矫治力作用下牙颌正畸的弹粘塑性有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
口腔正畸治疗是正畸医生利用特定矫治装置,对患者的牙齿、颌骨等组织器官施加特定大小和方向的力,以达到在生理范围内定向移动牙齿、和/或影响颌骨生长之目的,从而矫正患者的牙颌面畸形的一种治疗方法。在正畸治疗中,正确地理解矫治力的传递,以及相应的牙、牙周膜、颌骨等组织受力后的生物力学效应,是正畸医师合理设计矫治力系统、进行有效正畸治疗的前提和基础,也是治疗成败的关键。正畸医师对患者的牙齿、颌骨等组织器官施加矫治力以达到治疗目的是利用各种专门装置来实现的。本文选取了两种正畸治疗系统进行研究,包括微螺钉种植体支抗(以下简称“微植体支抗”,Micro-Implant Anchorage,MIA)系统和Forsus矫治器系统。
     微螺钉种植体支抗系统是将生物相容性良好的纯钛材料制成形状不同的螺钉,再根据需要植入颌骨的不同部位,以得到正畸治疗。而以Forsus为代表的固定式功能矫治器则以体积小、弹力持久均匀、矫治力易于控制、安装简便和整体疗程较短等优点,受到了正畸医师的广泛关注,代表了功能矫形治疗发展的趋势。
     数值仿真分析是口腔生物力学研究的主要手段之一,已广泛应用于生物力学的研究。采用数值分析方法对微植体支抗系统和Forsus矫治器系统进行仿真分析,利于分析不同前导工况下的力学效应及矫治器的改良,并促进该矫治技术在临床的进一步使用。
     论文在充分调研微植体支抗和forsus矫治技术运用的基础上,讨论了骨的弹粘塑性效应,采用UMAT编制弹粘塑性本构模型。紧密结合临床原型,利用CT扫描技术和有限元软件,建立了“微植体支抗-牙-上颌骨”和“Forsus-牙列-上下颌骨-颞下颌关节”三维模型。采用数值分析方法研究了微植体植入上颌骨后骨的动力学响应过程,揭示了在正畸力作用下上颌骨的应力场和变形场特别是塑性变形的时效过程,研究了Forsus对于下颌前导在不同工况下牙列、颌骨、颞下颌关节的应力场和应变场演化,以及Forsus反作用力推上颌第一磨牙向远中的力学效应,为微螺钉种植体支抗系统和Forsus矫治器系统的优化设计提供理论依据和指导。论文的主要工作和结论如下:
     ①回顾了正畸生物力学的研究现状,对有限元方法在口腔正畸数值模拟中的应用做了综述,重点考察了微植体支抗和Forsus矫治器技术在口腔正畸中的应用及研究。
     ②利用弹性元件、粘性元件和塑性元件的组合来构建骨的弹粘塑性本构关系。特别是在正畸矫治力作用下,骨具有时效特性的弹粘塑性本构模型。
     ③利用CT扫描技术、Mimics医学成像软件及ABAQUS软件,提出了计及上颌骨的弹粘塑性性质的建模方法,成功建立了逼真的微植体支抗-牙-上颌骨和三维整体模型,极大地提高了模型的几何相似性,探索了快速构建牙颌组织三维有限元模型的新方法。在充分考虑了微植体、牙、颌骨的时空变化特性的基础上,重点考察骨的时效特性,探讨微植体、牙、上颌骨随矫治时间变化的生物力学过程。
     ④基于各向同性、非线性、弹粘塑性的“Forsus-牙列-上下颌骨-颞下颌关节”模型,利用有限元方法研究Forsus导下颌向前不同工况下牙列、颌骨、颞下颌关节的力学分布状况,重点观察牙齿、颌骨和颞下颌关节的应力场和位移场的变化。在计及骨的粘性效应基础上,采用ABAQUS运动仿真技术动态分析Forsus反作用力推上颌第一磨牙向远中的力学效应。在此基础上给出了Forsus加载角度推荐范围、髁突生长改建范围和第一磨牙远中平移效果的方法。
The improvement of malocclusion is achieved by the mechanical force with a certain magnitude and direction through certain orthodontic appliance. Stress-strain distribution in the periodontal ligament and the surrounding alveolar bone which determines the mode of tooth movement help clinic orthodontist master the effective way of tooth movement. According to Newton’s third law, the force added to the orthodontic appliance will inevitably cause a force with the same magnitude and opposite direction. The counterforce must be resisted by a certain kind of organ or instrument such as headgear and TPA. Two orthodontic systems, Micro-implant anchorage (MIA) and Forsus appliance are selected.
