598
    [36] Kim H-W, Deng Y, Miranda P, et al, Effect of flaw state on the strength of brittle coatings on soft substrates, Journal of the American Ceramic Society, 2001, 84: 2377~2384
    [37]吕培军,李彦生等,国产口腔修复CAD/CAM系统的研究与开发,中华口腔医学杂志,2002,37(5):367~370
    [38]付强,赵云凤,李彦等,新型高强度牙科切削陶瓷材料的研制,中山医科大学学报,2002,23(6):438~440
    [39] Deng Y, Lawn B R, Lloyd I K, Characterization of damage modes in dental ceramic bilayer structures, Journal of Biomedical Materials Research, 2002, 63(2): 137~145
    [40] Peterson I M, Pajares A, Lawn B R, et al, Mechanical characterization of dental ceramics by Hertzian contacts, Journal of Dental Research, 1998, 77(4): 589~602
    [41] Kelly J R, Nishimura I, Campbell S D, Ceramics in dentistry: historical roots and current perspectives, Journal of Prosthetics Dentistry, 1996, 75(1): 18~32
    [42] DeLong R, Sasik C, Pintado M R, et al, The wear of enamel when opposed by ceramic systems, Dental Materials, 1989, 5: 266~271
    [43] Peterson I M, Wuttiphan S, Lawn B R, et al, Role of microstructure on contact damage and strength degradation of micaceous glass-ceramics, Dental Materials, 1998, 14: 80~89
    [44] Xu H H K, Smith D T, Jahanmir S, Influence of microstructure on indentation and machining of dental glass-ceramics, Journal of Materials Research, 1996, 11(9): 2325~2337
    [45] Xu H H K, Jahanmir S, Effect of microstructure on damage tolerance in grinding dental glass-ceramics, Journal of Materials Research, 1998, 13(8): 2231~2236.
    [46] Cai H, Kalceff M A S, Lawn B R, Deformation and fracture of mica-containing glass-ceramics in Hertzian contacts, Journal of Materials Research, 1994, 9(3): 762~770
    [47] Chen H Y, Hickel R, Setcos J C, et al, Effects of surface finish and fatigue testing on the fracture strength of CAD-CAM and pressed-ceramic crowns, The Journal of Prosthetic Dentistry, 1999, 82(4): 468~475
    [48] http://www.ivoclarvivadent.com
    [49] Jung Y-G, Peterson I M, Pajares A, et al, Contact damage resistance and strength degradation of glass-infiltrated alumina and spinel ceramics, Journal of Dental Research, 1999, 77(3): 804~814
    [50] Yin L, Ives L K, Jahanmir S, et al, Abrasive machining of glass-infiltrated alumina with diamond burs, Machining Science & Technology, 2001, 5(1): 43~61
    [51]胡双,陈汉斌,文进,牙科陶瓷冠桥修复体材料的发展现状,口腔材料器械杂志,2007,16:34~42
    [52] Zeng K, Oden A, Rowcliffe D, Evaluation of mechanical properties of dental ceramic core materials in combination with porcelains, The International Journal of Prosthodontics, 1998, 11(2): 183~189
    [53] http://www.vident.com/product_t1.php?id_pages=84
    [54]张世新,巢永烈,张云龙等,牙科/CAM加工用氧化铝块的研制与性能测试,中华医学杂志,1999,34:202~204
    [55] Cales B, Colored zirconia ceramics for dental applications, Bioceramics, 1998, 11: 591~594
    [56] Xu H H K, Kelley R J, Jahanmir S, et al, Enamel subsurface damage due to tooth preparation with diamonds, Journal of Dental Research, 1997, 76 (1): 1698~1706
    [57] Quinn J, Su L, Flanders L, et al,“Edge toughness”and material properties related to the machining of dental ceramics, Machining Science & Technology, 2000, 4: 291~304.
    [58] Albakry M, Guazzato M, Swain M V, Fracture toughness and hardness evaluation of three pressable all-ceramic dental materials, Journal of Dentistry, 2003, 31(3): 181~188
    [59] Holand W, Schweiger M, Frank M, A comparison of the microstructure and properties of the IPS Empress 2 and the IPS Empress glass-ceramics, Journal of Biomedical Materials Part B: Applied Biomaterials, 2000, 53(4): 297~303
    [60] Bindl A, Lüthy H, M?rmann W H, Strength and fracture pattern of monolithic CAD/CAM-genrated posterior crowns, Dental Mateirals, 2006, 22: 29~36
    [61]牙科治疗设备的发展回顾,http://www.szyy.com.cn
    [62] Siegel S C, von Fraunhofer J A, Dental cutting: the historical development of diamond burs, Journal of American Dental Association,1998, 129(6): 740~745
    [63] Watson T F, Flanagan D, Stone D G, High and low torque handpieces: cutting dynamics, enamel cracking and tooth temperature, British Dental Journal, 2000, 188(12): 680~686.
