黄土高原枸杞根际微生态特征及其共生真菌调控宿主生长与耐旱响应机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用巢式PCR-DGGE、克隆测序、实时定量PCR、BIOLOG和叶绿素荧光等技术研究了黄土高原旱区不同品种枸杞根系丛枝菌根真菌(AMF)与深色有隔内生真菌(DSE)定殖特征,不同品种枸杞根际土壤球囊霉素含量和AMF群落结构多样性季相变化特征,不同生态条件下枸杞根际土壤粒径分布与细菌和真菌群落多样性的关系,枸杞共生DSE菌株生物学特性和菌丝体对人工模拟干旱胁迫的响应,接种DSE对枸杞生长、根际细菌群落功能与遗传多样性的影响及干旱胁迫条件下接种AMF和DSE对枸杞叶片形态、光合参数和根系结构的影响。获得以下主要结果:
     1.黄土高原枸杞丛枝菌根真菌(AMF)与深色有隔内生真菌(DSE)定殖特征
     对柠杞1号(NQ-1)、柠杞5号(NQ-5)和柠杞菜1号(NQC-1)根系丛枝菌根真菌(AMF)与深色有隔内生真菌(DSE)定殖特征进行了调查研究,结果表明,枸杞形成P-型AM菌根。NQ-1丛枝菌根侵染率最高。不同品种枸杞的AMF侵染率不同,且呈现季节差异。同时,3种枸杞根系均存在DSE定殖。微菌核、深色(棕色)有隔菌丝主要分布在皮层细胞中。8月份DSE镜空菌丝侵染率最高,12月份最低。镜空菌丝和微菌核中存在大量脂类物质,这些脂类物质可能扮演着协助宿主渡过干旱逆境的碳源能量物质的角色。
     2.枸杞根际球囊霉素含量及丛枝菌根真菌(AMF)群落结构
     采用巢式PCR-DGGE和克隆测序技术研究了枸杞根际土壤AMF群落结构和球囊霉素含量,结果表明,不同品种枸杞根际土壤中易提取球囊霉素含量存在显著性差异,且呈现季节变化,8月份球囊霉素含量最高,12月份最低。总球囊霉素与易提取球囊霉素含量呈显著正相关。巢式PCR-DGGE图谱表明不同品种枸杞根际AMF群落不同,季节和品种对AMF群落丰富度指数(S)和多样性指数(H)影响显著,12月份丰富度指数显著低于8月份和10月份,但是两者交互作用不显著。冗余分析表明,枸杞根际土壤AMF群落多样性与土壤环境因子之间存在密切关系。克隆测序结果表明17条序列均属于球囊霉属(Glomus)。
     3.不同生态条件下枸杞土壤粒径与微生物群落多样性
     固原、同心、银川和中宁生态区枸杞根际土壤粒径最多分布在20~50μm范围之内,土壤粒径分别占总粒径的37.21±0.21%、33.25±0.21%、38.35±0.18%和42.33±0.45%。惠农地区有40.21±0.26%分布在100~200μm范围。巢式PCR-DGGE结果表明,5个生态区枸杞根际细菌群落丰富度指数为:同心>中宁>固原=银川>惠农;真菌群落丰富度指数为:银川>同心>惠农>中宁>固原,细菌和真菌群落多样性指数之间相关性不显著。主成分分析表明,固原典型变量值的变异(离散)最小,而银川细菌典型变量值的变异(离散)最大,说明银川枸杞根际细菌群落最不稳定。固原与同心真菌群落多样性差异不显著。克隆测序结果表明枸杞根际细菌和真菌均为不可培养微生物类群。
     4.枸杞DSE的分离、鉴定及其生物学特性
     从枸杞根系上分离DSE菌株,对3株能与枸杞形成共生关系的菌株利用分子生物学技术(rDNA-ITS)进行鉴定。结果显示,3株DSE分别为Phoma chrysanthemicola,Cladosporium cladosporioides LBF3和C. cladosporioides LBF6。3种DSE对不同单一碳源和氮源物质利用有显著差异,P. chrysanthemicola最佳利用碳源和氮源为葡萄糖和甘氨酸,C. cladosporioides LBF3最佳利用碳源和氮源为甘露醇和脯氨酸,C. cladosporioidesLBF6最佳利用碳源和氮源为木糖和甘氨酸。模拟干旱胁迫结果发现P. chrysanthemicola的菌落形态、菌丝形态、菌丝蛋白质表达发生变化,傅里叶红外光谱分析表明模拟干旱引起菌丝中蛋白质结构发生改变。
     5. DSE对枸杞根际细菌群落功能和遗传多样性的影响
     为了探索接种DSE对枸杞根际微生态的影响,盆栽实验结果表明,接种3种DSE可以改变枸杞幼苗根际土壤细菌数量,接种DSE真菌60 d后枸杞根际土壤细菌代谢活性(BIOLOG)、代谢多样性均高于不接菌的对照。不同DSE菌株的作用有差异。主成分分析表明,接种深色有隔内生真菌后枸杞根际细菌群落对碳源的利用种类和程度均高于对照,细菌群落功能多样性发生了较大变化,接种DSE使得细菌群落变的更稳定;同时,巢式PCR-DGGE结果显示,DSE对细菌群落遗传多样性产生影响。
     6. DSE对枸杞生长的影响
     为了探索DSE与枸杞幼苗互作机制,将分离自枸杞根系的LBF-2菌株接种到枸杞幼苗根部,在实验室控制条件下研究了接种DSE对枸杞幼苗生长的影响,35天后检测结果发现深色有隔菌丝侵入根系皮层细胞,形成微菌核。首次采用巢式PCR-DGGE技术证明了DSE菌丝在植物组织中的定位和分布,结果认为DSE菌丝分布在枸杞根系、茎和叶片组织中。接种LBF-2可以提高枸杞幼苗生物量28%,接种幼苗叶绿素荧光参数显著高于不接种对照,叶绿素a和总叶绿素含量提高16%和19%。同时,接种植株黄酮物质含量比不接种高26%。结果表明LBF-2可能在枸杞育苗和栽培中发挥作用。
     7.接种AMF和DSE枸杞苗叶片与根系对干旱胁迫的响应
     为了探索接种AMF和DSE枸杞对干旱胁迫的响应机制,盆栽实验条件下,研究了接种AMF和DSE枸杞苗叶片与根系对干旱胁迫的响应。结果表明,接种AMF和DSE可以改变根系形态和叶片形态,显著降低叶片电解质透出率,提高叶片气孔导度和净光合速率。接种共生真菌能够有效地促进枸杞根系发育,通过提高枸杞叶片气孔导度和光合速率来减轻干旱胁迫的毒害作用。
In this work, nested PCR-DGGE, clone sequence, RT-PCR, BIOLOG and chlorophyll fluorescence techniques were employed to explore the arbuscular mycorrhizal fungal and dark septate endophytes colonization status, arbuscular mycorrhizal fungal (AMF) community structure diversity and glomalin content associated with the Lycium barbarum from arid and semi-arid Loess Plateau, China. Whilst, we investigated the soil particle size distributions and diversity of soil microbial communities in the rhizosphere of L. barbarum growing in different ecological environmental conditions. We also isolated several DSE strains from the roots of L. barbarum, identified these fungal species by molecular method as rDNA-ITS, and determined the effects of carbon and nitrogen sources on the growth of three dark septate endophytes. After that, we examined the responses of DSE under drought stress conditions. Finally, we examined the effects of inoculation with AMF and DSE on the growth and drought stress alleviation of L. barbarum seedlings by determination of leaf and root structures as well as photosynthetic parameters. The main points of this dissertation are as follows:
     1. Arbuscular mycorrhizas and dark septate endophytes colonization status in L. barbarum L. growing on Loess Plateau. The AM and DSE fungal colonization status in three different L. barbarum cultivars (NQ-1, NQ-5, NQC-1) in arid northwestern China were investigated. The results showed that the three cultivars were simultaneously colonized by Paris-type AM and DSE associations. The highest colonization by AM was found in L. barbarum Ningqi No.1. The significant“month”and“cultivar”indicates that the AM colonization varied among the months within the cultivar. Meanwhile, roots of the three cultivars were heavily colonized by DSE fungi. Melanized hyphae were frequently observed. Microsclerotia of varied shapes were also found in the cortex cells of L. barbarum. Hyaline hyphae were most abundant in August but their occurrence decreased in December. Lipid contents were abundant in hyaline hyphae, and changed with month. Lipid may act as energy material reserves to sustain the DSE-host symbioses under drought conditions.
     2. Arbuscular mycorrhizal fungal community and glomalin content associated with the rhizosphere of L. barbarum. We aimed to examine the AM fungal community diversity using nested PCR-DGGE and clone sequencing techniques, and to quantify the glomalin content associated with different cultivars of L. barbarum. The results showed that the significant“month”and“cultivar”indicates that easily extractable glomalin content varied among the months within the cultivar, the highest content was found in August, while the lowest was in December. The significant positive corelation was observed between total glomalin and easily extractable glomalin content. According to the DGGE fingerprints, the significant“month”and“cultivar”indicates that Species richness (S) and Shannon’s diversity (H) index of AMF community varied among the months within the cultivar, the Species richness (S) in December was lower than August and October, the interaction effect was no significant. Redundancy analysis (RDA) showed the significant relationship between AMF community diversity and soil environmental factors. The results of clone sequence showed that 17 sequences were belonged to Glomus.
     3. The soil particle size distributions and diversity of soil microbial communities associated with the rhizosphere of L. barbarum from different ecological conditions were investigated. The results showed that the soils from Guyuan, Tongxin, Yinchuan, and Zhongning were most distributed from 20~50μm, the percentages were 37.21±0.21%, 33.25±0.21%, 38.35±0.18%, and 42.33±0.45%, respectively. In Huinong area, there was 40.21±0.26% soils distributed from 100~200μm. Nested PCR-DGGE suggested that the bacterial species richness of the five ecological regions was ordered as: Tongxin>Zhongning>Guyuan=Yinchuan>Huinong, whilst, fungal species richness was ordered as: Yinchuan>Tongxin>Huinong>Zhongning>Guyuan. There was no significant correlation between bacterial and fungal species richness diversity. Principle Component Analyses (PCA) revealed that bacterial community in Yinchuan was instability, because the community variation was lowest in Guyuan and highest in Yinchuan, no significant fungal community diversity was observed between Guyuan and Tongxin regions. The results of clone sequencing suggested that the bacterial and fungal bands were belonged to uncultured microbial community, respectively.
     4. Isolation, identification, and biological characteristics of dark septate endophytes isolates were determined. The results showed that three DSE isolates were belonged to Phoma chrysanthemicola,Cladosporium cladosporioides LBF3, and C. cladosporioides LBF6 based on rDNA-ITS analyses. There were different responses of P. chrysanthemicola, C. cladosporioides LBF3, and C. cladosporioides LBF6 grown on the same carbon and nitrogen medium, and differences in patterns of growth on the different substrates were also found. Glucose, mannitol and xylose were the best carbon sources; glycine and proline were the best nitrogen sources for the growth of P. chrysanthemicola, C. cladosporioides LBF3 and C. cladosporioides LBF6, respectively. Clone and mycelial structures, and protein expression were changed when P. chrysanthemicola exposed to water stress, whilst, fourier transform infrared spectroscopy showed that protein structues were changed under drought stress conditions.