     Micro-implant anchorage (MIA) system is the special screw made of pure titanium material with good bio-compatibility. The screws were inserted into the alveolar ridge or upper and lower jaw bone of different site to get orthodontic treatment. In recent years, a great number of orthodontic doctors pay close attention to fixed appliance of Forsus, for such appliance is small in size, has more durable and homogeneous elastic force and easy to control too. What’s more, the installation is much easier and the course of treatment is shorter in general. In a word, fixed appliance suggests the new developmental trend of the orthopedic treatment appliance.
     Numerical simulation analysis is one important means in oral biomechanical study, and it has been widely used in biomechanical study. By using the simulated analysis of the MIA system and the Forsus orthopedic force system, the different mechanical effects can be analyzed under different anterior guidance operating conditions, and the analysis improves the clinical application of the appliance as well.
     In this dissertation, on the basis of the research on the application of MIA and the clinic treatment, elastic-viscoplasticity of bone is discussed. The UMAT program considering elastic-viscoplasticity constitutive relationship of material is written, combining with CT scan technique and FEM software, a numeral MIA-teeth-maxilla three-dimensional model was established. The dynamics response process of bone was investigated after the mini-screw inserted. A numerical analysis was presented for stress and strain transformation process in maxilla when under the orthodontic loadings. It provide an important scientific criterion for the optimize of MIA. The main work and conclusions in this dissertation are as follows:
     ①Advancement what have been made in recent years about orthodontic biomechanics was reviewed in this dissertation. Finite element method in orthodontic numerical simulation was summarized. The application and investigation of MIA in orthodontical treatment were reviewed as the focus.
     ②Use elastic, viscous and plastic parts to construct a elastic-viscoplastic constitutive relation of bone. Especially, under loading of orthodontic force, constitutive model of bone considering timing characteristics is given out.
     ③By CT scan technique, Mimics and ABAQUS, a new modeling method was presented. A reality MIA-tooth-maxilla three-dimensional model was established. The geometry comparability of model was improved in the extreme. And a new method to construct maxilla and teeth model quickly was explored. On the basis of full considering the change of time and space properties of MIA、teeth and maxilla, emphasis is on timing characteristics of bone, biomechanical progress of MIA、teeth and maxilla with orthodontic time increasing is discussed.
     ④A 3D model of Forsus-Dent-uperand lower jaw-TMJ with some visvelasto-plastic characters is built with isotropic,non-linearity and elastic- viscoplastic characteristics in the study. The mechanical behaviors of dentition, jaws and TMJ are studied by finite element method. The stress and displacement of dentition, jaws and TMJ are mainly researched in the study. Base on what is mentioned above, the paper recommend the load angle range of Forsus and scope of condylar reconstruction.
引文
[1]赵云凤.口腔生物力学[M].北京:北京医科大学中国协和医科大学联合出版社.1996.
    [2]傅民魁.口腔正畸学(第4版) [M].北京:人民卫生出版社. 2003.
    [3]王素文,王邦康.口腔颌面畸形[M].北京:人民卫生出版社. 1992.
    [4]冯元帧.生物力学[M].北京:科学出版社.1983.
    [5]高柠.牙、颌、面畸形的防治[M].沈阳:白山出版社. 1991.
    [6]林久祥.现代口腔正畸学[M].北京:中国医药科技出版社. 1991.
