低品位铀矿生物浸出及浸矿菌种耐氟机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铀作为核燃料的一种能源,随着核工业的日益发展,高品位铀矿逐步耗竭,造成了低品位矿/尾矿的大量累积。生物冶金技术由于经济、环保等优势适合处理这些低品位矿/尾矿,但生物浸铀技术在工业应用过程中仍面临着工艺因素的合理调控与菌种的耐受性等难题,因此,探讨如何合理调控生物氧化浸铀工艺与优化微生物群落结构有很有价值的意义,以及从功能基因组学角度研究浸矿微生物的耐氟机理对高耐氟菌种的合理选育和驯化具有很强的理论指导作用。
     本文针对以上难题开展了低品位铀矿微生物浸出过程中的多因素影响规律以及浸矿菌种耐氟机理两方面的研究。一方面,针对生物浸铀工艺调控的合理性,探讨了低品位铀矿生物浸出体系中的多种工艺因素对铀浸出效率的影响规律,并且分析了浸出过程中的微生物群落结构;另一方面,针对浸矿菌种对氟的耐受性问题,从功能基因组学角度研究了单一菌与混合菌的耐氟机理。具体研究内容与结果主要包括以下六个方面。
     1、探讨了低品位铀矿生物柱浸过程的工艺因素影响规律
     低品位铀矿微生物柱浸研究表明,常温微生物富集培养物对低品位铀矿展现出了良好的浸矿性能,97天柱浸过程中(包括33天酸预浸和64天微生物浸出)铀的浸出率达到了96.8%。其中微生物作用阶段铀的浸出率有74.5%,占总浸出量的约3/4,而耗酸量不到总量的3/8。分析表明,可以通过适当控制溶浸液中的微生物群落结构,以及铁和其他离子的含量,来间接调节氧化还原电位,从而促进铀的快速浸出。
     并且,采用相关性分析软件Canoco for Windows (version4.5)对工艺因素与铀浸出效率的相关性(CCA)进行分析,结果表明,浸出初期(1-27天),铀的浸出速率处于延缓阶段,pH、喷淋强度及耗酸量对铀浸出效率起到了主导作用;浸出中期(39-87天),铀的浸出速率处于较为快速的阶段,Eh、Fe3+/Fe2+比及液固比是对铀浸出效率的关键因素;在浸出后期(88-97天),铀的浸出速率已经非常缓慢,受液固比的影响比较大。
     2、研究了低品位铀矿生物柱浸过程中微生物群落演替规律
     运用分子生物学技术(ARDRA)检测了低品位铀矿柱浸体系中游离微生物(溶浸液与浸出液)及吸附微生物(矿物表面)的群落结构。微生物群落分析结果表明,A. ferrooxidans和L. ferriphilum一直都是铀矿浸出体系中的主要群落,不论在溶液中还是矿物表面;而且吸附在矿物表面的微生物多样性比游离在溶液中的微生物更丰富;溶浸液和浸出液中的优势种群是A. ferrooxidans,而吸附在矿物表面的优势种群是L. ferriphilum。
     3、对比研究了五种典型浸矿微生物的耐氟性状
     通过比较五株浸矿微生物(A. ferrooxidans ATCC23270, L. ferriphilum YSK, S. thermosulfidooxidans ST, A. thiooxidans A01, A. caldus S1)在不同浓度氟胁迫下的生长状态与铁硫氧化活性,结果表明,A. ferrooxidans的氟耐受性是最高的,其次是A. thiooxidans,再次是L. ferriphilum与A. caldus,最差的是S. thermosulfidooxidans,并表明,中度嗜热浸矿菌比常温浸矿菌更容易被氟离子所抑制。
     4、应用全基因组芯片研究了嗜酸氧化亚铁硫杆菌在氟胁迫下的基因调控机理
     通过全基因组芯片对A. ferrooxidans在4.8mM氟胁迫下的基因表达谱研究,结果显示,在氟胁迫的240min内,A. ferrooxidans ATCC23270总共有1354个基因受到氟胁迫后表达发生了差异表达(均以2倍变化为临界值,T检验,P<0.05),约占全基因组芯片所检测基因总数(3217)的42.08%。分析表明,与氟胁迫密切相关的基因信息主要涉及到细胞膜、能量代谢、转运与结合蛋白、DNA代谢、细胞处理、蛋白质的合成与命运、生物因子的合成等多个方面功能的代谢途径,这些基因信息为芯片快速筛选高耐氟菌株提供了重要的依据。
     通过生物信息学相关分析,初步阐述了A. ferrooxidans在氟胁迫下的基因调控机理:A. ferrooxidans在应对氟胁迫时,通过调节细胞膜上胞壁质、肽聚糖、多聚糖和脂蛋白的组成以及非饱和脂肪酸的比例乃至结构或构象,来维持细胞膜的渗透平衡与流动性等生物活性;以及高效表达解毒系统的相关抗性蛋白、离子运输通道蛋白、及转运调节子等,同时关闭某些离子通道进而转向对氟耐受性更有利的途径;其次,还能通过加强磷代谢合成磷脂分子来维持细胞膜的完整性和流动性。另外,在短期氟胁迫下,通过加强中间碳代谢来为细菌抵抗不良环境提供能量。最后,细胞能够通过加强氮磷代谢相关途径来减少或修复氟胁迫对蛋白质、核酸造成的损伤。有意思的是,氟胁迫虽然抑制了A. ferrooxidans的生长繁殖,却能提高单个细胞的铁氧化速率。
     5、研究了五种浸矿微生物共培养体系的耐氟特性及其在氟胁迫下的种群动态