     5. To explore the effects of dark septate endophytes inoculation on microecosystem associated with the rhizosphere of L. barbarum under pot culture conditions, bacterial abundance, functional and genetic diversity were determined. The results showed that bacterial abundance, functional and genetic diversity were affected by dark septate endophytes inoculation. DSE inoculations have higher bacterial metabolic activity (BIOLOG), and metabolic diversity than that of control, and varied among different DSE isolates. Principle Component Analyses (PCA) of BIOLOG data revealed that the application of DSE significantly in?uenced bacterial functional diversity in the rhizosphere of L. barbarum seedlings. A wider range of sole carbon sources were utilized by the bacterial community in the rhizosphere of inoculated seedlings. Whilst, nested PCR-DGGE showed that inoculation with DSE influenced bacterial genetic community diversity in the rhizosphere of L. barbarum seedlings.
     6. To explore the mechanism of the interaction between DSE and L. barbarum. Effect of a dark septate endophyte fungus on the growth of L. barbarum seedlings were examined under the lab conditions. LBF-2, isolated from the roots of L. barbarum, was inoculated onto the roots of plants, which were grown for 35 d. The results showed that melanized septate hyphae and microsclerotia were observed in the root cortical cells of L. barbarum. Nested PCR-denaturing gradient gel electrophoresis showed, for the first time, that LBF-2 colonizes L. barbarum systemically, with LBF-2 being detected in the root, stem and leaf tissues of L. barbarum. Inoculation with LBF-2 increased the total biomass by 28% and also enhanced chlorophyll fluorescence. Inoculation increased the concentration of total chlorophyll was by 19% and of chlorophyll a by 16%, relative to uninoculated controls. LBF-2 also increased the flavonoid concentration of L. barbarum seedlings by 26%. These data indicate that LBF-2 might be used to facilitate the cultivation of L. barbarum, which has medicinal applications.
     7. To examine the response of L. barbarum seedlings to inoculation with AMF and DSE under drought stress conditions, the pot cultured experiment was assayed. The results showed that root and leaf structues were changed with inoculation process. AM and DSE inoculation increased stomatal conductance. Inoculation with symbiotic fungal species was effective for L. barbarum seedlings as an acceptable and ecofriendly technology to improve root and leaf performance and development, and alleviate the damage of drought stress by improving stomatal conductance and efficiency of photosystem II.
引文
Abdul-Wasea A A, Khalid M E. 2011. Alleviation of drought stress of marigold (Tagetes erectea) plants by using arbuscular mycorrhizal fungi. Saudi Journal of Biological Sciences, 18(1): 93~98
    Abu-Zeyad R, Khan A G, Khoo C. 1999. Occurrence of arbuscular mycorrhiza in Castanospermum australe A. Cunn. & C. Fraser and effects on growth and production of castanospermine. Mycorrhiza 9(2): 111~117
    Acosta-Martinez V, Dowd S E, Sun Y, Wester D, Allen V. 2010. Pyrosequencing analysis for characterization of soil bacterial populations as affected by an integrated live stock-cotton production system. Applied Soil Ecology, 45(1): 13~25
    Acosta-Martinez V, Dowd S, Sun Y, Allen V G. 2008. Tag-encoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use. Soil Biology and Biochemistry, 40(11): 2762~2770
    Addy H D, Piercey M M, Currah R S. 2005. Microfungal endophytes in roots. Canada Journal of Botany, 83(1): 1~13
    Ahlich-Schlegel K. 1997. Vorkommen und charakterisierung von dunklen, septierten hyphomycete (DSH) in Geh(o|¨)lzwurzeln. [Ph.D. thesis]. Switzerland: Eidgen(o|¨)ssische Technische Hochschule
    Ahmadian A, Ehn M, Hober S. 2006. Pyrosequencing: history, biochemistry and future. Clinica Chimica Acta, 363(1-2): 83~94
    Ahn J H, Kim Y J, Kim T, Song H G, Kang C H, Ka J O. 2009. Quantitative improvement of 16S rDNA DGGE analysis for soil bacterial community using real-time PCR. Journal of Microbiological Methods, 78(2): 216~222
    Alberton O, Kuyper T W, Summerbell R C. 2010. Dark septate root endophytic fungi increase growth of Scots pine seedlings under elevated CO2 through enhanced nitrogen use efficiency. Plant and Soil, 328(1-2): 459~470
    Alguacil M M, Roldán A, Torres M P. 2009. Assessing the diversity of AM fungi in arid gypsophilous plant communities. Environmental Microbiology, 11(10): 2649~2659
    Alkanl N, Gadkar V, Coburn1 J, Yarden O, Kapulnik Y. 2004. Quantification of the arbuscular mycorrhizal fungus Glomus intraradices in host tissue using real-time polymerase chain reaction. New Phytologist, 161(3): 877~885
    Al-Karaki G N, Al-Raddad A. 1997. Effects of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought. Mycorrhiza, 7(2): 83~88
    Amagasea H, Sun B X, Borek C. 2009. Lycium barbarum (goji) juice improves in vivo antioxidant biomarkers in serum of healthy adults. Nutrition Research, 29(1): 19~25
    An G H, Kobayashi S, Enoki H, Sonobe K, Muraki M, Karasawa T, Ezawa T. 2010. How does arbuscular mycorrhizal colonization vary with host plant genotype? An example based on maize (Zea mays) germplasms. Plant and Soil, 327(1-2): 441~453
    Anderson I C, Campbell C D, Prosser J I. 2003. Diversity of fungi in organic soils under a moorl and Scots pine (Pinus sylvestris L.) gradient. Environmental Microbiology, 5(11): 1121~1132
    Andrade-Linares D R, Grosch R, Restrepo S, Krumbin A, Franken P. 2010. Effects of dark septate endophytes on tomato plant performance. Mycorrhiza, online
    Appoloni S, Lekberg Y, Tercek M T, Zabinski C A, Redecker D. 2008. Molecular community analysis of arbuscular mycorrhizal fungi in roots of geothermal soils in Yellowstone National Park (USA). Microbial Ecology, 56(4): 649~659
    Arafat Abdel H A L, He C X. 2011. Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Scientia Horticulturae, 127(3): 228~233
    Arriagada C A, Herrera M A, Ocampo J A. 2007. Beneficial effect of saprobe and arbuscular mycorrhizal fungi on growth of Eucalyptus globulus co-cultured with Glycine max in soil contaminated with heavy metals. Journal of Environmental Management, 84(1): 93~99
    Asrar AWA, Elhindi K M. 2011. Alleviation of drought stress of marigold (Tagetes erecta) plants by using arbuscular mycorrhizal fungi. Saudi Journal of Biological Sciences, 18(1): 93~98
    Azcon R, Tobar R M. 1998. Activity of nitrate reductase and glutamine synthetase in shoot and root of mycorrhizal Allium cepa: Effect of drought stress. Plant Science, 133(1): 1~8
    Bai C M, He X L, Tang H L, Shan B Q, Zhao L L. 2009. Spatial distribution of arbuscular mycorrhizal fungi, glomalin and soil enzymes under the canopy of Astragalus adsurgens Pall. in the Mu Us sandland, China. Soil Biology and Biochemistry, 41(5): 941~947
    Balestrini R, Lanfranco L. 2006. Fungal and plant gene expression in arbuscular mycorrhizal symbiosis. Mycorrhiza, 16(8): 509~524
    Bardgett R D, Hobbs P J, Frostegard A. 1996. Changes in soil fungal: bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biology and Fertility of Soils, 22(3): 261~264
    Barrow J R. 2003. Atypical morphology of dark septate fungal root endophytes of Bouteloua in arid southwestern USA rangelands. Mycorrhiza, 13(5): 239~247
    Barrow J, Aaltonen R. 2001. Evaluation of the internal colonization of Atriplex canescens (Pursh) Nutt. roots by dark septate fungi and the influence of host physiological activity. Mycorrhiza, 11(4): 199~205
    Baudoin E, Nazaret S, Mougel C, Ranjard L, Mo?nne-Loccoz Y. 2009. Impact of inoculation with the phytostimulatory PGPR Azospirillum lipoferum CRT1 on the genetic structure of the rhizobacterial community of field-grown maize. Soil Biology and Biochemisty, 41(2): 409~413
    Beauregard M S, Hamel C, Atul-Nayyar, St-Arnaud M. 2010. Long-term phosphorus fertilization impacts soil fungal and bacterial diversity but not AM fungal community in Alfalfa. Microbial Ecology, 59(2): 379~389
    Bedini S, Pellegrino E, Avio L, Pellegrini S, Bazzoffi P, Argese E, Giovannetti M. 2009. Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices. Soil Boilogy and Biochemistry, 41(7): 1491~1496
    Bedini S, Maremmani A, Giovannetti M. 2000. Paris-type mycorrhizas in Smilax aspera L. growing in a Mediterranean sclerophyllous wood. Mycorrhiza, 10(1): 9~13
    Bell C W, Acosta-Martinez V, McIntyre N E, Cox S, Tissue D T, Zak J C. 2009. Linking microbialcommunity structure and function to seasonal differences in soil moisture and temperature in Chihuahuan desert grassland. Microbial Ecology, 58(4): 827~842
    Benizri E, Amiaud B. 2005. Relationship between plants and soil microbial communities in fertilized grasslands. Soil Biollogy and Biochemistry, 37(11): 2055~2064
    Berta G, Trotta A, Fusconi A, Hooker J E, Munro M. 1995. Arbuscular mycorrhizal induced changes to plant growth and root system morphology in Prunus cerasifera. Tree Physiology, 15(5): 281~293
    Bever J D, Schultz P A, Pringle A, Morton J B. 2001. Arbuscular mycorrhizal fungi: more diverse than meets the eye, and the ecological tale of why. BioScience, 51(11): 923~932