    [7]寻春雷.正畸支抗的新手段:种植体支抗系统的发展和应用[J].口腔正畸学.2003,10(1):47-50.
    [8] Roberts WE,Helm FR,Marshall KJ,etal.Rigid endosseous implants for orthodontic and orthopedic anchorage[J].Angle Orthod.1989,59:247-256.
    [9] Block MS,Hoffman DR.A new divice for absolute anchorage for orthodontics[J].AmJ Orthod Dentofacial Orthop.1995,107:251-258.
    [10] Celenza F,Hochman MN.Absolute anchorage in orthodntics: direct and indirect implant -assisted modalities[J].J Clin Orthod.2000,34:397-402.
    [11] Isidor F,Brondum K,Ravnholt G.The influence of post length and crown ferrule length on the resistance to cyclic loading of bovine teeth with prefabricated titanium posts[J].Int J Prosthodont.1999,12:78-82.
    [12] Junge T,Nicholls JI,Phillips KM,et al.Load fatigue of compromised teeth:a comparison of 3 luting cements[J].Int J Prosthodont.1998,11:558-564.
    [13] Ho MH,Lee SY,Chen HH,et al.Three-dimensional finite element analysis of the effects of posts on stress distribution in dentin[J].Int J Prosthodont.1994,72:367-372.
    [14] Friedenberg R.“Direct analysis”or“finite element analysis”in biology : a new computer approach[J].Cuer Mod Biol.1969,3(3): 89-94.
    [15] Thresher RW.The stress analysis of human teeth[J].J Biomech.1973,6(5): 443-449.
    [16] Farah JW.Photoelastic and finite element stress analysis of a restored axisymmetric first molar[J].J Biomech.1973,6(5): 551-520.
    [17] Turner MS,Clough RW,Martin HC,et al.Stiffiness and deflection analysis of complex structure[J].J Aero Sci.1956,23:805.
    [18] Thresher RW, Saito GE.The stress analysis of human teeth[J]. Biomech. 1973,6(5):443-449.
    [19] Tanne K.Three-dimensional finite element analysis for stress in the periodontal tissue by orthodontic forces[J].Am J Orthod.1987,92:499-505.
    [20]陈新民,赵云凤.人体下颌骨的弹性[J].生物医学工程学杂志.1990,7(4):293-297.
    [21]樊瑜波,张晓峰,唐高妍.生理载荷作用下上颌中切牙牙周膜应力分布的三维有限元研究[J].生物医学工程学杂志.1999,16(1):21-24.
    [22]张晓慧,丁寅,刘冬.颅上颌复合体三维有限元模型的建立[J].中国美容医学.2005, 14(3):194-196.
    [23] Cheng KC . Some current developments in orthopaedic biomechanics[J] . Medical Engineering&Physics.2005,21:275-276.
    [24] Melsen B,Agerbaek N,Markennstam G.Intrusion of incisors in adult patients with marginal bone loss[J].Am J Orthod Dent Orthop.1989,96:232-241.
    [25] Melsen B,Lang NP.Biological reactions of alveolar bone to orthodntic loading of oral implants[J].Clin Oral Impl.2001,12:144-152.
    [26] Melsen B,Costa A.Immediate loading of implants used for orthodontic anchorage[J]. Clin Onhod Res.2000,3:23-28.
    [27] Verrue V,Dermaut,Verhegghe B.Three-dimensional finite element modelling of a dog skull for the simulation of initial orthopaedic displacements[J] . European Journal of Orthodontics.2001,23:517-527.
    [28] T Gedrange,C Bourauel.Three-dimensional analysis of endosseous palatal implants and bones after vertical, horizontal, and diagonal force application[J].European Journal of Orthodontics.2003,25:109-115.
    [29] Christod Holberg . Effects of Rapid Maxillary Expansion on the Cranial Base-an FEM-Analysis[J].Journal of Orofacial Orthopedics.2005,66:54-66.