    [64] Darvell B W, Dyson J E, A testing machine for dental air-turbine handpiece characteristics: free-running speed, stall, torque, bearing resistance, Operative Dentistry, 2005, 30: 25~31
    [65] Dyson J E, Darvell B W, Dental air turbine handpiece performance testing, Australian Dental Journal, 1995, 40(5): 330~338
    [66] Dyson J E, Darvell B W, A laboratory evaluation of two brands of disposible air turbine handpiece, British Dental Journal, 1997, 182(1): 15~21
    [67] Dyson J E, Darvell B W, Torque, power and efficiency characterization of dental air turbine handpieces, Journal of Dentistry, 1999, 27: 573~586
    [68] Dyson J E, Darvell B W, Flow and free running speed characterization of dental air turbine handpieces, Journal of Dentistry, 1999, 27: 465~477
    [69] Poobe R L, Lea S C, Dyson J E, et al, Vibration characteristics of dental high-speed turbines and speed-increasing handpieces, Journal of Dentistry, 2008, in press
    [70]马轩祥,赵铱民,口腔修复学,北京:人民卫生出版社,2003,497~502
    [71] Sein H, Ahmed W, Rego C, Application of diamond coatings onto small dental tools, Diamond and Related Materials, 2002, 11(3): 731~735
    [72] Sein H, Ahmed W, Jackson M, et al, Performance and characterization of CVD diamond coated, sintered diamond and WC-Co cutting tools for dental and micromachining applications, Thin Solid Films, 2004, 447~448: 455~461
    [73] Amar M, Ahmed W, Sein H, et al, Chemical vapour deposition of diamond coating onto molybdenum tools, Journal of Physics: Condensed Matter, 2003, 15(39): S2977~S2982
    [74] Sein H, Ahmed W, Rego C A, et al, Chemical vapour deposition diamond coating on tungsten carbide dental cutting tools, Journal of Physics: Condensed Matter, 2003, 15(39): S2961~S2967
    [75] Ahmed W, Sein H, Hussam R, et al, Chemical vapor deposition of diamond coatings onto dental burrs, Journal of Chemical Eductioan, 2003, 80(6): 636
    [76] Ahmed W, Sein H, Ali N, et al, Diamond films grown on cemented WC-Co dental burs using an improved CVD method, Diamond and Related Materials, 2003, 12(8): 1300~1306
    [77] Rajab H, Ali N, Sein H, et al, Dental tools–CVD derived hard coatings for dental tools, Materials World, 2000, 8: 17~19
    [78] Sein H, Ahmed W, Rego C, Application of diamond coatings onto small dental tools, Diamond & Related Materials, 2002, 11(3-6): 731~735
    [79] Polini R, Allegri A, Guarino S, Quadrini F, Sein H, Ahmed W, Cutting force and wear evaluation in peripheral milling by CVD diamond dental tools, Thin Solid Films, 2004, 448-470: 161~168
    [80] Ali N, Cabral G, Neto VF, Sein H, Ahmed W, Gracio J, Surface engineering of WC-Co used in dental tools technology, Materials Science and Technology, 2003, 19(9): 1273~1278
    [81] Pilcher E S, Tietge J D, Draughn R A, Comparison of cutting rates among single-patient-use and multiple-patient-use diamond burs, Journal of Prosthodontics, 2000, 8(2): 66~70
    [82] Tanaka N, Khan A M, Shintani H, Taira M, Wakasa K, Dental high-speed cutting of porous-machinable-ceramic/resin composites and bovine enamel, Journal of Materials Science: Materials in Medicine, 1993, 4: 71~75
    [83] Gegauff A G, Rosenstiel S F, Johnston W M, Gangji R K, Handpiece degradation associated with performance testing of diamond rotary cutting instruments, Australian Dental Journal, 1998, 43: 342~348
    [84] Leonard D L, Charlton D G, Performance of high-speed dental handpieces subjected to simulated clinical use and sterilization, Journal of American Dental Association, 1999, 130: 1301~1311
    [85] Siegel S C, von Fraunhofer J A, The effect of handpiece load on the cutting efficiency of dental burs, Machining Science and Technology, 1997, 1(1): 1~13
    [86] Ercoli C, Funkenbusch P D, Lee H J, Moss M E, Graser G N, The influence of drill wear on cutting efficiency and heat production during osteotomy preparation for dental implants: a study of drill durability, International Journal of Oral & Maxillofacial Implants, 2004, 19: 335~349
    [87] Siegel S C, von Fraunhofer J A, Cutting efficiency of three diamond bur grit sizes, Journal of American Dental Association, 2000, 131(12), 1706~1710.
