牙科陶瓷调磨过程中磨削力与温度实验研究与仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牙科切割器械高速调磨陶瓷修复体过程中产生的热量不仅会对陶瓷修复体造成热损伤,使之不能达到预期寿命的标准,还会对患者造成痛苦。本文在国家自然科学基金的资助下,研究了高速电动牙科手机和金刚石车针磨削牙科陶瓷进程中的磨削力学性能、温度场等问题,主要工作和结果如下:
     (1)利用高速电动手机替代传统的空气涡轮手机,结合动态的牙科磨削实验,测量了不同磨削参数下电动手机磨削牙科陶瓷磨削力信号,观测了表面质量,揭示了磨削参数对于电动手机性能参数的影响及其变化规律。
     (2)搭建了测量磨削温度的实验平台,使用红外热像仪对电动手机高速磨削过程中的磨削表面温度进行测量,揭示了磨削过程中磨削参数对磨削温度的影响。研究结果表明,去除深度对电动手机调磨过程中表面磨削温度的影响最大,并且随着去除深度的增加,磨削温度随之增加。
     (3)借助有限元方法,构造适当的磨削热模型,建立了电动牙科手机高速调磨牙科陶瓷时的温度场的数值仿真模型。利用该模型,研究了去除深度与进给速度对牙科调磨过程中的表面温度、形变及应力的分布。研究结果表明,在磨削区内的温度和应力最大,最大变形出现在磨削区的边缘处。最后,通过与实验数据的对比,验证了数值仿真模型的合理性与有效性。
     上述结果不仅为电动手机口腔调磨过程中产生的热现象提供了理论和实验依据,而且为临床上牙科医生合理地进行牙科调磨手术提供了积极的指导作用。
In dental grinding of bioceramic restorations using dental high-speed handpiece, the machining-induced thermal problems could not be ignored, because that the high temperature in dental grinding of ceramics would not only bring pains to patients, but also cause damage in ceramic restorations resulting in a reduction in strength and lifetime of the restiorations. In this dissertation, the important process parameters related with force and temperature during the in vitro dental grinding of bioceramics using a high-speed electric handpiece and diamond burs were investigated with the help of the National Natural Science Foundation of China. The following work and the results are drawn:
     (1) First author used high-speed electric handpiece to replace the traditional air-turbine handpiece, and then measured and analyzed the grinding force signal in the progress of grinding dental ceramics using an electric handpiece and diamond burs. Surface roughness and morphology were observed by a stylus profilometer and scanning electron microscope. At last, author investigated grinding forces and surface quality under different grinding parameters, and assessed the grinding performance of the electric handpiece.
     (2) Grinding forces and grinding temperature when using an electric handpiece to grind dental ceramics were measured by a piezoelectric force dynamometer and a thermal infrared imager. Then analyzed the grinding temperature under the different grinding parameters with single factor analysis method, the result would provide the dentists with positive suggestions to reduce the pain and heat damage.
     (3) The temperature field in grinding dental ceramics was numerical analyzed using finite element analysis methd, and important influential factors were analyzed.
     The experimental temperature and simulated temperature were compared and the result were consistent. It indicates that the heat source simulation was correct. The above results provide theoretical and experimental basis to proper intraoral dental grinding of ceramic restorations.