    Boivin M E Y, Breure A M, Posthuma L, Rutgers M. 2002. Determination of field effects of contaminants: significance of pollution-induced community tolerance. Human and Ecological Risk Assessment, 8(5): 1035~1055
    Bonaterra A, Camps J, Montesions E. 2005. Osmotically induced trehalose and glycine glycine betaine accumulation in Pantoea agglomerans. FEMS Microbiology Letters, 250(1): 1~8
    Borowicz V A. 2010. The impact of arbuscular mycorrhizal fungi on strawberry tolerance to root damage and drought stress. Pedobiologia, 53(4): 265~270
    Boschker H T S, Middelburg J J. 2002. Stable isotopes and biomarkers in microbial ecology. FEMS Microbiology Ecology, 40(2): 85~95
    Botha A. 2011. The importance and ecology of yeasts in soil. Soil Biology and Biochemistry, 43(1): 1~8
    Bothe H, Turnau K, Regvar M. 2010. The potential role of arbuscular mycorrhizal fungi in protecting endangered plants and habitats. Mycorrhiza, 20(7): 445~457
    Brechenmacher L, Weidmann S, van Tuinen D, Chatagnier O, Gianinazzi S, Franken P, Gianinazzi-Pearson V. 2004. Expression profiling of up-regulated plant and fungal genes in early and late stages of Medicago truncatula -Glomus mosseae interactions. Mycorrhiza, 14(4): 253~262
    Bruehl G W, Kaiser W J. 1996. Some effects of water potential upon endophytic Acremonium spp. in culture. Mycologia, 88(5): 809~815
    Brundrett M C, Kendrick B. 1988. The mycorrhizal status, root anatomy, and phenology of plants in a sugar maple forest. Canada Journal of Botany, 66: 1153~1173
    Butler J L, Williams M A, Bottomley P J, Myrold D D. 2003. Microbial community dynamics associated with rhizosphere carbon flow. Applied and Environmental Microbiology, 69(11): 6793~6800
    Buyer J S, Zuberer D A, Nichols K A, Franzluebbers A J. 2010. Soil microbial community function, structure, and glomalin in response to tall fescue endophyte infection. Plant and Soil, 339(1-2): 401~412
    Caldwell B A, Jumpponen A, Trappe J M. 2000. Utilization of major detrital substrates by dark septate, root endophytes. Mycologia, 92(2): 230~232
    Casanova-Katny M A, Torres-Mellado G A, Palfner G, Cavieres L A. 2011. The best for the guest: high Andean nurse cushions of Azorella madreporica enhance arbuscular mycorrhizal status in associated plant species. Mycorrhiza, online
    Casper L, Polleo R, Cabello M. 1997. Variation in the lipid composition of alfalfa roots during colonization with the arbuscular mycorrhizal fungus Glomus versifome. Mycologia, 89(1): 37~42
    Castillo M, Martin-Orue S M, Manzanilla E G, Badiola I, Martin M, Gasa J. 2006. Quantification of total bacteria, enterobacteria and lactobacilli populations in pig digesta by real-time PCR. VeterinaryMicrobiology, 114(1-2): 165~170
    Cázares E, 1992. Mycorrhizal fungi and their relationship to plant succession in subalpine habitats. [Ph.D thesis]. Corvallis: Oregon State University, USA
    Chen D M, Ellul S, John K H, Cairney J W. 2001. Influence of salinity on biomass production by Australian Pisolithus spp. isolates. Mycorrhiza, 11(5): 231~236
    Chen L D, Gong J, Fu B J, Huang Z L, Huang Y L, Gui L D. 2007. Effect of land use conversion on soil organic carbon sequestration in the loess hilly area, loess plateau of China. Ecological Research, 22(4): 641~648
    Chen S N, Gu J, Gao H, Qin Q J. 2011. Effect of microbial fertilizer on microbial activity and microbial community diversity in the rhizosphere of wheat growing on the Loess Plateau. African Journal of Microbiology Research, 5(2): 137~143
    Cho K, Toler H, Lee J, Ownley B, Stutz J C, Moore J L, Auge R M. 2006. Mycorrhizal symbiosis and response of sorghum plants to combined drought and salinity stresses. Journal of Plant Physiology, 163(5): 517~528
    Choi K H, Dobbs F C. 1999. Comparison of two kinds of Biolog microplates (GN and ECO) in their ability to distinguish among aquatic microbial communities. Journal of Microbiology Methods, 36(3): 203~213
    Classen A T, Boyle S I, Haskins K E, Overby S T, Hart S C. 2003. Community-level physiological profiles of bacteria and fungi: plate type and incubation temperature influences on contrasting soils. FEMS Microbiology Ecology, 44(3): 319~328
    Clegg S, Gobran G R. 1997. Rhizospheric P and K in forest soil manipulated with ammonium sulfate water. Canadian Journal of Soil Science, 77(4): 525~533
    Coleman M D, Bledsoe C S, Lopushinsky W. 1989. Pure culture responses of ectomycorrhizal fungi to imposed water stress. Canada Journal of Botany, 67: 29~39
    Copetta A, Lingua G, Berta G. 2006. Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza, 16(7): 485~494
    Cordier C, Alabouvette C. 2009. Effects of the introduction of a biocontrol strain of Trichoderma atroviride on non target soil micro-organisms. European Journal of Soil Biology, 45(3): 267~274
    Cornejo P, Azcon-Aguilar C, Barea J M, Ferrol N. 2004. Temporal temperature gradient gel electrophoresis (TTGE) as a tool for the characterization of arbuscular mycorrhizal fungi. FEMS Microbiology Letters, 241(2): 265~270
    Cornic G, Fresneau C. 2002. Photosynthetic carbon reduction and carbon oxidation cycles are the main electron sinks for photosystem II activity during a mild drought. Annals of Botany, 89(7): 887~894
    Courchesne F, Gobran G R. 1997. Mineralogical variations of bulk and rhizosphere soils from a Norway spruce stand. Soil Science Society of America Journal, 61(4): 1245~1249
    Cullings K W, Vogler D R, Parker V T, Finley S K. 2000. Ectomycorrhizal specificity patterns in a mixed Pinus contorta and Picea engelmannii forest in Yellowstone National Park. Applied and Environmental Microbiology, 66(11): 4988~4991
    Currah R S, Tsuneda A. 1993. Vegetative and reproductive morphology of Phialocephala fortinii (Hyphomycetes, Mycelium radicis atrovirens) in culture. Transactions of Mycological Society in Japan, 34(3): 345~356
    Dahlin S, Witter E, Mart A, Turner A, Baath E. 1997. Where’s the limit? Changes in the microbiological properties of agricultural soils at low levels of metal contamination. Soil Biology and Biochemistry, 29(9-10): 1405~1415
    David J M, Lyndon A J, Jennifer A S, Peter A M. 2006. Utilisation of carbon substrates by orchid and ericoid mycorrhizal fungi from Australian dry sclerophyll forests. Mycorrhiza, 16(3): 175~182
    David M C, Kevin K, Cairney J W G. 2003. Influence of water stress on biomass production by isolates of an ericoid mycorrhizal endophyte of Woollsia pungens and Epacris microphylla (Ericaceae). Mycorrhiza, 13(3): 173~176
    Davies, Jr F T, Olalde-Portugal V, Aguilera-Gomez L, Alvarado M J, Ferrera-Cerrato R C, Boutton T W. 2002. Alleviation of drought stress of Chileancho pepper (Capsicum annuum L.cv.San Luis) with arbuscular mycorrhiza in digenousto Mexico. Scientia Horticulturae, 92(3-4): 347~359
    Dawson L A, Grayston S J, Murray P J, Ross J M, Reid E J, Treonis A M. 2004. Impact of Tipula paludosa larvae on plant growth and the soil microbial community. Applied Soil Ecology, 25(1): 51~61
    Daza A, Manjón J L, Camacho M, Romero de la Osa L, Aguilar A, Santamaría C. 2006. Effect of carbon and nitrogen sources, pH and temperature on in vitro culture of several isolates of Amanita caesarea (Scop.:Fr.) Pers. Mycorrhiza, 16(2): 133~136
    De Deyn G B, Quirk H, Bardgett R D. 2011. Plant species richness, identity and productivity differentially influence key groups of microbes in grassland soils of contrasting fertility. Biology Letter, 7(1): 75~78
    De Hoog G S. 1977. Rhinocladiella and allied genera. Studies in Mycology, 15: 1~140
    De Marins J F, Carrenho R, Thomaz S M. 2009. Occurrence and coexistence of arbuscular mycorrhizal fungi and dark septate fungi in aquatic macrophytes in a tropical river-floodplain system. Aquatic Botany, 91(1): 13~19
    De Souza F A, Kowalchuk G A, Leeflang P, Van Veen J A, Smit E. 2004. PCR-denaturing gradient gel electrophoresis profiling of inter and intraspecies 18S rRNA gene sequence heterogeneity is an accurate and sensitive method to assess species diversity of arbusculal mycorrhizal fungi of the genus Gigaspora. Applied and Environmental Microbiology, 70(3): 1413~1424
    Dennis P, Edwards E A, Liss S N. 2003. Monitoring gene expression in mixed microbial communities by using DNA microarrays. Applied and Environmental Microbiology, 69(2): 769~778
    Diallo A, Samb P, Macauley H. 2001. Water status and stomatal behavior of cowpea, Vigna unguiculata (L) Walp, plants inoculated with two Glomus species at low soil moisture levels. European Journal of Soil Biology, 37(3): 187~196
    Dirk R, Roelofs J G M, Smolders A J P. 2011. Molecular analysis of AMF diversity in aquatic macrophytes: A comparison of oligotrophic and utra-oligotrophic lakes. Aquatic Botany, 94(2): 53~61
    Doyle J J, Doyle J L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissues. Phytochemical Buletinl, 19(1): 11~15
    Duan X R, Neuman D S, Reiber J M, Green C D, Saxton A M, Auge R M. 1996. Mycorrhizal influence on hydraulic and hormonal factors implicated in the control of stmatal conductance during drought. Journal of Experimental Botany, 47(10): 1541~1550
    Dumbrell A J, Ashton1 P D, Naveed A, Feng G, Nelson M, Dytham C, Fitter A H, Helgason T. 2011.