    [30]黄辉.马旋祥.螺纹顶角角度对牙柱状螺旋根骨内种植体应力分布的影响[J].实用口腔医学杂志.1996,12(1):119-121.
    [31]寻春雷,曾祥龙等.微型自攻钛钉种植体支抗压低切牙的初步应用研究[J].口腔正畸学.2004,11(1):29-32.
    [32]卢新华.三维有限元分析在正畸学研究中的应用[J].口腔正畸学.2003,10(4):191-192.
    [33]陈新民,赵云凤.人体下颌骨的偏轴应力-应变关系研究[J].华西医大学报.1991,22(3): 171-174.
    [34]陈新民,赵云凤.激光全息双曝光法测量新鲜人体下颌骨皮质骨沿牙轴方向的泊松比[J].华西口腔医学杂志.1990,8(4):257-259.
    [35]兰泽栋,林珠等.种植体支抗三维有限元模型的建立[J].实用口腔医学杂志.2001,17(3): 243-245.
    [36]龙红月,兰泽栋等.正畸力作用方向对支抗种植体骨界面应力分布的影响[J].中国口腔种植学杂志.2004,9(1): 10-14.
    [37]龙红月,林珠等.支抗种植体外形对骨界面应力分布的影响[J].中国口腔种植学杂志.2003,8(3):61-63.
    [38]兰泽栋,林珠等.支抗种植体长度对骨界面应力分布的影响[J].中国口腔种植学杂志.2003,8(3):112-115.
    [39]兰泽栋,林珠等.支抗种植体直径对骨界面应力分布的影响[J].实用口腔医学杂志.2004, 20(1): 43-46.
    [40]周学军,赵志河等.包括下颌骨的颞下颌关节三维有限元模型的建立[J].实用口腔医学杂志.2000,16(1): 17-19.
    [41]周学军,赵志河等.不同程度下颌前伸的三维有限元分析[J].安徽医科大学学报.2004,39(6): 419-421.
    [42]周学军,赵志河等.下颌骨三维有限元模型的边界约束设计.华西口腔医学杂志.1999, 17(1): 29-32.
    [43]周学军,赵志河等.“颞下颌关节、下颌骨、颏兜矫形系统”三维正交各向异性有限元模型的建立[J].口腔医学.2004,24(6): 325-327.
    [44]周学军,赵志河等.不同大小颏兜牵引力下的下颌骨三维有限元分析[J].北京口腔医学.2004,12(3):125-129.
    [45]钱英莉,樊瑜波等.正畸力作用下牙齿移动的生物力学[J].医用生物医学.2003,18(3):189-192.
    [46]樊瑜波,张晓峰等.生理载荷作用下上颌中切牙牙周膜应力分布的三维有限元研究[J].生物医学工程学杂志.1999,16(1):21-24.
    [47]赵志河,房兵等.颅面骨三维有限元模型的建立[J].华西口腔医学杂志.1994,12(4):298-300.
    [48]张彤,刘洪臣.上颌骨复合体三维有限元模型的建立[J].中华口腔医学杂志.2000,35(5): 374-377.
    [49]卢海平.矫治力作用下牙周支持组织应力分布的三维有限元分析[J].中华口腔医学杂志.1994,29(6):332-334.
    [50]杨进.成人腭中部种植体支抗三维有限元模型的建立[J].中国口腔种植学杂志.2004,9(1): 6-9.
    [51]樊瑜波,张晓峰,陈君楷.上颌中切牙在不同角度载荷下牙本质应力分布的三维有限元研究[J].四川联合大学学报(工程科学版).1998,6(3):57-60.
    [52] Rudolph DJ,Willes PMG,Sameshima GT.A finite element model of apical force distribution from orthodontic tooth movement[J].Angle Orthod.2001,71(3):127-31.
    [53] Halazonetis DJ . Computer experiments using a two-dimensional model of tooth support[J].Am J Orthod Dentofacial Orthop.1996,109(6):598-606.