引文
[1] Kelly J R. Ceramics in restorative and prosthetic dentistry, Annual Review Mater Science, 1997, 27: 443~468
    [2] Van Noort R, Dental ceramics, In: van Noort R, editor. Introduction to Dental Materials, 2nd ed, Oxford: Elsevier, 2002, 231~246
    [3] http://www.gzykyy.com/index.php/text/gzykyy02/1/cn/2280/2280.html
    [4] http://www.marottadental.com/procera_prep.htm
    [5] Xu. H.H.K, Kelley J R, S. Jahanmir. Enamel subsurface damage due to tooth preparation with diamonds, Journal of Dental Research,1997, 76(1): 1698~1706
    [6] Lawn B R, Deng Y, Miranda P, et al. Overview: damage in brittle layer structures from concentrated loads, Journal of Materials Research, 2002, 17: 3019~3036
    [7] Zach L, Cohen G. Pulp response to externally applied heat, Oral Surg, 1965, 19: 515
    [8]郑弟泽,牟雁东,冠修复牙体预备对髓腔温度影响的实验研究,华西口腔医学杂志,1998,16(3):270~273
    [9] Christensen GJ. The high-speed handpiece dilemma, JADA, 1999, 130: 1494~1496
    [10] Roberson TM, Heymann HO, Swift EJ Jr. Instruments and equipment for tooth preparation. In: Roberson TM, ed. Sturdevant’s art and science of operative dentistry. 4th ed. St. Louis: Mosby, 2002: 322~329
    [11] Eikenberg S, Roman D, Debuque R, et al. A comparison and evaluation of electric motor dental handpieces and air turbine dental handpieces, Great Lakes, III: United States Army Dental Research Attachment, 2000, 451: 1~75
    [12] Kenyon BJ, Van Zyl I and Louie KJ. Comparison of cavity preparation quality using an electric motor handpiece and an air turbine dental handpiece. J Am Dent Assoc, 2005, 136: 1101~1105
    [13]谢卫华,牙科手机的选择、使用和保养消毒,临床医学工程,2009,16(5),84~85
    [14] Charlson Choi, Carl F. Driscoll and Elaine Romberg. Comparison of cutting efficiencies between electric and air-turbine dental handpieces, J Prosthet Dent 2010, 103: 101~107
    [15] Ercoli C, Rotella M, Funkenbusch PD, Russell S, Feng C. In vitro comparison of the cutting efficiency and temperature production of ten different rotary cuttinginstruments. Part II: electric handpiece and comparison with turbine, J Prosthet Dent, 2009, 101: 319~331
    [16] DeLong R, Sasik C, Pintado M R, et al. The wear of enamel when opposed by ceramic systems, Dental Materials, 1989, 5: 266~271
    [17] Chen H Y, Hickel R, Setcos J C, et al. Effects of surface finish and fatigue testing on the fracture strength of CAD-CAM and pressed-ceramic crowns, The Journal of Prosthetic Dentistry, 1999, 82(4): 468~475
    [18] Peterson I M, Pajares A, Lawn B R, et al. Mechanical characterization of dental ceramics by Hertzian contacts, Journal of Dental Research, l 998, 77(4): 589~602 Kelly J R, Nishimura I, Campbell S D, Ceramics in dentistry: historical roots and current perspectives, Journal of Prosthetics Dentistry, 1996, 75(1):18~32
    [19]刘小舟,王勇,吕培军,牙科可切削陶瓷材料国内临床应用及研究进展,硅酸盐通报,2009,28:212~214
    [20] Paolo FM, Pierfrancesco R I, Luca R. An overview of zirconia ceramics: Basic properties and clinical applications, J Dent, 2007, 35(11): 819~826
    [21] Siegel S C, von Fraunhofer J A. The effect of handpiece load on the cutting efficiency of dental burs, Machining Science and Technology, 1997, l(1), l~13
    [22] Dong X, Yin L, Jahanmir S, et al. Abrasive machining of glass-ceramics with a dental handpiece, Machining Science and Technology, 2000, 4: 209~233
    [23]宋晓菲,牙科陶瓷高速手机调磨研究:[博士学位论文],天津,天津大学,2008
    [24]王魁汉,温度测量实用技术,北京,机械工业出版社,2007,10~11