    Distinct seasonal assemblages of arbuscular mycorrhiza fungi revealed by massively parallel pyrosequencing. New Phytologist, doi: 10.1111/j.1469-8137.2010.03636.x
    Dunfield K E, Germida J J. 2003. Seasonal changes in the rhizosphere microbial communities associated with field-grown genetically modified Canola (Brassica napus). Applied and Environmental Microbiology, 69(12): 7310~7318
    Fernández N, Messuti M I, Fontenla S. 2008. Arbuscular mycorrhizas and dark septate fungi in Lycopodium paniculatum (Lycopodiaceae) and Equisetum bogotense (Equisetaceae) in a valdivian temperate forest of Patagonia, Argentina. American Fern of Journal, 98(3): 117~127
    Fidelibus M W, Martin C A, Stutz J C. 2001. Geographic isolates of Glomus increase root growth and whole-plant transpiration of Citrus seedlings grown with high phosphorus. Mycorrhiza, 10(5): 231~236
    Franco W, Martin H, Beat F, Roland K. 2006. A novel strategy to extract specific phylogenetic sequence information from community T-RFLP. Journalof Microbiological Methods, 66(3): 512~520
    Frey-Klett P, Chavatte M, Clausse M L, et al. 2005. Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytologist, 165(1): 317~328
    Frosteg(?)rd (?), Tunlid A, B(?)(?)th E. 2010. Use and misuse of PLFA measurements in soils. Soil Biology and Biochemistry, doi: 10. 1016/j.soibio. online
    Gadanho M, Sampaio J P. 2004. Application of temperature gradient gel electrophoresis to the study of yeast diversity in the estuary of the Tagus river, Portugal. FEMS Yeast Research, 5(3): 253~261
    Gadkar V, Rillig M C. 2006. The arbuscular mycorrhizal fungal protein glomalin is a putative homolog of heat shock protein 60. FEMS Micobiology Letter, 263(1): 93~101
    Gange A C, West H M. 1994. Interactions between arbuscular mycorrhizal fungi and foliar-feeding insects in Plantago lanceolata L. New Phytologist, 128(1): 79~87
    Gardes M, Bruns T D. 1993. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Molecular Ecology, 2(2): 113~118
    Garibaldi A, Bertetti D, Gullino M L. 2007. First report of leaf spot caused by a Phoma sp. on Clematis×jackmanii in Italy. Plant Disease, 91(10): 1363
    Garland J L, Mills A L. 1991. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community level sole-carbon-source utilization. Applied and Environmental Microbiology, 57(8): 2351~2359
    Ghorbanli M, Ebrahimzadeh H, Sharifi M. 2004. Effects of NaCl and mycorrhizal fungi on antioxidative enzymes in soy bean. Biologia Plantarum, 48(4): 575~581
    Goicoechea N, Merino S, Sanchez-Diaz M. 2005. Arbuscular mycorrhizal fungi can contribute to maintain antioxidant and carbon metabolism in nodules of Anthyllis cytisoides L. subjected to drought. Journal of Plant Physiology, 162 (1): 27~35
    Gollotte A, van Tuinen D, Atkinson D. 2004. Diversity of arbuscular mycorrhizal fungi colonising roots of the grass species Agrostis capillaris and Lolium perenne in a field experiment. Mycorrhiza, 14(2): 111~117
    Gomez E, Ferreras L, Toresani S. 2006. Soil bacterial functional diversity as influenced by organic amendment application. Bioresource Technology, 97(13): 1484~1489
    Gormsen D, Olsson P A, Hedlund K. 2004. The influence of collembolans and earthworms on AM fungal mycelium. Applied Soil Ecology, 27(3): 211~220
    Graham J H, Hodge N C, Morton J B. 1995. Fatty acid methyl ester profiles for characterization ofglomalean fungi and their endomycorrhizae. Applied and Environmental Microbiology, 61(1): 58~64
    Grandmougin-Ferjani A, Fontaine J, Durand R. 2005. Carbon metabolism, lipid composition and metabolism in arbuscular mycorrhizal fungi. In: Fortin J A, Declerck S, Strullu D G. (Eds.), In Vitro Culture of Mycorrhizas. Springer-Verlag: 159~180
    Grayston S J, Griffith G S, Mawdsley J L, Campbell C D, Bardget R D. 2001. Accounting for variability in soil microbial communities of temperate upland grassland ecosystems. Soil Biology and Biochemistry, 33(4-5): 533~551
    Grayston S J, Prescott C E. 2005. Microbial communities in forest floors under four tree species in coastal British Columbia. Soil Biology and Biochemistry, 37(6): 1157~1167
    Grayston S J, Wang S, Campbell C D. 1998. Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biology and Biochemistry, 30(3): 369~378
    Griffiths B S, Bonkowski M, Roy J, Ritz K. 2001. Functional stability, substrate utilisation and biological indicators of soils following environmental impacts. Applied Soil Ecology, 16(1): 49~61
    Grove J A, Kautola H, Javadpour S. 2004. Assessment of changes in the microorganism community in a biofilter. Biochemical Engineering Journal, 18(2): 111~114
    Grünig C R, Queloz V, Sieber T N, Holdenrieder O. 2008. Dark septate endophytes (DSE) of the Phialocephala fortinii s.l.-Acephala applanata species complex in tree roots: classification, population biology, and ecology. Botany, 86(12): 1355~1369
    Grünig C R, Sieber T N, Rogers S O, Holdenrieder O. 2002. Spatial distribution of dark septate endophytes in a confined forest plot. Mycological Research, 106(7): 832~840
    Gupta R, Kumar P. 2000. Mycorrhizal plants in response to adverse environmental conditions. In: Mycorrhizal Biology, Plenum Publisher, India: 67~84
    Hambleton S, Sigler L. 2005. Meliniomyces, a new anamorph genus for root-associated fungi with phylogenetic affinities to Rhizoscyphus ericae (=Hymenoscyphus ericae), Leotiomycetes. Study of Mycology, 53(1): 1~27
    Hamel C, Hanson K, Selles F, Cruz A F, Lemke R, McConkey B,Zentner R. 2006. Seasonal and long-term resource-related variations in soil microbial communities in wheat-based rotations of the Canadian prairie. Soil Biology and Biochemistry, 38(8): 2104~2116
    Harley J L, Harley E L. 1987. A check-list of mycorrhiza in the British flora. New Phytologist, 105(2): 1~102
    Harley J L, Harley E L. 1987. A check-list of mycorrhiza in the British flora-addenda, errata and index. New Phytologist, 107(4): 741~749
    Haselwandter K, Read D J. 1982. The significance of a root fungus association in two Carex species of high-alpine plant communities. Oecologia, 53(3): 352~354
    He X H, Duan Y H, Chen Y L, Xu M G. 2010. A 60-year journey of mycorrhizal research in China: Past, present and future directions. Science China Life Science, 53(12): 1374~1398
    Helgason T, Daniell T J, Husband R, Fitter A H, Young J P W. 1998. Ploughing up the wood-wide web? Nature, 394: 431
    Heuer H, Krsek M, Baker P. 1997. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Applied and Environmental Microbiology, 63(8): 3233~3241
    Heuer H, Wieland G, Schonfeld J, Schnwalder A, Gomes NCM, Smalla K. 2001. Bacterial community profiling using DGGE or TGGE analysis. In: Rochelle, P.A. (Ed.), Environmental Molecular Microbiology: Protocols and Applications. Horizon Scientific Press, Wymondham: 177~190
    Horton T R, Cázares E, Bruns T D. 1998. Ectomycorrhizal, vesicular-arbuscular and dark septate fungal colonization of bishop pine (Pinus muricata) seedlings in the first 5 months of growth after wildfire. Mycorrhiza, 8(1): 11~18
    Hou X Q, Guo S X. 2009. Interaction between a dark septate endophytic Isolate from Dendrobium sp. and roots of D. nobile seedlings. Journal of Integrative Plant Biology, 51(4): 374~381
    Hulton C S, Higgins C F, Sharp P M. 1991. ERIC sequences: a novel family of repetitive element in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Molecular Microbiology, 5(4): 825~834
    Huse S M, Huber J A, Morrison H G. 2007. Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biology, 8(7): R143~R143.9
    Ibekwe A M, Kennedy A C, Frohne P S, Papiernik S K, Yang C H, Crowley D E. 2002. Microbial diversity along a transect of agronomic zones. FEMS Microbiology Ecology, 39(3): 183~191
    Ibekwe A M, Kennedy A C. 1998. Phospholipid fatty acid profiles and carbon utilization patterns for analysis of microbial community structure under field and greenhouse conditions. FEMS Microbiology Ecology, 26(2): 151~163
    Insam H. 1997. A new set of substrates proposed for community characterisation in environmental samples. In: Insam, H., Rangger, A. (Eds.), Microbial Communities: Functional versus Structural Approaches. Springer, Berlin: 259~260
    Ipsilantis I, Karpouzas D G, Papadopoulou K K, Ehaliotis C. 2009. Effects of soil application of olive mill wastewaters on the structure and function of the community of arbuscular mycorrhizal fungi. Soil Biology and Biochemistry, 41(12): 2466~2476
    Ishida T A, Nara K, Hogetsu. 2007. Host effects on ectomycorrhizal fungal communities: insights from eight host species in mixed conifer-broadleaf forests. New Phytologist, 174(2): 430~440
    Jakobsen I. 1999. Transport of phosphorus and carbon in arbuscular mycorrhizas. In: Varma, A., Hock, B. (Eds.), Mycorrhiza: Structure, Function, Molecular Biology. Springer, Berlin: 535~542
    Jangid K, Williams M A, Franzluebbers A J, Sanderlin J S, Reeves J H, Jenkins M B, Endale D M, Coleman D C, Whitman W B. 2008. Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems. Soil Biology and Biochemistry, 40(11): 2843~2853
    Jansa J, Gryndler M, Matucha M. 1999. Comparison of the lipid profiles of arbuscular mycorrhizal (AM) fungi and soil saprophytic fungi. Symbiosis, 26(3): 247~264
    Jastrow J D, Miller R M, Lussenhop J. 1998. Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie. Soil Biology and Biochemistry, 30(7): 905~916
    Ji B M, Bentivenga S P, Casper B B. 2010. Evidence for ecological matching of whole AM fungal communities to the local plant-soil environment. Ecology, 91(10): 3037~3046
    Jumpponen A. 2001. Dark septate endophytes-are they mycorrhizal? Mycorrhiza, 11(4): 207~211
    Jumpponen A, Trappe J M. 1998. Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytologist, 140(2): 295~310
