Forsus前导下颌后正畸矫治力系的初步仿真分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ⅱ类错牙合是临床常见的错牙合畸形之一,下颌后缩是II类错牙合畸形的重要特征之一,青少年Ⅱ类错牙合畸形中下颌后缩占46%[1]。下颌后缩畸形严重影响患者的颜貌和功能,根据畸形性质、程度和形成机制,在不同时期应用功能矫治器进行下颌前导是矫治的关键之一。
     下颌前导功能矫治器依据固位方式不同分为可摘式和固定式。早期功能矫治器大多系可摘式的,矫治下颌后缩往往需双期矫治。近年来,以Forsus为代表的固定式功能矫治器以体积小、弹力持久均匀、矫治力易于控制、安装简便和整体疗程较短等优点,受到了正畸医师的广泛关注,代表了功能矫形治疗发展的趋势。
     目前,Forsus矫治器的研究主要停留在临床研究阶段,尚未见相关的生物力学研究报道。数值仿真分析是口腔生物力学研究的主要手段之一,是数学科学与计算机技术结合的一种技术,已广泛应用于生物力学的研究。采用数值分析方法对Forsus矫治力系进行仿真分析,利于分析不同前导工况下的力学效应及矫治器的改良,并促进该矫治技术在临床的进一步使用。1
     本研究紧密结合临床原型,基于成熟的三维有限元快速建模方法,将CT扫描技术、Mimics8.0与Abaqus6.5相结合,利用弹性元件、粘性元件和塑性元件的组合构建骨的粘弹塑性本构关系,建立“Forsus-牙列-上下颌骨-颞下颌关节”三维整体模型。实验中模拟研究Forsus导下颌向前不同工况下牙列、颌骨、颞下颌关节的力学分布状况,重点观察牙齿、颌骨和颞下颌关节的应力场和位移场的变化。在计及粘弹塑性基础上,采用Abaqus6.5运动仿真技术动态分析Forsus反作用力推上颌第一磨牙向远中的力学效应,为Forsus进一步使用和改良提供力学理论依据。
     基于各向同性、非线性、具有粘弹塑性的“Forsus-牙列-上下颌骨-颞下颌关节”模型,在不同下颌前导的工况下,Forsus导下颌向前时应力衰减不明显,没有明显应力松弛区域,即时效分析颌骨改建是个较缓慢的过程。尤其是加载角度偏离基准线越远,颏部前伸位移越明显;下颌骨逆时针旋转比顺时针旋转前伸位移更明显;因此Forsus加载角度推荐范围在0°与25°之间。当转动中心位于下切牙切缘,下颌骨向前的旋转方式有利于II类错牙合畸形的治疗。生长型不利的患者,可通过调整Forsus加载角度,增加下颌有利的自动旋转方向,利于侧貌的改善。Forsus前导下颌后位移场仿真分析发现髁突生长改建范围在1.0到3.0mm之间,符合生理范围内的改建。当矫形力矢量通过磨牙冠颊侧表面的中心时,辅以Mt/F = 9的反倾斜力偶和Mr/F = 5的反旋转力偶,将获得第一磨牙的远中平移效果。
     本研究建立了具有一定粘弹塑性生物力学特性的“Forsus-牙列-上下颌骨-颞下颌关节”各向同性、非线性的三维整体模型,几何相似性和力学相似性较高,可拆分并模块化应用,为深入探讨前导下颌的Forsus生物力学效应提供了研究平台。此外,通过模拟研究不同前导工况下的Forsus矫治力系分布效应,为其进一步的临床应用和改良提供了有利的借鉴。
ClassⅡmalocclusion is patho-occlusion in clinic. One of its significance characters is the mandibular retraction. Among adolescents with mandibular retraction, 46 percent of them suffer from ClassⅡmalocclusion . The abnormity influences the patients’countenances and functions severely. According to the abnormity's nature, extent and formation in different periods, it’s important for patients to be treated by submaxilla anterior guidance .