    [88] Siegel S C, von Fraunhofer J A, Dental cutting with diamond burs: heavy-handed or light-touch? Journal of Prosthodontics, 1999, 8(1): 3~9
    [89] Siegel S C, von Fraunhofer J A, The effect of handpiece spray patterns on cutting efficiency, Journal of American Dental Association, 2002, 133(2): 184~188
    [90] von Fraunhofer J A, Siegel S C, Handpiece coolant flow rates and dental cutting, Operative Dentistry, 2000, 25(6): 544~548
    [91] Siegel S C, von Fraunhofer J A, Irrigation solution and pressure effects on tooth sectioning with surgical burs, Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology & Endonontics, 1999, 87(5): 552~556
    [92] von Fraunhofer J A, Siegel S C, Enhanced dental cutting through chemomechanical effects, Journal of American Dental Association, 2000, 131(10): 1465~1469
    [93] von Fraunhofer J A, Siegel S C, Using chemomechanical assisted diamond bur cutting for improved efficiency, Journal of American Dental Association, 2003, 134(1): 53~58
    [94] Yin L, Ives L K, Jahanmir S, Effects of fluids on the simulated clinical dental machining of a glass ceramic, Journal of American Ceramic Society, 2004, 87(1): 173~175
    [95] Yin L, Jahanmir S, Ives L K, Abrasive machining of porcelain and zirconia with a dental handpiece, Wear, 2003, 255: 975~989
    [96] Yin L, Ives L K, Jahanmir S, Rekow E D, Romberg E, Abrasive machining of glass-infiltrated alumina with diamond burs, Machining Science & Technology, 2001, 5(1): 43~61
    [97] Lawn B R, Deng Y, Lloyd I K, Janal M N, Rekow E D, Thompson V P, Materials design of ceramic-based layer structures for crowns, Journal of Dental Research, 2002, 81(6): 433~438
    [98] Zhao H, Hu X Z, Bush M B, Lawn B R, Contact damage in porcelain/Pd-alloy bilayers, Journal of Materials Research , 2000, 15(3): 676~682
    [99] Lee S K, Tandon R, Readey M J, Lawn B R, Scratch damage in zirconia ceramics, Journal of the American Ceramic Society, 2000, 83(6):1428~1432
    [100] Hwang T W, Malkin S, Upper bound analysis for specific energy in grinding of ceramics, Wear, 1999, 231: 161~171
    [101] Crossman D G, Machinable glass-ceramics based-on tetrasilicic mica, Journal of the American Ceramic Society, 1972, 55(9 ): 446~449
    [102] Hill T J, Mecholsky J J, Anusavice K J, Fractal analysis of toughening behavior in 3BaO.5SiO2 glass-ceramics, Journal of the American Ceramic Society , 2000, 83 (3): 545~552
    [103] Westland I A, The energy requirement of the dental cutting process, Journal of Oral Rehabilitation, 1980, 7(1): 51~63
    [104] Malkin S, Hwang T W, Grinding mechanisms for ceramics, Annals of the CIRP, 1996, 45(2): 569~580
    [105] Kawai K, Urano M, Ebisu S, Effect of surface roughness of porcelain on adhesion of bacteria and their synthesizing glucans, Journal of Prosthetic Dentistry, 2000, 83(6): 664~667
    [106] Patterson C J, Mclundie A C, Stirrups D R, et a1, Efficacy of a porcelain refinishing system in restoring surface finish after grinding with fine and extra-fine diamond burs, Journal of Prosthetic Dentistry, 1992, 68: 402~406
    [107]王贻宁,温国江,施斌,潘新华,牙科陶瓷表面粗糙度与细菌粘附的实验研究,中华口腔医学杂志,2003,18(5):342~344
    [108] de Jager N, Feilzer A J, Davidson C L, The influence of surface roughness on porcelain strength, Dental Materials, 2000, 16(6): 381~388
    [109]邓朝晖,张璧,孙宗禹,周志雄,陶瓷磨削材料去除机理的研究进展,中国机械工程,2002,18(3):1608~1611
    [110] KirchnerH P, Damage penetration at elongated machining grooves in hot-pressed Si3N4, Journal of the American Ceramic Society, 1984, 67: 127~132
    [111] Huang H, Liu Y C, Experimental investigation of machining characteristics and removal mechanisms of advanced ceramics in high speed deep grinding, International Journal of Machine tools & Manufacure, 2003, 43(8): 811~823
    [112] Zhang B, Howes T D, Material-removal mechanisms in grinding ceramics, Annals of the CIRP, 1994, 43(1): 305~308
    [113] Inasaki I, Grinding of hard and brittle materials, Annals of the CIRP, 1987, 36 (2): 463~471
    [114] Subramanian K, Ramanath S, Tricard M, Mechanisms of material removal in the precision production grinding of ceramics, Journal of Manufacturing Science and Engineering, Transaction of ASME ,1997, 119(11): 509~519
    [115] Evans A G, Marshall D B, Wear mechanisms in ceramics, in: Rigney D A, editor, Fundamentals of Friction and Wear of Materials, Ohio: American Society for Metals, 1981, 439~452.