    Kapoor R, Giri B, Mukerji K G. 2002. Glomus macrocarpum: a potential bioinoculant to improve essential oil quality and concentration in Dill (Anethum graveolens L.) and Carum (Trachyspermum ammi (Linn.) Sprague). World Journal of Microbiology and Biotechnology, 18(5): 459~463
    Kelly J J, Tate R L. 1998. Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter. Journal of Environmental Quality, 27: 609~617
    Khalvati M A, Hu Y, Mozafar A, Schmidhalter U. 2005. Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress. Plant Biology, 7(6): 706~712
    Khaosaad T, Vierheilig H, Nell M, Zitterl-Eglseer K, Novak J. 2006. Arbuscular mycorrhiza alter the concentration of essential oils in oregano (Origanum sp., Lamiaceae). Mycorrhiza, 16(6): 443~446
    Kj(?)ller R, Rosendahl S. 2000. Detection of arbuscular mycorrhizal fungi (Glomales) in roots by nested PCR and SSCP (Single Stranded Conformation Polymorphism). Plant and Soil, 226(2): 189~196
    Kohler J, Caravaca F, Roldan A. 2009. Effect of drought on the stability of rhizosphere soil aggregates of Lactuca sativa grown in a degraded soil inoculated with PGPR and AM fungi. Applied Soil Ecology, 42(2): 160~165
    Kornelia S, Oros-Sichler M, Annett M. 2007. Bacterial diversity of soil sassessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16SrRNA gene fragments: Do the different methods provide similar results? Journal of Microbiological Methods, 69(3): 470~479
    Kowalchuk G A, De Souza F A, Van Veen J A. 2002. Community analysis of arbuscular mycorrhizal fungi associated with Ammophila arenaria in Dutch coastal sand dunes. Molecular Ecology, 11(3): 571~581
    Krishna K R. 1983. Rhizosphere microflora of groundnut (Arachis hypegaea) as influenced by VA mycorrhizal fungus Glomus fasciculatum. Current Research, 10: 105~106
    Ladygina N, Hedlund K. 2010. Plant species in?uence microbial diversity and carbon allocation in the rhizosphere. Soil Biology and Biochemistry, 42(2): 162~168
    Lal R, Mokma D, Lowery B. 1999. Relation between soil quality and erosion. Washington D. C: CRC Press: 237~258
    Langenfeld-Heyser R, Gao J, Ducic T, Tachd Ph, Luc F, Fritze, Gafura, Pollea. 2007. Paxillus involutus mycorrhiza attenuate NaCl-stress responses in the salt-sensitive hybrid poplar Populus×canescens. Mycorrhiza, 17(2): 121~131
    Lauber C L, Hamady M, Knight R, Fierer N. 2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 75(15): 5111~5120
    Lee D H, Zo Y G, Kim S J. 1996. Nonradioactive method to study genetic profiles of natural bacterial communites by PCR-single-strand-conformation polymorphism. Applied and Environmental Microbiology, 62(9): 3112~3120
    Lee S, Hong S B, Kim C Y. 2003. Contribution to the checklist of soil-inhabiting fungi in Korea. Mycobiology, 31(1): 9~18
    Li L F, Yang A N, Zhao Z W. 2005. Seasonality of arbuscular mycorrhizal symbiosis and dark septate endophytes in a grassland site in southwest China. FEMS Micobiology Ecology, 54(3): 367~373
    Li T, Liu M J, Zhang X T, Zhang H B, Sha T, Zhao Z W. 2011. Improved tolerance of maize (Zea mays L.) to heavy metals by colonization of a dark septate endophyte (DSE) Exophiala pisciphila. Science ofthe Total Environment, 409(6): 1069~1074
    Liang G B, Du G C, Chen J. 2009. Salt-induced osmotic stress for glutathione overproduction in Candida utilis. Enzyme and Microbial Technology, 45(4): 324~329
    Liang Y, Chen H, Tang M J, Shen S H. 2007. Proteome analyses of an ectomycorrhizal fungus Boletus edulis under salt shock. Mycological Research, 111(8): 939~946
    Liang Z B, Drijber R A, Lee D J, Dwiekat I M, Harris S D, Wedin D A. 2008. A DGGE-cloning method to characterize arbuscular mycorrhizal community structure in soil. Soil Biology and Biochemistry, 40 (4): 956~966
    Likar M, Regvar M, Mandic-Mulec I, Stres B, Bothe H. 2008. Diversity and seasonal variations of mycorhiza and hizosphere bacterial in thee common species at the Slovenian Ljubljana Mash. Plant and Soil, 45(6): 573~583
    Liu H J, Liu D H, Zhong J J. 2006. Quantitative response of trehalose and glycerol syntheses by Candida krusei to osmotic stress of the medium. Process Biochemistry, 41(2): 473~476
    Liu W T, Marsh T, Cheng H, Forney L J. 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Applied and Environmental Microbiology, 63(11): 4516~4522
    Liu Y H, An L Z, Helgason T, Feng H Y. 2009. Arbuscular mycorrhizal dynamics in a chronosequence of Caragana korshinskii plantations. FEMS Microbiology Ecology, 67(1): 81~92
    Liu Z Z, Lozupone C, Hamady M, Bushman F D, Knight R. 2007. Short pyrosequencing reads suffice for accurate microbial community analysis. Nucleic Acids Research, 35(18): 120~130
    Lu A M, Wang M L. 2003. On the identification of the original plants in the modernization of Chinese herbal medicine-an example from the taxonomy and exploitation of‘gouqi’. Acta Botanica Boreali-Occidentalia Sinica, 23(7): 1077~1083
    Lu Y, MuraseJ, Watanabe A. 2004. Linking microbial community dynamics to rhizosphere carbon flowina wet land rice soil. FEMS Microbiology Ecology, 48(2): 179~86
    Lugo M A, Molina M G, Crespo, E M. 2009. Arbuscular mycorrhizas and dark septate endophytes in bromeliads from South American arid environment. Symbiosis, 47(1): 17~21
    Lv Y L, Sun L H, Zhang F S, Zhao Y, Guo S X. 2010. The effect of cultivation conditions on the mycelial growth of a dark-septate endophytic isolate. African Journal of Microbiology Research, 4(8): 602~607
    Ma W K, Siciliano S D, Germida J J. 2005. A PCR-DGGE method for detecting arbuscular mycorrhizal fungi in cultivated soils. Soil Biology and Biochemistry, 37(9): 1589~1597
    Madan R, Pankhurst C, Hawke B, Smith S. 2002. Use of fatty acids for identification of AM fungi and estimation of the biomass of AM spores in soil. Soil Biology and Biochemistry, 34(1): 125~128
    Malinowski D P,Belesky D P. 2000. Adaptation of endophyte-infected cool-season grasses to environment and mineral stresses: Mechanisms of drought and mineral stress tolerance. Crop Science, 40(4): 926~929
    Mandyam K G, Loughin T M, Jumpponen A. 2010. Isolation and morphological and metabolic characterization of common endophytes in annually burned tallgrass prairie. Mycologia, 102(4): 813~821
    Mandyam K, Jumpponen A. 2005. Seeking the elusive function of the root-colonising dark septate endophytic fungi. Studies in Mycology, 53(1): 173~189
    Mandyam K, Jumpponen A. 2008. Seasonal and temporal dynamics of arbuscular mycorrhizal and dark septate endophytic fungi in a tallgrass prairie ecosystem are minimally affected by nitrogen enrichment. Mycorrhiza, 18(3): 145~155
    Martínez-García L B, Armas C, Miranda J D, Padilla F M, Pugnaire F I. 2011. Shrubs influence arbuscular mycorrhizal fungi communities in a semi-arid environment. Soil Biology and Biochemistry, 43(3): 682~689
    Martin-Rodriguez J A, Leon-Morcillo R, Vierheilig H, Ocampo J A, Ludwig-Muller J, Garcia-Garrido J M. 2011. Ethylene-dependent/ethylene-independent ABA regulation of tomato plants colonized by arbuscular mycorrhiza fungi. New Phytologist, 190(1): 193~205
    Marx D H, Bryan W C. 1975. Growth and ectomycorrhizal development of loblolly pine seedlings in fumigated soil infested with the fungal symbiont Pisolithus tinctorius. Forest Science, 21(3): 245~254
    Maxwell K, Johnson G N. 2000. Chlorophyll fluorescence-a practical guide. Journal of Experimental Botany, 51(345): 659~668
    Mc Caig A E, Glover L A, Prosser J I. 1999. Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures. Applied and Environmental Microbiology, 65(4): 1721~1730
    Mc Gee P A. 1989. Variation in propagule numbers of vesicular-arbuscular mycorrhizal fungi in a semiarid soil. Mycological Research, 92(1): 28~33
    Mena-Violante H G, Ocampo-Jiménez O, Dendooven L, Martínez-Soto G, González-Casta?eda J, Davies F T, Olalde-Portugal V. 2006. Arbuscular mycorrhizal fungi enhance fruit growth and quality of chile ancho (Capsicum annuum L. cv San Luis) plants exposed to drought. Mycorrhiza, 16(4): 261~267
    Merryweather J, Fitter A. 1998. The arbuscular mycorrhizal fungi of Hyacinthoides non-scripta I. Diversity of fungal taxa. New Phytologist, 138(1): 117~129
    Miller S R, Strong A L, Jones K L, Ungerer M C. 2009. Bar-coded pyrosequencing reveals shared bacterial community properties along the temperature gradients of two alkaline hot springs in Yellowstone National Park. Applied and Environmental Microbiology, 75(13): 4565~4572
    Morris M H, Smith M E, Rizzo D M, Rejmánek M, Bledsoe C S. 2008. Contrasting ectomycorrhizal fungal communities on the roots of co-occurring oaks (Quercus spp.) in a California woodland. New Phytologist, 178(1): 167~176
    Muthukumar T, Senthilkumar M, Rajangam M, Udaiyan K. 2006. Arbuscular mycorrhizal morphology and dark septate fungal associations in medicinal and aromatic plants of Western Ghats, Southern India. Mycorrhiza, 17(1): 11~24
    Muyzer G, de Waal E C, Uitterlinden A G. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified gene coding for 16S rRNA. Applied and Environmental Microbiology, 59(3): 695~700
    Narisawa K, Hambleton S, Currah R S. 2007. Heteroconium chaetospira, a dark septate root endophyte allied to the Herpotrichiellaceae (Chaetothyriales) obtained from some forest soil samples in Canada using bait plants. Mycoscience, 48(5): 274~281
    Narisawa K, Usuki F, Hashiba T. 2004. Control of Verticillium yellows in Chinese cabbage by the dark septate endophytic fungus LtVB3. Phytopathology, 94(5): 412~418
    Nautiyal C S, Chauhan P S, Bhatia C R. 2010. Changes in soil physico-chemical properties and microbialfunctional diversity due to 14 years of conversion of grassland to organic agriculture in semi-arid agroecosystem. Soil and Tillage Research, 109(2): 55~60
    Newsham K K. 1994. First record of intracellular sporulation by a coelomycete fungus. Mycological Research, 98(12): 1390~1392