     Owing to the different retention modes, submaxilla anterior guidance activator can be classified as removable appliance and fixed appliance. Most of the appliances which used in the earlier period were removable, and the treatment of mandibular retraction needed two-phases treatment. In recent years, a great number of orthodontic doctors pay close attention to fixed appliance which prescented by Forsus ,for such appliance is small in size, has more durable and homogeneous elastic foce and easy to control, too. What’s more, the installation is easier and the course of treatment is shorter in general. In a word, fixed appliance suggests the new developmental trend of the orthopaedic treatment appliance .
     At present, the study of Forsus appliance steps into clinical research phase. None report about vitodynamics study in mandibular anerior guidance is found. Numerical simulation analysis is one important means in oral biomechanical study, it is a technique combines Mathematical Sciences and Computer Technology and it has been widely used in vitodynamical study. On the basis of considering visvoelasto, by using the simulated analysis of the Forsus orthopedic force system, the different mechanical effects can be analysed under different anterior guidance operating conditions, and the analysis improves the clinical use of the appliance as well .
     In this study, Forsus-Dent-uper and lower jaw-TMJ integral 3D model with the character of isotropy and non-linear was builded. To some extent the model also is built with the character of visvoelasto.
     The study shows that there is no obvious stress attenuation, or distinct stress relaxation region,that is, the rebuilding process of jaw bones is slow. The larger the angle between the datum line and loading point is the more obvious mental region’s protrusive bias would be. Those who with mandible anticlockwise rotation have more obvious protrusive bias compares with mandible clockwise rotation ones. When Forsus is used, the range of loading angle is from0 to25 degree would be better. In cases with rotation center lies in the Incisal border of lower incisors, a antrorse rotation of the lower jaw would do good to the therapy of type II patho-occlusion. For patients with unfavorable vegetative form ,by adjusting the loading angle of Forsus applicaton, the lower mandible’s expedient automatic rotation orientation would be increased . All the above does good to improve the latero-countenance. The condylar‘s remodeling compass is in the extent of 1.0 to 3mm. Though the remodeling tendency of condylar is significant, this changement is finite. When the orthopedic force-vector through the center of abutment tooth crown’s buccal surface, adding a anti-incline couple of Mt/F = 9 and a anti-rotation couple of Mr/F = 5 would won the molar’s translation.
     A model of Forsus-Dent-uperand lower jaw-TMJ with some visvelasto-plastic characters is built in this study and it is isotopic, non-linear, three diamensional and integral. It has high geometric and mechanics similarities and could be splited and used in the form of modules. All the above contributes to a research platform for further study of the vitodynamics effect of Forsus in mandible anterior guidance .At the same time, the study offers favourable reference for the clinical application and improvement of Forsus by using simulated analysis on the disposition of the orthopedic forcess system under different anterior guidance operating condition.