    [54] Tanne K,Nagtaki T,noue Y,Sakuda M,Burstone CJ.Patterns of initial tooth displacements associated with various root lengths and alveolar bone heights[J].Am J Orthod Dentofacial Orthop.1991,100(1):66-71.
    [55] Juan Cobo,MD,DDS,PhD,et al.Initial stress induced in periodontal tissue with diverse degrees of bone loss by an orthodontic force:Tridimensional analysis by means of the finite element method[J].AM J Orthod Dentoficial Orthop.1993,104(5):448-454.
    [56] Hart RT,Henneble VV,Thongpreda N, et al.Modeling the biomechanics of the mandible,A three-dimensional finite element study[J].J Biomech.1992,25:261.
    [57] Schneider J,Geiger M,Sander FG.Numerical experiments on long-time orthodontic tooth movement[J].Am J Orthod Dentofacial Orthop.2002,121:257-265.
    [58] Rees JS.An investigation into the importance of the periodontal ligament and alveolar bone as supporting structures in finite element studies[J].J Oral Rehabil.2001,28(5):425-32.
    [59] Bourauel C,Freudenreich D,Vollmer D,Kobe D,Drescher D,Jager A.Simulation of orthodontic tooth movements.A comparison of numerical models[J].J Orofac Orthop.1999,60(3):136-151.
    [60] Mitsuru Motoyoshi,Shiya Yano,et al.Biomachanical effect of abutment on stability of orthodontic mini-implant a finite element analysis[J].Clin Oral Impl Res.2005,16:480-485.
    [61] Costa A,Raffaini M,Melsen B.Mini screws as orthodontic anchorage:preliminary report[J].Int J Adult Orthod Orthognath Surg.1998,12:201-209.
    [62] M.M.Gallas,M.T.Abeleira.Three-dimensional numerical simulation of dental implants as orthodontic anchorage[J].European Journal of Orthodontics.2005,27:12-16.
    [63]白石柱,赵铱民,邹石泉等.快速建立无牙颌上颌骨及颅骨三维有限元模型的方法探讨[J].中华口腔医学杂志.2005,40(6):515-517.
    [64] Dalstra M,Cattaneo PM,Melsen B.Load Transfer of Miniscrews for Orthodontic Anchorage[J].Orthodontics.2004,1(1):53-61.
    [65] Melsen B,Costa A.Immediate loading of implants used for orthodontic anchorage.Clin Orthod Res.2000,3:23-28.
    [66]张扬,张丹,冯翠娟等.微小种植体正畸支抗生物力学的三维有限元[J].上海口腔医学.2005,14(3):281-283.
    [67] M.M.Gallas,M.T.Abeleira,etal.Three-dimensional numerical simulation of dental implants as orthodontic anchorage[J].European Journal of Orthodontics.2005,27:12-16.
    [68]张彤,刘洪臣,王延荣等.上颌骨复合体三维有限元模型的建立[J].中华口腔医学杂志.2000,35(5):374-376.
    [69] Nalbantgil D, Arun T, Sayinsu K, et al. Skeletal, Dental and Soft-Tissue changes induced bythe Jasper Jumper appliance in late adolescence [J]. Angle Orthod, 2005,75 (3) : 426-436.
    [70] Heinig N,Goz G.Clinical application and effects of the forsus spring[J].J Orofac Orthop.2001,62(6):436-450.
    [71]邓琪,邵评,王丽梅等.Forsus矫治器治疗恒牙初期安氏Ⅱ类错牙合的临床疗效[J].口腔医学,2007,27(5):227-229.
    [72] Ingervall B,Bitsanis E.Function of masticatory muscles during the initial phase of activator treatment[J].Eur J Orth.1986,8:172-184.
    [73] Karacay S,Akin E,Olmez H,et al.Forsus nitinol flat spring and jasper jumper corrections of classⅡdivision 1 malocclusions[J].Angle Orthod,2006,76(4):666-672.