    Newsham K K. 1999. Phialophora graminicola, a dark septate fungus, is a beneficial associate of the grass Vulpia ciliata ssp. ambigua. New Phytologist, 144(3): 517~524
    Newsham K K. 2011. A meta-analysis of plant responses to dark septate root endophytes. New Phytologist, online
    Newsham KK, Upson R, Read D J. 2009. Mycorrhizas and dark septate endophytes in polar regions. Fungal Ecology, 2(1): 10~20
    Ni M, Liu T, Ding Y, Zhang L, Huang J, Hsiang T. 2010. A leaf spot of figwort (Scrophularia ningpoensis) caused by Phoma sp. Canadian Journal of Plant Pathology, 32(4): 493~495
    Nieves G, Silvia M, Sanchez-Diaz M. 2005. Arbuscular mycorrhizal fungi can contribute to maintain antioxidant and carbon metabolism in nodules of Anthyllis cytisoides L. subjected to drought. Journal of Plant Physiology, 162(1): 27~35
    Noah F, Joshua P S, Patricia A H. 2003. Variations in microbial community composition through two soil depth profiles. Soil Biology and Biochemistry, 35(1): 167~176
    Novas M V, Cabral D, Godeas A M. 2005. Interaction between grass endophytes and mycorrhizas in Bromus setifolius from Patagonia, Argentina. Symbiosis, 40(1): 23~30
    Oehl F, Sieverding K, Ineichen K, Mader P, Boller T, Wiemken A. 2003. Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe. Applied and Environmental Microbiology, 69(5): 2816~2824
    Oelmüller R, Sherameti I, Tripathi S, Varma A. 2009. Piriformospora indica, a cultivable root endophyte with multiple biotechnological applications. Symbiosis, 49(1): 1~17
    Olsson P A. 1999. Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiology Ecology, 29(4): 303~310
    Pace N R. 1997. A molecular view of microbial biodiversity and the biosphere. Science, 276(5313): 734~740
    Paparu P, Dubois T, Gold CS, Niere B, Adipala E, Coyne D. 2008. Screenhouse and field persistence of nonpathogenic endophytic Fusarium oxysporum in Musa tissue culture plants. Microbial Ecology, 55(3): 561~568
    Peng J, Li Y, Shi P, Chen X H, Lin H, Zhao B. 2011. The differential behavior of arbuscular mycorrhizal fungi in interaction with Astragalus sinicus L. under salt stress. Mycorrhiza, 21(1): 27~33
    Pennanen T. 2001. Microbial communities in boreal coniferous forest humus exposed to heavy metals and changes in soil pH: a summary of the use of phospholipid fatty acids, Biolog and [3H] thymidine incorporation methods in field studies. Geoderma, 100(1-2): 91~126
    Perkiomaki J, Fritze H. 2002. Short and long-term effects of wood ash on the boreal forest humus microbial community. Soil Biology and Biochemistry, 34(9): 1343~1353
    Peter S, B(?)(?)th E. 2000. Spatial variation and patterns of soil microbial community structure in a mixed spruce birch stand. Soil Biology and Biochemistry, 32(7): 909~917
    Petra M, Karen B. 2003. Changes in bacterial community structure induced by mycorrhizal colonisation in split-root maize. Plant and Soil, 251(2): 279~289
    Phillips J M, Hayman D S. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55(1): 158~161
    Pianetti A, Battistelli M, Citterio B, Parlani C, Falcieri E, Bruscolini F. 2009. Morphological changes of Aeromonas hydrophila in response to osmotic stress. Micron, 40(4): 426~433
    Porcel R, Aroca R, Cano C, Bago A, Ruiz-Lozano J M. 2007. A gene from the arbuscular mycorrhizal fungus Glomus intraradices encoding a binding protein is up-regulated by drought stress in some mycorrhizal plants. Environmental and Experimental Botany, 60(2): 251~256
    Porcel R, Ruiz-Lozano J M. 2004. Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. Journal of Experimental Botany, 55(403): 1743~1750
    Porra R J. 2002. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynthesis Research, 73(1-3): 149~156
    Porras-Alfaro A, Herrera J, Sinsabaugh R L, Odenbach K J, Lowrey T, Natvig D O. 2008. Novel root fungal consortium associated with a dominant desert grass. Applied and Environmental Microbiology, 74(9): 2805~2813
    Quian H F, Hu B L, Cao D, Chen W, Xu X Y, Lu Y C. 2007. Bio-safety assessment of validamycin formulation on bacterial and fungal biomass in soil monitored by real-time PCR. Bulletin of Environmental Contamination and Toxicology, 78(3-4): 239~244
    Ramsey P W, Rillig M C, Feris K P, Holben W E, Gannon J E. 2006. Choice of methods for soil microbial community analysis: PLFA maximizes power compared to CLPP and PCR-based approaches. Pedobiologia, 50(3): 275~280
    Rantalainen M L, Haimi J, Fritze H, Pennanen T, Set?l? H. 2008. Soil decomposer community as a model system in studying the effects of habitat fragmentation and habitat corridors. Soil Biology and Biochemistry, 40(4): 853~863
    Redecker D. 2002. Molecular identification and phylogeny of arbuscular mycorrhizal fungi. Plant and Soil, 244(1-2): 67~73
    Redman R S,Sheehan K B,Stout R G,Rodriguez R J,Henson J M. 2002. Thermotolerance generated by plant/fungal symbiosis. Science, 298: 1581
    Rigou L, Mignard E, Plassard C. 1995. Influence of ectomycorrhizal infection on the rhizosphere pH around roots of maritime Pine (Pinus pinaster Soland in Ait.). New Phytologist, 130(1): 141~147
    Rillig M C. 2004. Arbuscular mycorrhizae, glomalin, and soil aggregation. Canadian Journal of Soil Science, 84(4): 355~363
    Rillig M C, Wright SF, Eviner VT. 2002. The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant and Soil, 238: 325~333
    Roesch L F, Fulthrope R R, Riva A, Casella G, Hadwin A K M, Kent A D, Daroub S M, Camargo F A O, Farmerie W G, Triplett E W. 2007. Pyrosequencing enumerates and contrasts soil microbial diversity. Journal of the International Society for Microbial Ecology, 1: 283~290
    Roesti D, Gaur R, Johri B N. 2006. Plant growth stage, fertilizer management and bio-inoculation ofarbuscular mycorrhizal fungi and plant growth promoting rhizobacteria affect the rhizobacterial community structure in rain-fed wheat fields. Soil Biology and Biochemistry, 38(5): 1111~1120
    Rommert AK, Oros-Sichler M, Lange T, Aust HJ, Schulz B, Boyle C. 2002. Growth promoting effect of endophytic colonization of larch seedlings (Larix deciduas) with Cryptosporiopsis sp. and Phialophora sp. In: Book of abstracts, the seventh international mycological congress, University of Oslo, Oslo: 309
    Rosendahl S, Stukenbrock E H. 2004. Community structure of arbuscular mycorrhizal fungi in undisturbed vegetation revealed by analyses of LSU rDNA sequences. Molecular Ecology, 13(10): 3179~3186
    Rousseau A, Benhamou N, Chet I, Piche Y. 1996. Mycoparasitism of the extramatrical phase of Glomus intraradices by Trichoderma harzianum. Phytopathology, 86(5): 434~443
    Ruíz-Sánchez M, Armada E, Munoz Y, García de Salamone I E, Aroca R, Ruíz-Lozano J M, Azcón R. 2011. Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions. Journal of Plant Physiology, online
    Ruíz-Sánchez M, Aroca R, Munoz Y, Poln R, Ruiz-Lozano J M. 2010. The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. Journal of Plant Physiology, 167(11): 862~869
    Ruotsalainen A L, Eskelinen A. 2011. Root fungal symbionts interact with mammalian herbivory, soil nutrient availability and specific habitat conditions. Oecologia, online
    Ruotsalainen A L. 2003. Mycorrhizal colonization and plant performance in arcto-alpine conditions. [Ph. D thesis]. Finland: University of Oulu
    Sakamoto K, Iijima T, Higuchi R. 2004. Use of specific phospholipid fatty acids for identifying and quantifying the external hyphae of the arbuscular mycorrhizal fungus. Soil Biology and Biochemistry, 36(11): 1827~1834
    Sathiyadash K, Muthukumar T, Uma E. 2010. Arbuscular mycorrhizal and dark septate endophyte fungal associations in South Indian grasses. Mycorrhiza, 52(1): 21~32
    Saul-Tcherkas V, Steinberger Y. 2009. Substrate utilization patterns of desert soil microbial communities in response to xeric and mesic conditions. Soil Biology and Biochemistry, 41(9): 1882~1893
    Scervion J M, Gottlieb A, Silvani V A, Pergola M, Fernandez L, Godeas A M. 2009. Exudates of dark septate endophyte (DSE) modulate the development of the arbuscular mycorrhizal fungus (AMF) Gigaspora rosea. Soil Biology and Biochemistry, 41(8): 1753~1756
    Schenck N C, Perez Y. 1990. Manual for the identification of VA mycorrhizal fungi. Synergistic Publications, Gainesville, Florida, USA.
    Schipper L A, Degens B P, Sparling G P, Duncan L C. 2001. Changesin microbial heterotrophic diversity along five plant successional sequences. Soil Biology and Biochemistry, 33(15): 2093~2103
    Schmidt S K, Sobieniak-Wiseman L C, Kageyama S A, Halloy S R P, Schadt C W. 2008. Mycorrhizal and dark-septate fungi in plant roots above 4270 meters elevation in the Andes and Rocky Mountains. Arctic, Antarctic and Alpine Research, 40(3): 576~583
    Schutter M E, Dick R P. 2000. Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities. Soil Science. Society of America Journal, 64(5): 1659~1668
    Schwarzott D, Schussler A. 2001. A simple and reliable method for SSU rRNA gene DNA extraction, amplification, and cloning from single AM fungal spores. Mycorrhiza, 10(4): 203~207
    Schweiger F, Tebbe C C. 1998. A new approach to utilise PCR-single-strand conformation polymorphism for 16S rRNA gene-based microbial community analysis. Applied and Environmental Microbiology, 64(12): 4870~4876
    Selmants P C, Hart S C, Boyle S I. 2005. Red alder (Alnus rubra) alters community-level soil microbial function in conifer forests of the Pacific Northwest, USA. Soil Biology and Biochemistry, 37(10): 1860~1868
    Sheffield V C, Beck J S, Kwitek A E, Sandstrom D W, Stone E M. 1993. The sensitivity of single-strand conformation polymorphism analysis for the detection of single base substitutions. Genomics, 16(2): 325~332