引文
[1] 常新,秦科,邓燕.安氏Ⅱ类 1 分类错牙合的颅面形态[J].口腔正畸学.2000, 7(3): 102
    [2] 曾祥龙.爱丁堡皇家外科学院口腔正畸专业考试病例精选[M].北京:北京大学医学出版社,2007.99
    [3] 傅民魁.口腔正畸学[M].北京:人民卫生出版社.第四版.2006,193
    [4] 曾应魁.应用数字化图像处理技术对颜面审美的研究[J].口腔正畸学,2000,7(3):110-112
    [5] Ghafari J, King GJ, Tulloch JF. Early treatment of Class II, division 1 malocclusion --comparison of alternative treatment modalities[J].Clin Orthod Res. 1998,1(2): 107-117
    [6] Cohen SR, Corrigan ML, Bookstein FL. Log-linear allometry of normal fetal craniofacial growth.[J] J Craniofac Surg. 1995,6(3):190-194
    [7] Pancherz H. Treatment of Class II malocclusions by jumping the bite with the Herbst appliance: a cephalometric investigation[J].Am J Orthod Dentofacial Orthop. 1979,76:423–441
    [8] Jasper JJ. The Jasper Jumper-A Fixed Functional Appliance[J]. American Orthodontics. 1987,5–27
    [9] Heinig N, G?z G. Clinical application and effects of the Forsus? spring, a study of a new Herbst hybrid[J]. J Orofac Orthop. 2001,62:436–450
    [10] Seniz Karacay, Erol Akin, Huseyin Olmez, et al. Forsus Nitinol Flat Spring and Jasper Jumper Corrections of Class II division 1 Malocclusions[J].Angle Orthodontist, 2006,76(4), 666-672
    [11] Sari Z, Goyenc Y, Doruk C, Usumez S. Comparative evaluation of a new removable Jasper Jumper functional appliancevs activator-headgear combination[J]. Angle Orthod. 2003,73:286–293
    [12] Tanaka E, del Pozo R, Tanaka et al.Three-dimensional finite element analysis of human temporomandibular joint with and without disc displacement during jaw opening[J].Med Eng Phys. 2004,26(6):503-511
    [13] Chang KH,Magdum S,Khera SC. An advanced approach for computermodeling and prototyping of the human tooth[J]. Ann Biomed Eng. 2003,31(5):621-631
    [14] Jeon PD,Turley PK,Moon HB. Analysis of stress in the periodontium of the maxillary first molar with a three-dimensional finite element model[J]. Am J Orthod Dentofacial Orthop. 1999,115(3):267-274
    [15] 马轩祥,应隆安.无限单元应力分析方法在口腔医学生物力学研究中的应用前景[J].中华口腔医学杂志.2002.37(3):235—236
    [16] 宋宇峰,王大章,李伟,等.人正常下颌升支区应力分布的三维有限元分析[J].贵阳医学院学报.2003,28(3):189—192.
    [17] 左艳萍,董福生,王浩,等.下颌骨前伸时下颌骨应力分布的三维有限元分析[J].医用生物力学.2003,18(2):97—81
    [18] Tanaka E, Rodrigo DP, Tanaka M, et al. Stress analysis in the TMJ during jaw opening by use of a three-dimensional finite element model based on magnetic resonance images[J].Int J Oral Maxillofac Surg. 2001,30(5):421-430
    [19] Voudouris JC, Woodside DG, Altuna G. Condyle-fossa modifications and muscle interactions during Herbst treatment,Part 2[J].Am J Orthod Dentofacial Orthop.Results and conclusions.2003,124(1):13-29
    [20] Dorow C ,Sander F G. Development of a Model for the Simulation of Ort hodontic Load on Lower First Premolars Using the Finite Element Met hod[J].Journal of Orofacial Orthopedics.2005,66(3):208-218
    [21] Solow B, Kreiborg S. Soft-tissue stretching: a possible control factor in craniofacial morphogenesis[J].Scand J Dent Res. 1977,85(6):505-507
    [22] 李庆扬,王能超,易大义.数值分析[M].北京: 清华大学出版社.第四版.2001,5-7
    [23] 冯 明 珲 , 吕 和 祥 . 一 种 弹 性 粘 塑 性 统 一 本 构 模 型 . 固 体 力 学 学 报[J].2001,22(4):403-408
    [24] Natali AN, Pavan PG, Scarpa C.Numerical analysis of tooth mobility: formulation of a non-linear constitutive law for the periodontal ligament[J]. Dent Mater. 2004,20(7):623-629
    [25] 邓锋,张磊,张翼,等.直丝弓滑动法关闭拔牙间隙的三维有限元模型的建立[J].中国生物医学工程学报[J].2007,26(3):426-430
    [26] 邓锋,张磊,张翼,等.“微植体-上颌骨’’三维有限元模型的建立[J].华西口腔医学杂志.2007,25(2):192-193
    [27] 邓锋,张磊,张翼,等.微植体支抗-骨界面的生物力学研究及微植体颈部优化设计探讨[J].四川大学学报(医学版).2007,38(4):701-704