    [74]张化宇,白玉兴,张学军等.Forsus矫治器治疗骨性Ⅱ类错牙合下颌侧方运动时髁突轨迹变化的研究[J].中国煤炭工业医学杂志,2006,9(11):l168-1169.
    [75]周学军,赵志河,赵美英等.包括下颌骨的颞下颌关节三维有限元模型的建立[J].实用口腔医学杂志.2000,16(1):17-19.
    [76]邓锋,张磊,张翼等.“微植体-上颌骨’’三维有限元模型的建立[J].华西口腔医学杂志.2007,25(3):192-193.
    [77]邓锋,张磊,张翼等.直丝弓滑动法关闭拔牙间隙的三维有限元模型的建立[J].中国生物医学工程学报.2007,26(3):426-430.
    [78]张磊,樊瑜波.转矩作用对微植体矫治力系内收上前牙影响的三维有限元研究[J].医用生物力学.2007,22(2):151-153.
    [79]马轩祥,应隆安.无限单元应力分析方法在口腔医学生物力学研究中的应用前景[J].中华口腔医学杂志.2002,37(3):235-236.
    [80] Tanaka E, Del Pozo R, Tanaka M. Three-dimensional finite element analysis of human temporomandibular joint with and without disc displacement during jaw opening[J]. Med Eng Phys.2004,26(6):503-511.
    [81] Voudouris JC,Woodside DG,Altuna G.Condyle-fossa modifications and muscle interactions during Herbst treatment,Part 2 . Am J Orthod Dentofacial Orthop[J] . Results and conclusions.2003,124(1):13-29.
    [82] Dorow C,Sander FG.Development of a Model for the Simulation of Ort hodontic Load on Lower First Premolars Using the Finite Element Met hod[J] . Journal of Orofacial Orthopedics.2005,66(3):208-218.
    [83]毛祖彝.口腔科学[M].北京:人民卫生出版社.1995.
    [84]陈文静主编.功能性矫治技术[M].南京:江苏科学技术出版社.2007.
    [85]曾祥龙主编.现代口腔正畸学诊疗手册[M].北京:北京医科大学出版社.2000.
    [86] Mc Namara J.Components of ClassⅡmalocdusion in children 8- 10 years of age[J].AngleOrthod.1981,56: 177-185.
    [87]周秀坤,詹淑仪,叶长根等.恒牙列错牙合的调查[J].华西口腔医学杂志.1985,3:168-171
    [88]伍军,徐宝华.安氏Ⅱ类1分类错牙合的分型及其高低面角的颅面特征[J].口腔医学纵横.1999,15 (3) :151-153.
    [89] Graber T M原著,徐芸主译.口腔正畸功能矫形治疗学[M].北京:人民卫生出版社,2004.
    [90]王欢,魏克立主编.口腔临床新技术新疗法(傅民魁) [M].北京:人民卫生出版社.2007.
    [91]刘新强.口腔正畸中种植体支抗的研究进展[J].青岛大学医学院学报.2004,40(16):90-92.
    [92]邓峰.口腔正畸微植体支抗技术的生物力学研究[D].博士学位论文.成都:四川大学.2006.
    [93]周晓勇,段银钟.下颌前移功能矫治器的临床应用[J].口腔医学研究.2006,22(1):101-102.
    [94]曾红梅,周学军.功能矫治器的临床应用进展[J].安徽医药.2007,11(4):356.
    [95] Jeon PD,Turley PK,Moon HB.Analysis of stress in the periodontium of the maxillary first molar with a three-dimensional finite element model[J]. Am J Orthod Dentofacial Orthop.1999,115(3):267-274.
    [96]王仁.塑性力学导论[M].北京:北京大学出版社. 2003.
    [97]杨绪灿.粘塑性概论[M].北京:中国铁道出版社. 1985.
    [98] Perzyna P . The study of the dynamical behavior of rate sensitive plastic materials Arch[J].Mech Stos.1965,2:15.
    [99] Perzyna P. Fundamental problems in viscoplasticity . In Advances in Applied Mechanics[J].1966, 9: 243-377.