    Sheng M, Tang M, Chen H, Yang B W, Zhang F F, Huang Y H. 2009. Influence of arbuscular mycorrhizae on the root system of maize plants under salt stress. Canadian Journal of Microbiology, 55(7): 879~886
    Sheng M, Tang M, Chen H, Zhang F F, Huang Y H. 2008. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza, 18(6): 287~296
    Shivanna M B, Meera M S, Hyakumachi M. 1996. Role of root colonization ability of plant growth promoting fungi in the suppression of take-all and common root rot of wheat. Crop Protection, 15(6): 497~504
    Silvani V A, Fracchia S, Fernández M, Pérgola M, Godeas A. 2008. A simple method to obtain endophytic microorganisms from field-collected roots. Soil Biology and Biochemistry, 40(5): 1259~1263
    Sliwinski M K, Goodman R M. 2004. Spatial heterogeneity of crenarchaeal assemblages within mesophilic soil ecosystems as revealed by PCR-single-strand conformation polymorphism profiling. Applied and Environmental Microbiology, 70(3): 1811~1820
    Smith S E, Read D J. 2008. Mycorrhizal symbiosis, 3rd edn. London, UK: Academic Press.
    S(o|¨)derberg K H, Olsson P A, B??th E. 2002. Structure and activity of the bacterial community in the rhizosphere of different plant species and the effect of arbuscular mycorrhizal colonization. FEMS Microbiology Ecology, 40(3): 223~231
    Solís-Domínguez F A, Valentín-Vargas A, Chorover J, Maier R M. 2011. Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidiclead/zinc minetailings. Science of the Total Environment, 409(6): 1009~1016
    Stahl P D, Parkin T B. 1996. Relationship of soil ergosterol concentration and fungal biomass. Soil Biology and Biochemistry, 28(7): 847~855
    Stephan S, Peréz-de-Mora A, Marion E, Munch J C, Schlote M. 2010. A comparative study of most probable number (MPN)-PCR vs. real-time-PCR for the measurement of abundance and assessment of diversity of alkB homologous genes in soil. Journal of Microbiological Methods, 80(3): 295~298
    Stoyke G, Currah R S. 1993. Resynthesis in pure culture of a common subalpine fungus-root association using Phialocephala fortinii and Menzesia ferruginea (Ericaceae). Arctic Alppine and Research, 25(2): 189~193
    Subramanian K S, Charest C. 1997. Nutritional, growth, and reproductive responses of maize (Zea mays L.) to arbuscular mycorrhizal inoculation during and after drought stress at tasselling. Mycorrhiza, 7(1): 25~32
    Subramanian K S, Santhanakrishnan P, Balasubramanian P. 2006. Responses of field grown tomato plantsto arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. Scientia Horticulturae, 107(3): 245~253
    Sudova R, Rydlova J, Ctvrtlikova M, Havranek P, Adamec L. 2011. The incidence of arbuscular mycorrhiza in two submerged Isoetes species. Aquatic Botany, online
    Sunnucks P, Wilson A C C, Beheregaray L B, Zenger K, French J, Taylor A C. 2000. SSCP is not so difficult: the application and utility of single-stranded conformation polymorphism in evolutionary biology and molecular ecology. Molecilar Ecology, 9(11): 1699~1710
    Sykorov A Z, Wiemken A, Redecker D. 2007. Cooccurring Gentiana verna and Gentiana acaulis and their neighboring plants in two swiss upper montane meadows harbor distinct arbuscular mycorrhizal fungal communities. Applied and Environmental Microbiology, 73(17): 5426~5434
    Taheri W I, Bever J D. 2010. Adaptation of plants and arbuscular mycorrhizal fungi to coaltailings in Indiana. Applied Soil Ecology, 45(3): 138~143
    Tang M, Chen H, Huang J C, Tian Z Q. 2009. AM fungi effects on the growth and physiology of Zea mays seedlings under diesel stress. Soil Biology and Biochemistry, 41(5): 936~940
    Tang M, Zhang R Q, Chen H, Zhang H H, Tian Z Q. 2008. Induced hydrolytic enzymes of ectomycorrhizal fungi against pathogen Rhizoctonia solani. Biotechnology Letters, 30(10): 1777~1782
    Tefera T, Vidal S. 2009. Effect of inoculation method and plant growth medium on endophytic colonization of sorghum by the entomopathogenic fungus Beauveria bassiana. Bio Control, 54(5): 663~669
    Tellenbach C, Grünig C R, Sieber T N. 2010. Suitability of quantitative real-time PCR to estimate the biomass of fungal root endophytes. Applied and Environmental Microbiology, 76(17): 5764~5772 ter Braak CJF, Smilauer P. 2004. CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Biometris, Wageningen
    Thompson D, Higgins D G, Gibson T J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22): 4673~4680
    Tourlomousis P, Kemsley E K, Ridgway K P, Toscano M J, Humphrey T J, Narbad A. 2010. PCR-denaturing gradient gel eElectrophoresis of complex microbial communities: A two-step approach to address the effect of gel-to-gel variation and allow valid comparisons across a large dataset. Microbial Ecology, 59(4): 776~786
    Trowbridge J, Jumpponen A. 2004. Fungal colonization of shrub willow roots at the forefront of a receding glacier. Mycorrhiza, 14(5): 283~293
    Upson K K, Read D J, Newsham K K. 2009. Nitrogen form influences the response of Deschampsia antarctica to dark septate root endophytes. Mycorrhiza, 20(1): 1~11
    van der Heijden M G A, Klironomos J N, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders I R. 1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396: 69~72
    van Diepen L T A, Lilleskov E A, Pregitzer K S, Miller R M. 2007. Decline of arbuscular mycorrhizal fungi in northern hardwood forests exposed to chronic nitrogen additions. New Phytologist, 176(1): 175~183
    Vandenkoornhuyse P, Husband R, Daniell T J. 2002. Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Molecular Ecology, 11(8): 1555~1564
    Vazquez M M, Cesar S, Azcon R. 2000. Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Applied Soil Ecology, 15(3): 261~272
    Vicari M, Hatcher P E, Ayres P G. 2001. Combined effect of foliar and mycorrhizal endophytes on an insect herbivore. Ecology, 83 (9): 2452~2464
    Vivas A, Moreno B, Garcia-Rodriguez S, Benitez E. 2009. Assessing the impact of composting and vermicomposting on bacterial community size and structure, and microbial functional diversity of an olive-mill waste. Bioresource Technology, 100(3): 1319~1326
    Vohnik M, Albrechtova J, Vosatka M. 2005. The inoculation with Oidiodendron maius and Phialocephala fortinii alters phosphorus and nitrogen uptake, foliar C: N ratio and root biomass distribution in Rhododendron cv. Azurro. Symbiosis, 40(2): 87~96
    Waldrop M P, Firestone M K. 2006. Seasonal dynamics of microbial community composition and function in Oak canopy and open grassland soils. Microbial Ecology, 52(3): 470~479
    Walker C. 1992. Systematics and taxonomy of the arbuscular endomycorrhizal fungi (Glomales)-a possible way forward. Agronomie, 12(10): 887~897
    Wang B. Qiu Y L. 2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza, 16(5): 299~363
    Wang C C, Chang S C, Stephen Inbaraj B, Chen B H. 2010. Isolation of carotenoids, flavonoids and polysaccharides from Lycium barbarum L. and evaluation of antioxidant activity. Food Chemistry, 120(1): 184~192
    Warembourg F R, Roumet C, Lafont F. 2003. Differences in rhizosphere carbon partitioning among plant species of different families. Plant and Soil, 256(2): 347~357
    Werker A G, Becker J, Huitema C. 2003. Assessment of activated sludge microbial community analysis in full-scale biological waster water treatment plants using patterns of fatty acid isopropyl esters (FAPEs). Water Research, 37(9): 2162~2172
    White T J, Bruns T D, Lee S, Taylor J. 1990. Analysis of phylogenetic relationships by amplification and direct sequencing of ribosomal RNA genes. In: Innis MA, Ge?and DH, Sninsky JJ, White TJ, eds. PCR protocols: a guide to methods and applications. New York: Academic Press: 315~322
    Wilcox H E, Wang C J K. 1987. Mycorrhizal and pathogenic associations of dematiaceous fungi in roots of 7-month-old tree seedlings. Canada Journal of Forestry Research, 17: 884~899
    Wright S F, Anderson R L. 2000. Aggregate stability and glomalin in alternative crop rotations for the central Great Plains. Biology and Fertility of Soils, 31(3-4) 249~253
    Wright S F, Lpadhyaya A. 1998. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhiza fungi. Plant and Soil, 198: 97~107
    Wright S F, Frankee-Snyder M, Morton J B. 1996. Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrizal fungi during active colonization of roots. Plant and Soil, 181: 193~203
    Wu L Q, Ma K, Li Q, Ke X B, Lu Y H. 2009. Composition of archaeal community in a paddy field as affected by rice cultivar and N fertilizer. Microbial Ecology, 58(4): 819~826
    Wu L Q, Guo S X. 2008. Interaction between an isolate of dark septate fungi and its host plant Saussureainvolucrata. Mycorrhiza, 18(2): 79~85
    Wu L Q, Lv Y L, Meng Z X, Chen J, Guo S X. 2010. The promoting role of an isolate of dark-septate fungus on its host plant Saussurea involucrata Kar. et Kir. Mycorrhiza, 20(2): 127~135
    Wu Q S, Xia R X, Zou Y N, Wang G Y. 2007a. Osmotic solute responses of mycorrhizal citrus (Poncirus trifoliata) seedlings to drought stress. Acta Physiologia Plantarum, 29(6): 543~549
    Wu Q S, Xia R X, Zou Y N. 2008. Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. European Journal of Soil Biology, 44(1): 122~128
    Wu Q S, Xia R X. 2006a. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Journal of Plant Physiology, 163(4): 417~425
    Wu Q S, Zou Y N, Xia R X, Wang M Y. 2007b. Five Glomus species affect water relations of Citrus tangerine during drought stress. Botanical Studies, 48(2): 147~154
    Wu Q S, Zou Y N, Xia R X. 2006b. Effects of water stress and arbuscular mycorrhizal fungi on reactive oxygen metabolism and antioxidant production by citrus (Citrus tangerine) roots. European Journal of Soil Biology, 42(3): 166~172
    Wu Q S, Zou Y N. 2009a. Arbuscular mycorrhizal symbiosis improves growth and root nutrient status of citrus subjected to salt stress. Science Asia, 35: 388~391