     通过分析五种浸矿细菌的共培养体系在不同浓度的氟胁迫下的生长状态和铁硫氧化活性,表明氟胁迫在一定程度上抑制了该共培养体系的生长繁殖,对于高浓度的氟胁迫共培养体系保持较为平稳的生长延滞状态;单就铁氧化活性来说,共培养体系不如单一的铁氧化细菌;就硫氧化活性来说,单一的硫氧化细菌在氟胁迫时硫氧化活性基本消失,而共培养体系硫氧化活性的保持能力得到了明显的增强。
     通过Real-time PCR技术进行种群动态分析,结果表明,L.ferriphilum YSK和A. caldus S1为该共培养体系的优势种群;而A.ferrooxidans ATCC23270、S. thermosulfidooxidans ST、A. thiooxidansA01为劣势种群。共培养体系中受氟胁迫影响最大的是S.thermosulfidooxidans ST;其次(?)(?)A. caldus S1、A. thiooxidans A01、A. ferrooxidans ATCC23270;而L. ferriphilum YSK在氟胁迫下保持非常稳定的生长。
     6、应用功能基因芯片研究了浸矿微生物共培养体系在氟胁迫下的基因调控机制
     通过功能基因芯片(FGA-Ⅱ)对该共培养体系在4.8mM氟胁迫下的基因表达谱研究,探明了该共培养体系中与氟胁迫相关的基因主要涉及到硫代谢、细胞膜、电子传递、解毒、碳固定、氮代谢等多个方面功能的代谢途径,而且各个途径在短时间(<60min)氟胁迫倾向于高效表达,而长时间(>120min)氟胁迫各个途径更倾向于低效表达。
     芯片图谱分析表明,氟胁迫下共培养体系中起主导调节作用的是其中的优势种群,但是劣势种群在氟胁迫时很大程度上辅助了优势种群的生长及其氧化活性的保持。
Uranium, as a source of nuclear fuel, with rapid development of nuclear industry (eg. nuclear electricity, ship industry), the increasing application has gradually led to the exhaustion of high-grade ore reserves and accumulation of large quantities of low-grade ores/tailings. Bioleaching is a method by which the low-grade ores can be processed economically and eco-friendly, however, there are some problem in the application of uranium bioleaching, such as operational parameters regulation, microbial tolerance and so on. Therefore, it is of utmost valuable to explore how to well regulate the operational parameters and optimize microbial community structure, and it is theoretically meaningful for their rational isolation and adaptation to investigate the fluoride tolerant mechanism of bioleaching microorganisms at functional genomics level.
     In this study, effects of multiple factors on bioleaching of low-grade uranium, and fluoride tolerant mechanism for bioleaching microorganisms were investigated. On one hand, effects of multiple parameters on uranium dissolution efficiency in bioleaching of low-grade ores were analyzed, and it revealed the microbial community succession in the process. On the other hand, the fluoride tolerant mechanism of pure culture and mix culture was compared and investigated by using gene microarray technology. There are six aspects for detail contents and results in this study.