    [28] 张瑞萍,吴文周.考虑粘弹性性能的密质骨损伤本构模型的研究[J].中国生物医学工程学报.1999,18(2):194-198
    [29] 朱兴华,董心,刘磊,等.人颅骨粘弹性研究[J].中国生物医学工程学报.1993,12(1):35-42
    [30] 郭玉明,张宏民,朱健,等.松质骨粘弹性性质的实验研究[J].中国生物医学工程学报.2000,19(3):272-275
    [31] 徐秀林,薛文东.戴克戎.正常皮质骨压缩力学性能实验研究[J].医用生物力学.1996,11(1):26-28
    [32] 赵均海,孙家驹.人密质骨的撞击实验研究[J].中国生物医学工程学报.2001,20(2):170-174
    [33] 李玲,薛淼.上下颌骨及牙列三维有限元模型的建立[J].口腔材料器械杂志.2002,12(3):117-121
    [34] 樊瑜波,张晓峰,唐高妍.生理载荷作用下上颌中切牙牙周膜应力分布的三维有限元研究[J].生物医学工程学杂志.1999,16(1);23—26
    [35] Wagner A,Krach W,Schicho K.A 3-dimensional finite Element analysis investigating the biomechanical behavior of the man dible an d plate osteosynthesis in cases of fractures of the condylar process[J].Oral Surg Oral Med Oral Pathol Oral Radiol Endod.2O02,94(6):678—686
    [36] Chang KH,Magdum S,Khera SC.An advanced approach for computer modeling and prototyping of the human tooth[J].Ann Biomed Eng.2003,31(5):62l-631
    [37] Toparli M.Stress analysis in a post-restored tooth utilizing the finite element method[J].J Oral Rehabil.2003,30(5):470-476
    [38] 王玉玮.天然牙及其支持组织的动态三维有限元分析[D].成都:华西医科大学七年制学生学位论文,1996
    [39] Hart RT,Hennebel VV,Th ongpreda N et a1.Modeling the biomechanics ofthe mandible:a three—dimensional finite element study[J].J Biomech. 1992, 25(3): 261-286
    [40] 吴立军,钟世镇,廖进民. 咀嚼肌牵动的下颌骨三维有限元建模与数值分析[J].中国临床解剖学杂志.2004,22(4):408-410
    [41] 李琦.上颌骨微植体支抗正畸矫治力系统数值分析研究[D].重庆:重庆大学硕士学位论文,2007
    [42] Lakes RS, Katz JL, Sternstein SS. Viscoelastic properties of wet cortical bone--I. Torsional and biaxial studies[J].J Biomech. 1979,12(9):657-678
    [43] 刘占芳,李琦.上颌骨微植体支抗过程的时效特性数值模拟[J].中国民康医学.2007,19(5):327-329
    [44] Nickel JC, Iwasaki LR, Beatty MW. Laboratory Stresses and Tractional Forces on the TMJ Disc Surface[J]. J Dent Res. 2004,83(8): 650-654
    [45] 皮昕.口腔解剖生理学[M]. 北京:人民卫生出版社.第 5 版.2003, 257
    [46] Witt E.nvestigations into orthodontic forces of different appliances[J]. Rep Congr Eur Orthod Soc. 1966,42:391-408
    [47] Thomas M.Graber. 口腔正畸学-现代原理与技术[M]. 天津:天津科技翻译出版公司.1996,31
    [48] 徐芸.口腔正畸功能矫形治疗学[M].北京:人民卫生出版社.第二版.2004, 154
    [49] 林久祥,张兴中,傅民魁.13~17 岁正常牙合青少年下颌骨的生长发育纵向研究[J].口腔正畸学.2000.7(1):4-8
    [50] Stutzmann J, Petrovic A, Shaye R,et al. Analysis in organ culture of the rate of formation-resorption of sampled human alveolar bone before and during treatment including tooth movement: a new method of approach in orthodontic research[J]. Orthod Fr. 1979,50:399-419
    [51] Bondemark L.Does 2 years’nocturnal treatment with a mandibular advancement splint in adult patients with snoring and OSAS cause a change in the posture of the mandible[J].Am JOrthod Dentofacial Orthop.1999,6(6): 62l-628
    [52] Kinzinger G,Diedrich P.Skeletal Efects in Class II Treatment with the Functional Mandibular Advancer[J].J Orofac Orthop.2005,66(6):469-490
    [53] Sinclair PM, Lettle RM. Dentofacial maturation of untreated normals[J].AmJ Orthod Dentofacial Orthop.1985,88:146-156
    [54] Buschang PH,Tanguay R,tcz J,et al.A polynomial approach to craniofacial growth : description and comparison of adolescent males with normal occlusion and those with untreated Class II malocclusion[J]. Am J Orthod Dentofacial Orthop.1986,90:437-443
    [55] Pancherz H. The nature of Class II relapse after Herbst appliance treatment: a cephalometric long-term investigation. Am J Orthod Dentofacial Orthop [J]. 1991,100:220–233
    [56] Mitani H , Sato K, Sugawara J . Growth of mandibular prognathism after pubertal growth peak. AmJ Orthod Dentofacial Orthop. 1993 ,104 :330-336.