    [116] Jahanmir S, Xu H H K, Ives L K, Mechanism of materials removal in abrasive machining of ceramics, in: Jahanmir S, Ramulu M, Koshy P, editors, Machining of Ceramics and Composites, New York: Marcel Dekker, 1999, 11~84
    [117] Lawn B R, Swain M V, Microfracture beneath point indentations in brittle solids, Journal of Materials Science, 1975, 10:113~122
    [118] Marshall D B, Lawn B R, Evans A G, Elastic/plastic indentation damage in ceramics: The Lateral crack system, Journal of the American Ceramic Society, 1982, 65: 561~566
    [119] Lawn B R, Evans A G, A model for crack initiation in elastic/plastic indentation fields, Journal of Materials Science, 1977, 12: 2195~2199
    [120] Lawn B R, Marshall D B, Hardness, toughness, and brittleness: An indentation analysis, Journal of the American Ceramic Society, 1979, 62: 347~350
    [121]田欣利,于爱兵,工程陶瓷加工的理论与技术,北京:国防工业出版社,2006,119
    [122] Xu H H K, Jahanmir S, Ives L K, Material removal and damage formation mechanisms in grinding silicon nitride, Journal of Material Research, 1997, 11: 1717~1724
    [123] Conway J C, Kirchner H P, The mechanics of crack initiation and propagation beneath a moving sharp indentor, Journal of Materials Science, 1980, 15: 2879~2883
    [124] Zhang B, Tokura H, Yoshikawa M, Study on surface cracking of alumia scratched by single-point diamonds, Journal of Materials Science, 1988, 23: 3214~322
    [125] Bifano T G, Dow T A, Scattergood R O, Ductile-regime grinding: a new technology for machining brittle materials, ASME Journal of Engineering for Industry, 1991; 113: 184~189
    [126] Malkin S, Grinding Technology: Theory and Applications of Machining with Abrasives, New York: Wiley, 1989
    [127] Blaedel K L, Taylor J S, Evans C J, Ductile-regime grinding of brittle materials, In: Jahanmir S, Ramulu M, Koshy P, Editors, Machining of Ceramics and Composites, New York: Marcel Dekker, 1998, 139~176
    [128] Anusavice K J, Degradability of dental ceramics, Advanced Material Research 1992, 6: 82~89
    [129]邓朝辉,张璧,周志雄等,陶瓷磨削的表面亚表面损伤,湖南大学学报,2002,29(5):61~71
    [130] Xu H H K, Jahanmir S,Microfracture and material removal in scratching of alumina,Journal of Materials Science, 1995, 30: 2235~2247
    [131] Yoshikawa M, Zhang B, Tokura H, Observations of ceramic surface cracks by newly proposed methods, Journal of Ceramic Society Japan, 1987, 95: 961~969
    [132] Mackerle J, Finite element analysis and simulation of machining: an addendum bibliography (1996–2002), International Journal of Machine Tools & Manufacture, 2003, 43: 103~114
    [133] Cattaneo P M, Dalstra M, Melsen B, The finite element method: a tool to study orthodontic tooth movement, Journal of Dental Research, 2005, 84: 428~433
    [134] Dong X D, Darvell B W, Stress distribution and failure mode of dental ceramic structures under Herzian indentation, Dental Materials, 2003, 19: 542~551
    [135] Hwang T W, Evans C J, Malkin S, Size effect for specific energy in grinding of silicon nitride, Wear, 1999, 225: 862~867
    [136] Chuang T-J, Jahanmir S, Tang H C, Finite element simulation of straight plunge grinding for advanced ceramics, Journal of the European Ceramic Society, 2003, 23: 1723~1733
    [137] Timoshenko S P, Goodier J N, Theory of elasticity, New York: McGraw-Hill Book Co, 1970
    [138] ANSYS 8.0帮助文件
    [139]郑颍人,沈珠江,龚晓南,岩土弹塑性原理,北京:中国建筑出版社,2003
    [140]小飒工作室,最新经典ANSYS及Workbench教程,北京:电子工业出版社,2004,280~293
    [141]薛守义,有限单元法,北京:中国建材工业出版社,2005,251~257
    [142] Walter D, Pilkey Peterson’s Stress Concentration Factors, 2nd ed, New York: Wiley, 1997