    Wu Q S, Zou Y N. 2009b. Mycorrhiza has a direct effect on reactive oxygen metabolism of drought-stressed citrus. Plant, Soil and Environment, 55(10): 436~442
    Wu Q S, Xia X R. 2006c. Arbuscular mycorrhizal fungi in?uence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Journal of Plant Physiology, 163(4): 417~425
    Wu Q S, Zou Y N. 2009c. Mycorrhizal influence on nutrient uptake of citrus exposed to drought stress. The Philippine Agricultural Scientist, 92(1): 33~38
    Yamato M, Ikeda S, Iwase K. 2009. Community of arbuscular mycorrhizal fungi in drought-resistan Moringa spp., in semiarid regions in Madagascar and Uganda. Mycoscience, 50(2): 100~105
    Yang C, Hamel C, Schellenberg M P, Perez J C, Berbara R L. 2010. Diversity and functionality of arbuscular mycorrhizal fungi in three plant communities in semiarid grasslands national park, Canada. Microbial Ecology, 59(4): 724~733
    Yao Q, Wang L R, Zhu H H, Chen J Z. 2009. Effect of arbuscular mycorrhizal fungal inoculation on root system architecture of trifoliate orange (Poncirus trifoliata L. Raf.) seedlings. Scientia Horticulturae, 121(4): 458~461
    Yasuda T, Kuroda K, Hanajima D, Fukumoto Y, Waki M, Suzuki K. 2010. Characteristics of the microbial community associated with ammonia oxidation in a full-scale rockwool biofilter treating malodors from livestock manure composting. Microbes Environments, 25(2): 111~119
    Yin G H, Dang Y L. 2008. Optimization of extraction technology of the Lycium barbarum polysaccharides by Box-Behnken statistical design. Carbohydrate Polymmers, 74(3): 603~610
    Yu T, Nassuth A, Peterson R L. 2001. Characterization of the interaction between the dark septate fungus Phialocephala fortinii and Asparagus officinalis roots. Canada Journal of Microbiology, 47:741~753
    Zelles L.1999. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biology and Fertility of Soils, 29(2): 111~129
    Zhan F D, He Y M, Zu Y Q, Li T, Zhao Z W. 2011. Characterization of melanin isolated from a dark septate endophyte (DSE), Exophiala pisciphila. World Journal of Microbiology and Biotechnology, online
    Zhang H H, Tang M, Chen H, Tian Z Q. 2010. Effects of inoculation with ectomycorrhizal fungi on microbial biomass and bacterial functional diversity in the rhizosphere of Pinus tabulaeformis seedlings. European Journal of Soil Biology, 46(1): 55~61
    Zhang H H, Tang M, Chen H, Ban Y H, Wang Y J. 2010. Arbuscular mycorrhizas and dark septate endophytes colonization status in medicinal plant Lycium barbarum L. in arid northwestern China. African Journal of Microbiology Research, 4 (18): 1914~1920
    Zhang H Q, Tang M, Chen H, Tian Z Q, Xue Y Q, Feng Y. 2010. Communities of arbuscular mycorrhizal fungi and bacteria in the rhizosphere of Caragana korshinkii and Hippophae rhamnoides in Zhifanggou watershed. Plant and Soil, 326(1-2): 415~424
    Zhang N L, Wan S Q, Li L H, Bi J, Zhao M M, Ma K P. 2008. Impacts of urea N addition on soil microbial community in a semi-arid temperate steppe in northern China. Plant and Soil, 311(1-2): 19~28
    Zhang Y J, Zhang Y, Liu M J, Shi X D, Zhao Z W. 2008. Dark septate endophyte (DSE) fungi isolated from metal polluted soils: Their taxonomic position, tolerance, and accumulation of heavy metals in vitro. The Journal of Microbiology, 46(6): 624~632
    Zhang M, Chen H X, Huang J, Li Z, Zhu C P, Zhang S H. 2005. Effect of lycium barbarum polysaccharide on human hepatoma QGY7703 cells: Inhibition of proliferation and induction of apoptosis. Life Science, 76(18): 2115~2124
    Zheng G Q, Zheng Z Y, Xu X, Hu Z H. 2010. Variation in fruit sugar composition of Lycium barbarum L. and Lycium chinense Mill. of different regions and varieties. Biochemical Systematics and Ecology, 38(3): 275~284
    Zheng H, Ouyang Z Y, Wang X K. 2004. Effects of forest restoration patterns on soil microbial communities. Chinese Journal of Applied Ecology, 15(11): 2019~2024
    Zheng H, Ouyang Z Y, Wang X K. 2005. Effects of regenerating forest cover on soil microbial communities: A case study in hilly red soil region, Southern China. Forest Ecology and Management, 217(2-3): 244~254
    Zhou J Z, Bruns M A, Tiedje J M. 1996. DNA recovery from soils of diverse composition. Applied and Environental Microbiology, 62(2): 3216~3221
    Zubek S Z, B(?)aszkowski J. 2009. Medical plants as hosts of arbuscular mycorrhizal fungi and dark septate endophytes. Phytochemistry Reviews, 8(3): 571~580
    Zubek S, B(?)aszkowski J, Delimat A, Turnau K. 2009. Arbuscular mycorrhizal and dark septate endophyte colonization along altitudinal gradients in the Tatra Mountains. Arctic, Antarctic and Alpine Research, 41(2): 272~279
    安魏,石志刚. 2009.枸杞栽培技术.银川:宁夏人民出版社:1~120
    贝盏临,任贤,雷茜,韩培杰. 2010.宁夏枸杞根际固氮解磷菌的分离研究.广东农业科学, 5: 176~177
    蔡晓布,冯固,钱成. 2007.丛枝菌根真菌对西藏高原草地植物和土壤环境的影响.土壤学报, 44(1): 63~72
    曹有龙. 2006.大果枸杞栽培技术.银川:宁夏人民出版社: 1~156
    陈敏,魏桂芳,高平平,王凌华,庞晓燕,赵立平. 2004.用ERIC-PCR结合分子杂交监测焦化废水处理系统(A/O)中微生物群落结构的变化.生态学报, 24(7): 1330~1334
    杜小刚,唐明,陈辉,张海涵,张永安. 2008.黄土高原不同树龄刺槐丛枝菌根与根际微生物的群落多样性.林业科学, 44(4): 78~82
    冯广龙,刘昌明,王立. 1996.土壤水分对作物根系生长及分布的调控作用.生态农业研究, 4(3): 5~9
    高俊凤. 2000.植物生理学实验指导.西安:世界图书出版公司:10~40
    葛源,贺纪正,郑袁明,张丽梅,朱永官. 2006.稳定性同位素探测技术在微生物生态学研究中的应用.生态学报, 26(5): 1574 ~1582
    顾海燕,马昕,王仙琴,李萍,郝俊虎,孙普兵,曹有龙,曲玲,袁海静,罗青. 2007.抗肝炎转基因枸杞新品种培育的初步研究.陕西农业科学, 6: 44~49
    顾向阳,胡正嘉. 1994. VA菌根真菌Glomus mossea对棉花根际微生物数量和生物量的影响.生态学杂志, 13(2): 7~11
    郭绍霞,刘润进. 2010.不同品种牡丹对丛枝菌根真菌群落结构的影响.应用生态学报, 21(8): 1993~1997
    贺学礼,高露,赵丽莉. 2011.水分胁迫下丛枝菌根AM真菌对民勤绢蒿生长与抗旱性的影响.生态学报, 31(4): 1029~1037
    黄超杰. 2010.兰州百合根系内生真菌生态学的研究. [硕士学位论文].兰州:兰州大学
    黄继川,唐明,牛振川,张茹琴. 2007.四川遂宁地区石油污染土壤中丛枝菌根真菌.生态学杂志, 26 (9): 1389~1392
    金敏,李君文. 2008.基因芯片技术在环境微生物群落研究中的应用.微生物学通报, 35(9): 1466~1471
    李凤霞,梁锦绣,周涛. 2006.宁夏产枸杞根际溶磷菌分离及溶磷能力分析.植物资源与环境学报, 15(2): 29~32
    李凌飞,杨安娜,赵之伟. 2005.丛枝菌根真菌种群的孢子季相动态研究.生态学杂志, 24(10): 1155~1158
    李潞滨,刘振静,杨凯,刘敏,周金星,孙磊,韩继刚. 2008.青藏铁路沿线唐古拉山口土壤微生物的ARDRA分析.生态学报, 28(11): 5482~5487
    李文娆,张岁岐,丁圣彦,山仑. 2010.干旱胁迫下紫花苜蓿根系形态变化及与水分利用的关系.生态学报, 30(19): 5140~5150
    梁昌聪,肖艳萍,赵之伟. 2007.云南会泽废弃铅锌矿区植物丛枝菌根和深色有隔内生真菌研究.应用与环境生物学报, 13(6): 811~817
    梁昌聪,赵素叶,刘磊,黄俊生. 2010.海南霸王岭热带雨林常见植物丛枝菌根真菌调查.生态学杂志, 2010, 29(2): 269~273
    梁宇,陈世苹,高玉葆,任安芝. 2002.内生真菌感染对干旱胁迫下黑麦草生长的影响.植物生态学报, 26(5): 621~626
    梁宇,高玉葆,陈世苹,任安芝. 2001.干旱胁迫下内生真菌感染对黑麦草实验种群光合、蒸腾和水分利用的影响.植物生态学报, 25(5):537~543
    刘茂军,张兴涛,赵之伟. 2009.深色有隔内生真菌(DSE)研究进展.菌物学报, 28(6): 888~894
    刘润进,陈应龙. 2007.菌根学.北京:科学出版社:1~447
    刘永俊,郑红,何雷,安黎哲,冯虎元. 2009.柠条根系中丛枝菌根真菌的季节性变化及影响因素.应用生态学报, 20(5): 1085~1091
    龙良坤,羊宋贞,姚青. 2005. AM真菌对青枯菌和根际细菌群落结构的影响.菌物学报, 24(1): 137~142
    鲁如坤. 2000.土壤农业化学分析方法.北京:中国农业科技出版社: 147~155
    鹿金颖,毛永民,申连英,彭士琪,李晓林. 2003. VA菌根真菌对酸枣实生苗抗旱性的影响.园艺学报, 30(1): 29~33
    罗海峰,齐鸿雁,薛凯,张洪勋. 2003. PCR-DGGE技术在农田土壤微生物多样性研究中的应用.生态学报, 23(8): 1570~1575
    罗青,李晓莺,何军,巫鹏举,贝盏临,曲玲. 2007. NutriSmart生态型肥料对枸杞产量与品质的影响.北方园艺, 9: 39~40
    慕自新,张岁岐,郝文芳,梁爱华,梁宗锁. 2005.玉米根系形态性状和空间分布对水分利用效率的调控.生态学报, 25(11): 2895~2900
    牛振川,唐明,黄继川,王森,盛敏. 2007.土壤铅和锌对植物根际丛枝菌根真菌分布的影响.西北植物学报, 27(6): 1233~1238
    钮旭光,韩梅,何随成. 2006.内生真菌对植物抗旱性的影响.生物技术, 16(3): 93~95
    潘莉,杜惠敏,黄海东. 2003.腹泻儿童肠道菌群结构特征的ERIC-PCR指纹图分析.中国微生态学杂志, 15(3): 141~143
    钱会,李培月,吴健华. 2010.银川市近49a来降雨变化特征分析.华北水利水电学院学报, 31(2): 1~5
    山宝琴,姜在民. 2010.沙漠生境白沙蒿(Artemisia sphaerocephala)根围丛枝菌根真菌多样性.生态学杂志, 29(9): 1729~1735
    盛敏,唐明,张峰峰,黄艳辉,杨保伟. 2008.土壤因子对西北盐碱土中VA菌根真菌的影响.土壤学报, 45(4): 758-763
    盛敏. 2009. VA菌根真菌提高玉米耐盐性机制与农田土壤微生物多样性研究. [博士学位论文].杨凌:西北农林科技大学
    宋会兴,彭远英,钟章成. 2008.干旱生境中接种丛枝菌根真菌对三叶鬼针草(Bidens pilosa L.)光合特征的影响.生态学报, 28(8): 3744~3751
    唐景春,KATAYAMA Arata. 2004.醌类图谱分析在环境微生物生态测定中的应用.应用与环境生物学报, 10(4): 530~536
    唐明,陈辉,商鸿生. 1999.丛枝菌根真菌对沙棘抗旱性的作用.林业科学, 35(3): 48~52
    唐明,黄艳辉,盛敏,张峰峰,肖文发. 2007.内蒙古盐碱土中AM真菌的多样性与分布.土壤学报, 44(6): 1104~1110
    唐明. 2010.菌根真菌提高植物耐盐性.北京:科学出版社: 1~185
    田伟. 2010.中国云南西北地区杜鹃花菌根菌的多样性研究. [博士学位论文].昆明:中国科学院昆明植物所
    魏飒,任树梅,杨培岭,闫美俊. 2006.围场地区紫花苜蓿土壤水分动态变化与根系分布状况研究.中国农学通报, 22(5): 448~451
    魏力,杨诚运,李友国. 2008.环境微生物群落功能研究的新方法和新策略.生态学报, 28(9):4424~4429
    吴强盛,夏仁学,胡正嘉. 2005.丛枝菌根对枳实生苗抗旱性的影响研究.应用生态学报, 16(3): 459~463
    吴强盛,夏仁学. 2004.水分胁迫下丛枝菌根真菌对枳实生苗生长和渗透调节物质含量的影响.植物生理与分子生物学学报, 30(5): 583~588
    谢慧君,石义静,滕少香,王文兴. 2009.邻苯二甲酸酯对土壤微生物群落多样性的影响.环境科学, 30(5): 1286~1291
    邢德峰,任南琪. 2006.应用DGGE研究微生物群落时的常见问题分析.微生物学报, 46(2): 331~335
    徐华勤,肖润林,宋同清. 2008.稻草覆盖与间作三叶草对丘陵茶园土壤微生物群落功能的影响.生物多样性, 16(2): 166~174
    薛晶,肖丽英,周学东. 2010.人体口腔微生物组研究进展.华西口腔医学杂志, 28(1) : 5~8
    许育彬,陈越,齐像英. 2009.不同土壤水分条件下施肥方式对甘薯叶片气体交换的调节作用.干旱地区农业研究,27(4): 105~110
    杨秀丽. 2010.大兴安岭兴安落叶松森林生态系统菌根及其真菌多样性研究. [博士学位论文].呼和浩特:内蒙古农业大学
    杨亚宁,巴雷,白晓楠,张立朝,王德利. 2010.一种改进的丛枝菌根染色方法.生态学报, 30(3): 774~779
    袁丽环,闫桂琴. 2010.丛枝菌根化翅果油树幼苗根际土壤微环境.植物生态学报, 34(6): 678~686
    袁志林,章初龙,林福呈. 2008.植物与内生真菌互作的生理与分子机制研究进展.生态学报, 28(9): 4430~4439
    张春英. 2008.云锦杜鹃菌根及其菌根真菌多样性研究. [博士学位论文].北京:北京林业大学
    张海涵,唐明,陈辉,杜小刚,郑华. 2007.不同生态条件下油松(Pinus tabulaeformis)菌根根际土壤微生物群落.生态学报, 27(12): 5463~5470
    张海涵. 2008.林木菌根真菌与土壤微生物相互关系的研究. [硕士学位论文].杨凌:西北农林科技大学
    张海涵,唐明,陈辉. 2009.黄土高原典型林木根际土壤微生物群落结构与功能特征及其环境指示意义.环境科学, 30(8): 2432~2437
    张好强,唐明,张海涵. 2009.土壤因子对柠条和沙棘根际AM真菌多样性及侵染状况的影响.土壤学报, 46(4): 721~724
    张林平,齐国辉,郭强. 2003.丛枝菌根真菌对君迁子幼苗生长及抗寒性的影响.河北果业, 1: 1~5
    张蓉,赵紫华,贺达汉,王芳,张宗山,王新谱. 2010.不同干扰条件下枸杞园节肢动物群落结构与动态.生态学报, 30(10): 2656~2664
    张瑜斌,林鹏,魏小勇,庄铁诚. 2008.盐度对稀释平板法研究红树林区土壤微生物数量的影响.生态学报, 28(3): 1287~1295
    张玉洁. 2010.植物深色有隔内生真菌(DSE)的研究进展.文山学院学报, 23(1): 145~150
    赵德璋,刘刚,宋鼎珊,刘剑虹,周翊蓝,欧家鸣,孙世中. 2007.鹅膏菌的傅里叶变换红外光谱研究.光谱学与光谱分析, 27(6): 1086~1089
    赵平娟,安锋,唐明. 2007.丛枝菌根真菌对连翘幼苗抗旱性的影响.西北植物学报, 27(2): 0396~0399
    郑国琦,张磊,郑国保,张源培,王俊,胡正海. 2010.不同灌水量对干旱区枸杞叶片结构、光合生理参数和产量的影响.应用生态学报, 21(11): 2806~2813
    郑华,欧阳志云,王效科. 2004.不同森林恢复类型对土壤微生物群落的影响.应用生态学报, 15(11): 2019~2024
    郑华,欧阳志云,方治国,赵同谦. 2005. BIOLOG在土壤微生物群落功能多样性研究中的应用.生态学报, 41(3): 456~461
    周建朝,王孝纯,邓艳红,林晓坤,王艳. 2011.磷胁迫对不同基因型甜菜根系形态及根分泌物的影响.中国农学通报, 27(2): 157~161
    周在进,刘刚,任先培. 2009.不同产地小美牛肝菌的红外光谱聚类分析研究.激光与红外, 39(11): 1158~1162
    朱红惠,姚青,赵立平. 2003.用ERIC-PCR法研究番茄根际细菌群落结构变化.微生物学通报, 30(4): 10~14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700