    [57] Lavergne J, Gasson N. Analysis and classification of the rotational growth pattern without implants[J]. Br J Orthod. 1982,9(1):51-56
    [58] Voudouris JC, Kuftinec MM. Improved clinical use of Twin-block and Herbst as a result of radiating viscoelastic tissue forces on the condyle and fossa in treatment and long-term retention: growth relativity[J]. Am J Orthod Dentofacial Orthop. 2000,117(3): 247-266
    [59] 徐芸.口腔正畸功能矫形治疗学[M]. 北京:人民卫生出版社.第二版.2004, 150
    [60] Thomas M.Graber. 口腔正畸学-现代原理与技术[M]. 天津:天津科技翻译出版公司.1996,403
    [61] 胡林华,赵志河,宋锦璘,等.不同牙合重建时 Herbst 矫治器对髁突软骨表面应力分布的影响[J].华西口腔医学杂志.2001,19(1):46-48
    [62] 宋锦璘,赵志河,胡林华,等.不同牙合重建时 Herbst 矫治器对口颌肌肉和相关韧带约束反力的影响研究[J].华西口腔医学杂志.2001,19(1):43-45
    [63] Cohen SR, Corrigan ML, Bookstein FL. Log-linear allometry of normal fetal craniofacial growth [J] .J Craniofac Surg. 1995,6(3):190-194
    [64] Charles McNeill. Current Controversies in Temporomandibular Joint Disorders[M]. Chicago,1992,89
    [65] Petrovic AG.. Mechanisms and regulation of mandibular condylar growth[J]. Acta Odontal Scand. 1972,10:25
    [66] Shaye R. Dr. Robert Shaye on functional appliances[J].J Clin Orthod. 1983,17:330
    [67] Firouz M, Zernik J, Nanda R Dental and orthopedic effects of high-pull headgear in treatment of Class II, division 1 malocclusion[J]. Am J Orthod Dentofacial Orthop. 1992,102(3):197-205
    [68] 傅民魁.口腔正畸学[M].北京:人民卫生出版社.第四版.2006,160
    [69] 李志华,陈扬熙,刘剑,等.上颌第一磨牙远中移动时牙周应力分布的三维有限元分析[J].华西口腔医学杂志. 2003,21(4):267-269
    [70] 李志华,吴建勇,刘剑,等.上颌第一磨牙远中移动时牙根应力分布的三维有限元分析[J].江西医学院学报.2005, 45(4 ):22-23
    [71] Yettram AL,Wright KW,Houston WJ.Center of rotation of a maxillary central incisor under orthodontic loading[J].Br J Orthod.1977,4(1):23
    [72] Shaw AM, Sameshima GT, Vu HV. Mechanical Stress Generated by Orthodontic Forces on Apical Root Cementum:A Finite Element Model[J]. Orthod Craniofacial Res. 2004,7:98-107
    [1] Kokshenev V.A force-similarity model of the activated muscle is able to predict primary locomotor functions[J]. Journal of Biomechanics.2003 41(4): 912 - 915
    [2] 张光鉴.相似论[M].南京: 江苏科学技术出版社.1992
    [3] 周美立.相似系统论[M].北京: 科学技术文献出版社.1994
    [4] 蒋孝煜.有限元法基础[M].北京:清华大学出版社.第 2 版.1992
    [5] 徐迪.基于相似理论的系统仿真可信性分析[J ].系统工程理论与实践. 2001,(4):19-52
    [6] 赵云凤.口腔生物力学[M].北京:北京医科大学中国协和医科大学联合出版社.第一版,1996
    [7] Tanaka E, Rodrigo DP, Tanaka M, et al. Stress analysis in the TMJ during jaw opening by use of a three-dimensional finite element model based on magnetic resonance images[J].Int J Oral Maxillofac Surg. 2001,30(5):421-430
    [8] Tanaka E, del Pozo R, Tanaka et al.Three-dimensional finite element analysis of human temporomandibular joint with and without disc displacement during jaw opening[J].Med Eng Phys. 2004,26(6):503-511
    [9] 张彤,刘洪臣,王延荣,等.上颌骨复合体三维有限元模型的建立[J].中华口腔医学杂志.2000,35(5):374~376.