    [100] Perzyna P . Thermodynamic theory of viscoplasticity[J] . In Advances in Applied Mechanics.1971,11:243-377.
    [101] Duvaut G,Lions J L.Les Inequations en Mecanique et en Physique[J].Paris France.Dunod. 1972.
    [102] J.C.Simo,T.Hughes.Computational Inelasticity[M].New York:Springer-Verlag.1998.
    [103] Belytschko,T. Liu,K.W,Moran.B.Non-linear Finite Element Analysis for Continua and Structures[M].New York:John Wiley & Sons.2000.
    [104] Ortiz M,Martin JB.Symmetry-preserving return mapping algorithm and incrementally extremal path:a unification of concepts[J].International Journal for Numerical Methods in Engineering.1989,28:1839-1853.
    [105] Fionn Dunne,Nik Petrinic. Introduction to computational plasticity /Fionn Dunne and Nik Petrinic Oxford[M].New York:Oxford University Press.2005.
    [106]李琦.上颌骨微植体支抗正畸矫治力系统数值分析研究[D].硕士学位论文.重庆:重庆大学.2007.
    [107]庄茁,张帆,岑松等. ABAQUS非线性有限元分析与实例[M].北京:科学出版社.2005:508-511.
    [108]樊瑜波,张晓峰,唐高妍.生理载荷作用下上颌中切牙牙周膜应力分布的三维有限元研究[J].生物医学工程学杂志.1999,16(1):23-26.
    [109] Wagner A,Krach W,Schicho K.A 3-dimensional finite Element analysis investigating the biomechanical behavior of the man dible an d plate osteosynthesis in cases of fractures of the condylar process[J].Oral Surg Oral Med Oral Pathol Oral Radiol Endod.2002,94(6): 678-686.
    [110] Chang KH,Magdum S,Khera SC.An advanced approach for computer modeling and prototyping of the human tooth[J].Ann Biomed Eng.2003,31(5):62l-631.
    [111] Toparli M.Stress analysis in a post-restored tooth utilizing the finite element metho[J].J Oral Rehabil.2003,30(5):470-476.
    [112]邓锋,张磊,张翼等.微植体支抗-骨界面的生物力学研究及微植体颈部优化设计探讨[J].四川大学学报(医学版).2007,38(4)701-704.
    [113]兰泽栋.正畸支抗种植体-骨界面三维有限元分析[D].博士学位论文.西安:第四军医大学.2001.
    [114] Rubin CT,Lanyon LE.Ostearegulatory nature of mechanical stimuli: function as a determinant for adaptive remodeling in bone[J].Journal of Orthop Research.1987,5(3): 300-310.
    [115] Frost HM. A determinant of bone architecture: The minimum effective strain[J].Clin Orthop.1983,May(175): 286-292.
    [116] Kitoh M, Matsushite Y, Yamaue S, et al. The Stress distribution of the hydroxgaptatie implant under the vertical load by the two-dimensional finite element method[J].J Oral Implant.1988,14(1): 65-71.
    [117] Matsushuta Y, Kitoh M, Mizutak, et al. Two-dimensional FEM analysis of hydroxyapatite implants: diameter effects on stress distribution[J].J Oral Implant.1990,16(1): 6-11.
    [118] Lum LB, Osier JF Load transfer from endosteal implants to supporting bone: an analysis using statics. Part two: Axial loading[J]. J Oral Implantol.1992,18(4): 349-353.
    [119] Holmgren EP, Secldnger RJ, Kilb en LM et al. Evaluating parameters of osseointegrated dental implants using finite element analysis-a two- dimensional comparative study examining the effects of implant diameter, implant shape, and load direction[J]. J-Oral-Implantol.1998,24(3):80-88.
    [120] Chen J,Chen K,Gartto LP.Mechanical response to functional and therapeutic loading of aretromolar endosseous implant used for orthodontic anchorage to mesially translate mandibular molars[J].Implant Dent,1995,4(4): 246-258.