    [25]席辉,杯形砂轮平面磨削温度场的实验研究及其仿真:[硕士学位论文],天津;天津大学,2007
    [26]汤艳玲,黄辉,磨削温度研究的现状与发展,超硬材料与宝石(特辑),2003,15(51):29~32
    [27]张建刚,杯形砂轮平面磨削温度场的数值解析和实验研究:[硕士学位论文],天津;天津大学,2003
    [28]毛聪,平面磨削温度场及热损伤的研究:[博士学位论文],湖南;湖南大学,2008
    [29] Jaeger J C. Moving source of heat and temperature at sliding contacts, Proc. Roy. Soc, New South Wales, 1942, 76: 203~224
    [30] Outwater J O, Shaw M C. Surface temperatures in grinding, Trans ASME, 1952, 74: 73~78
    [31] Hahn R S. On the nature of the grinding process, Proceedings 3rd Machine Tool Design and Research Conference, 1962, 1: 129~154
    [32] Malkin S, Cook N H. The wear of grinding wheels Part 2- fracture wear, ASMEJournal of Engineering for Industry, 1971, 11: 1129~1133
    [33] Des Ruisseaux N R, Zerkle R D. Temperatures in semi-infinite and cylindrical bodies subject to moving heat sources and surface cooling, Journal of Heat Transfer, 1970, 92: 456~464
    [34] Howes T D, Neailey K, Harrison A J. Fluid film boiling in shallow-cut grinding, Annals of the CIRP, 1987, 36(1): 223~226
    [35] Shafto G R. Creep-feed grinding, [PhD thesis of University of Bristol], Bristol: University of Bristol, 1975: 84~102
    [36]周志雄,邓朝晖,陈根余等,磨削技术的发展及关键技术,中国机械工程,2000,11(1-2):186~189
    [37] Rowe W B, Black S, Mills B, et al. Analysis of grinding temperatures by energy partitioning, Proceedings of Institution of Mechanical Engineers, 1996, 210: 579~588
    [38] Guo C, Wu Y, Varghese V, et al. Temperatures and energy partition for grinding with vitrified CBN wheels, Annals of the CIRP, 1999, 48(1): 247~250
    [39]贝季瑶,磨削温度的分析与研究,上海交通大学学报,1964,28(3):45~49
    [40]蔡光起,郑焕文,钢坯磨削温度的若干实验研究,东北大学学报,1985,15(4):10~13
    [41]高航,宋振武,断续磨削温度场的研究,机械工程学报,1989,25(2):22~27
    [42]王西彬,磨削温度及热电偶测量的动态分析,中国机械工程,1997,8(5):77~80
    [43]张洪亮,杯形砂轮平面磨削温度场的解析及计算机仿真: [硕士学位论文],天津,天津大学,2001
    [44] Pallesen U, van Dijken JW. An 8-year evaluation of sintered ceramic and glass ceramic inlays processed by the Cerec CAD/CAM system, Eur J Oral Sci, 2000, 108: 239~246
    [45] Fasbinder DJ. Restorative material options or CAD/CAM restorations, Compend Contin Educ Dent 2002, 23: 911~918
    [46] Otto T. Computer-aided direct all-ceramic crowns: preliminary 1-year results of a prospective clinical study, Int J Periodontics Restorative Dent, 2004, 24: 446~455
    [47] Denissen H, Dozic A, van der Zel J, van Waas M. Marginal fit and short-term clinical performance of porcelain-veneered CICERO, CEREC, and Procera onlays, J Prosthet Dent, 2000, 84: 506~13
    [48] Yin L, Song XF, Qu SF, Huang T, Mei JP, Yang ZY, et al. Performance evaluation of a dental handpiece in simulation of clinical finishing using a novel 2-DOF in vitro apparatus, Proc IME H J Eng Med, 2006, 220: 929~938
    [49] Xu. H. H. K, Jahanmir. S, Ives. L. K. Material removal and damage formationmechanisms in grinding silicon nitride, Journal of Material Research, 1997, 11: 1717~1724
    [50]宋晓菲,长石基生物齿科陶瓷体外口腔磨削修复机理研究:[硕士学位论文],天津,天津大学,2006
    [51]邓朝晖等,陶瓷磨削材料去除机理的研究进展,中国机械工程,2002,13(18):1608~1611
    [52]林彬,陶瓷材料磨削温度的研究,[硕士学位论文],天津,天津大学,1994
    [53] Yin L, Han YG, Song XF, Wang H. Effect of diamond burs on process and damage involving in vitro dental resurfacing of a restorative porcelain, J. Phys. D: Appl. Phys, 2007, 40: 5291~5300
    [54] ANSYS公司,ANSYS热分析指南,北京,美国ANSYS公司北京办事处,2000
    [55]张文丽,基于ANSYS的磨削热分析中移动热源加载技巧,现代制造工程,2007,3:88~90

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700