    [10] Chang KH, Magdum S, Khera SC. An advanced approach for computer modeling and prototyping of the human tooth. Ann Biomed Eng[J]. 2003, 31(5): 621-631
    [11] Jeon PD, Turley PK, Moon HB. Analysis of stress in the periodontium of the maxillary first molar with a three-dimensional finite element model[J]. Am J Orthod Dentofacial Orthop. 1999,115(3):267-274
    [12] 周学军,赵志河,赵美英等. 包括下颌骨的颞下颌关节三维有限元模型的建立. 实用口腔医学杂志.2000,16(1):17-19
    [13] 邓锋,张磊,张翼,等.“微植体-上颌骨’’三维有限元模型的建立[J].华西口腔医学杂志.2007,25(2):192-193
    [14] 邓锋,张磊,张翼,等.直丝弓滑动法关闭拔牙间隙的三维有限元模型的建立[J].中国生物医学工程学报.2007,26(3):426-430
    [15] 邓锋,张磊,张翼,等.微植体支抗-骨界面的生物力学研究及微植体颈部优化设计探讨[J].四川大学学报(医学版).2007,38(4)701-704
    [16] Koolstra JH, VanSpronsen PH. Computer-asisted estimation of action of human masticatory muscles reconstructed in vivo by means of magnetic resonance imaging of parallel sections[J].Archs Oral Biol.1990,35(7):549—556
    [17] Tanaka E, Del Pozo R, Tanaka M. Three-dimensional finite element analysis of human temporomandibular joint with and without disc displacement during jaw opening[J]. Med Eng Phys. 2004,26(6):503-511
    [18] Gianelly AA.Distal movement of the maxillary molars[J]. Am J Orthod Dentofacial Orthop. 1998,114(1):66-72
    [19] 王美青,张旻,王景杰.颞下颌关节与咬合关系研究三维有限元模型的建立[J].口腔领面修复学杂志.2000,1(4):197-199
    [20] Lakes RS, Katz JL, Sternstein SS. Viscoelastic properties of wet cortical bone--I. Torsional and biaxial studies[J].J Biomech. 1979;12(9):657-678
    [21] 马轩祥,应隆安.无限单元应力分析方法在口腔医学生物力学研究中的应用前景[J].中华口腔医学杂志.2002.37(3):235—236
    [22] 左艳萍,董福生,王浩,等.下颌骨前伸时下颌骨应力分布的三维有限元分析[J].医用生物力学.2003,18(2):97—98
    [23] Voudouris JC, Woodside DG, Altuna G. Condyle-fossa modifications and muscle interactions during Herbst treatment, Part 2. Results and conclusions[J]. Am J Orthod Dentofacial Orthop.2003. 124(1):13-29
    [24] Dorow C,Sander FG.Development of a Model for the Simulation of Ort hodontic Load on Lower First Premolars Using the Finite Element Met hod[J]. Journal of Orofacial Orthopedics.2005,66(3):208-218

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700