    [121]颜功兴,张凯,冯小伟.CT扫描和选区激光烧结技术在颌骨修复中的应用[J].激光杂志,2009,30(4):52-53.
    [122] Heinig N, G?z G. Clinical application and effects of the Forsus? spring, a study of a new Herbst hybrid[J].J Orofac Orthop. 2001,62:436-450.
    [123] Seniz Karacay,Erol Akin,Huseyin Olmez,et al.Forsus Nitinol Flat Spring and Jasper Jumper Corrections of Class II division 1 Malocclusions[J].Angle Orthodontist.2006,76(4), 666-672.
    [124] Sari Z, Goyenc Y, Doruk C, Usumez S. Comparative evaluation of a new removable Jasper Jumper functional appliancevs activator-headgear combination[J]. Angle Orthod. 2003,73:286-293.
    [125] Tanaka E, del Pozo R, Tanaka et al.Three-dimensional finite element analysis of human temporomandibular joint with and without disc displacement during jaw opening[J].Med Eng Phys.2004,26(6):503-511.
    [126]王玉玮.天然牙及其支持组织的动态三维有限元分析[D].七年制学生学位论文.成都:华西医科大学.1996.
    [127] Lakes RS,Katz JL,Sternstein SS.Viscoelastic properties of wet cortical bone--I. Torsional and biaxial studies[J].J Biomech.1979,12(9):657-678.
    [128] Heinig N,G?z G.Clinical application and effects of the Forsus? spring, a study of a new Herbst hybrid[J].J Orofac Orthop.2001,62:436-450
    [129] Nickel JC,Iwasaki LR,Beatty MW.Laboratory Stresses and Tractional Forces on the TMJ Disc Surface[J].J Dent Res.2004,83(8): 650-654.
    [130]皮昕.口腔解剖生理学(第5版)[M].北京:人民卫生出版社.2003:257.
    [131]李丽华.Forsus前导下颌后正畸矫治力系的初步仿真分析[D].硕士学位论文.重庆:重庆医科大学.2008.
    [132] Thomas M.Graber.口腔正畸学-现代原理与技术[M].天津:天津科技翻译出版公司.1996:31.
    [133]徐芸.口腔正畸功能矫形治疗学(第二版)[M].北京:人民卫生出版社.2004:154.
    [134] Stutzmann J,Petrovic A,Shaye R,et al.Analysis in organ culture of the rate of formation-resorption of sampled human alveolar bone before and during treatment including tooth movement: a new method of approach in orthodontic research[J].Orthod Fr.1979,50:399-419.
    [135] Mitani H , Sato K, Sugawara J . Growth of mandibular prognathism after pubertal growthpeak[J]. AmJ Orthod Dentofacial Orthop. 1993,104 :330-336.
    [136] Lavergne J,Gasson N.Analysis and classification of the rotational growth pattern without implants[J].Br J Orthod.1982,9(1):51-56.
    [137] Ghafari J,King GJ,Tulloch JF.Early treatment of Class II, division 1 malocclusion - comparison of alternative treatment modalities[J].Clin Orthod Res.1998,1(3): 107-117.
    [138] Pancherz H. Treatment of Class II malocclusions by jumping the bite with the Herbst appliance: a cephalometric investigation[J].Am J Orthod Dentofacial Orthop.1979,76:423-441.
    [139] Voudouris JC,Kuftinec MM.Improved clinical use of Twin-block and Herbst as a result of radiating viscoelastic tissue forces on the condyle and fossa in treatment and long-term retention: growth relativity[J].Am J Orthod Dentofacial Orthop.2000,117(3): 247-266.
    [140]李建霞,邓峰,宋锦鳞等.青少年下颌后缩型安氏Ⅱ?1类错牙合的髁突运动轨迹研究[J].第三军医大学学报.2007,29(14):1432-1436.
    [141] Thomas M.Graber.口腔正畸学-现代原理与技术[M].天津:天津科技翻译出版公司.1996:403.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700