    [143] Li Z C, Cai L W, Pei Z J, Treadwell C, Edge-chipping reduction in rotary ultrasonic machining of ceramics: Finite element analysis and experimental verification, International Journal of Machine Tools & Manufacture, 2006, 12~13: 1467~1477
    [144] Zhang W, Subhash G, An elastic-plastic-cracking model for finite element analysis of indentation cracking in brittle materials, International Journal of Solids and Structures, 2001, 38: 5893~5913
    [145] Swain M V, Microfracture about scratches in brittle solids, Proceedings of the Royal Society of London, 1979, A366: 575~597
    [146] Komanduri R, On material removal mechanisms in finishing of advanced ceramics and glasses, CIRR Annals-Manufacturing Technology, 1996, 45(1): 509~514
    [147] Fung Y C, Foundation of solid mechanics, Englewood Cliffs, NJ: Prentice-Hall, 1965
    [148] Xu H H K, Jahanmir S, Simple technique for observing subsurface damage in machining of ceramic, Journal of the American Ceramic Society, 1994, 77:1388~1390
    [149] Zhang B, Surface integrity in machining hard-brittle materials, Journal of Japan Society for Abrasive Technology, 2003, 47(3): 131~134
    [150] Zhang B, Zheng X L, Tokura H, Yoshikawa M, Grinding induced damage in ceramics, Journal of Material Processing Technology, 2003, 132: 353~364
    [151] Zhang B, Tokura H, Yoshikawa M, Study on surface cracking of alumina scratched by single-point diamond, Journal of Materials Science, 1988, 23: 3214~322
    [152] Subhash G, Zhang W, Finite element analysis of brittle cracking due single grit rotating scratch, Journal of Applied Mechanics, 2003, 70: 147~151
    [153] Malakooti B, Wang J, Tandler E C, A sensor-based accelerated approach for multi-attribute machinability and tool life evaluation, International Journal of Production Research, 1990, 28: 2373~2392
    [154] Nian C Y, Yang W H, Tarng Y S, Optimization of turning operations with multiple performance characteristics, Journal of Materials Processing Technology, 1999, 95: 90~96
    [155] Lee B Y, Tarng Y S, Cutting-parameter selection for maximizing production rate or minimizing production cost in multistage turning operations, Journal of Materials Processing Technology, 2000, 105(7): 61~66
    [156] Uros Z, Franci C, Optimization of cutting conditions during cutting by using neural networks, Robotics and Computer Integrated Manufacturing, 2003, 19: 189~199
    [157]李元科,工程最优化设计,北京:清华大学出版社,2006,117~123
    [158]魏海坤,神经网络结构设计的理论与方法,北京:国防工业出版社,2005, 88~93
    [159]谢庆生,尹健,罗延科,机械工程中的神经网络方法,北京:机械工业出版社,2003,93~95
    [160] Mackay D J C, A practical Bayesian framework for backpropagation networks, Neural Computation, 1992, 4(3): 448~472
    [161] Foresee F D, Hagan M T, Gauss-Newton approximation to Bayesian regularization, Proceedings of the International Joint Conference on Neural Networks, Houston, 1997
    [162] Zhu Z B, An efficient sequential quadratic programming algorithm for nonlinear programming, Journal of Computational and Applied Mathematics, 2005, 275(2): 467~484
    [163] Han S P, A globally convergent method for nonlinear programming, Journal of Optimization Theory and Applications, 1977, 22: 297
    [164] Shanno D F, Conditioning of quasi-newton methods for function minimization, Mathematics of Computing, 1970, 24: 647~656
    [165] Broyden C G, The convergence of a class of double-rank minimization algorithms, Journal of Applied Mathematics, 1970, 6: 76~90

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700