     1Effects of multiple parameters on column bioleaching of low-grade uranium ores were explored.
     The performance of a mesophilic microbial enrichment in column bioleaching of low-grade uranium ores was investigated, and the microbial enrichment showed strong performance. A uranium recovery of96.82%was achieved in97days column leaching process including33days acid pre-leaching stage and64days bioleaching stage. At the bioleaching stage,74.5%uranium recovery was achieved, which was3/4of the grass quantity, while the acid consumption was less than3/8in the process. It was reflected that indirect leaching mechanism took precedence over direct. It was revealed appropriate regulating the microbial community structure and iron or other ions in the leaching solution could improve the redox potential, and then indirectly improve the uranium dissolution.
     Moreover, the correlation of operational parameters and uranium dissolution efficiency was analyzed by Canoco for Windows (version4.5). The results showed, at the initial stage (day1-27), uranium dissolution rate was at lag phase, and the pH, spraying intensity and acid consumption played leading roles; at the middle stage (day39-87), uranium dissolution rate reached a peak phase, and the Eh, Fe3+/Fe2+and liquid/solid ratio were the predominant factors; at the later stage (day88-97), the dissolution rate was at a decline phase, and the liquid/solid ratio played a dominant role.
     2Microbial community successions in the column bioleaching of uranium were analyzed.
     Microbial community structure in the feed solution and leach liquor and on the mineral surface was analyzed by using Amplified Ribosomal DNA Restriction Analysis. The results A. ferrooxidans and L. ferriphilum were were predominant no matter where in the solution or on the residual surface. The microorganisms on the residual surface were more diverse than that in the solution. A. ferrooxidans was the dominant species in the solution and L. ferriphilum on the residual surface.
     3Fluoride tolerances of five representive bioleaching microorganisms were compared.
     The growth state and iron/sulfur oxidation activities of five representive bioleaching microorganisms(A. ferrooxidans ATCC23270, L. ferriphilum YSK, S. thermosulfidooxidans ST, A. thiooxidans A01, A. caldus S1) upon different fluoride stress were compared. It showed, the fluoride tolerance of A. ferrooxidans was best, secondly A. thiooxidans, thirdly L. ferriphilum and A. caldus, worst S. thermosulfidooxidans. Additionally, moderate thermophiles were inhibited more than mesophiles.
     4Gene regulation mechanism of A. ferrooxidans upon fluoride stress was studied by the whole-genome array.
     The gene expression profile of A. ferrooxidans ATCC23270upon4.8mM fluoride stress was investigated using the whole-genome array. The results showed,1354genes were differentially expressed upon fluoride stress for240min (2fold as threshold, P<0.05), was42.08%of microarray probes. In addition, the genes associated with fluoride stress were involved with cell membrane, energy metabolism, transport and binding proteins, DNA metabolism, cellular processes, proteins synthesis and fate, biosynthesis of cofactors, and so on, it provided some insight for quickly isolation of bioleaching strain with highly fluoride tolerance.
     Further analysis revealed, A. ferrooxidans could regulate the composition or ratio or structure or conformation of murein sacculus, peptidoglycan, polysaccharides, lipopolysaccharides and lipoprotein of cell membrane upon fluoride stress, to maintain membrane bioactivities such as osmotic balance and mobility and etc. The resistance proteins, ion transporter protein and transportation regulator involved with detoxification were induced, meantime, some ion channel was closed and turned to the pathway favorable for fluoride resistance. Secondly, it enhanced the phosphate metabolism to synthetize phospholipid, and further to maintain the membrane integrity and mobility. Additionally, at the short time fluoride stress, the bacteria could improve the carbon metabolism to provide the energy for resisting the severe environment. Lastly, the cells could enhance the phosphate metabolism to relieve or repair the protein and nuclear acid damage by fluoride stress. Interestingly, fluoride stress inhibited the growth of A. ferrooxidans, but improved the iron oxidation rate of single cell.
     5Fluoride tolerance of the co-culture of five bioleaching bacteria and the community dynamics upon the fluoride stress was studied.
     The growth and iron/sulfur oxidation rate of the co-culture of the five bioleaching bacteria was analyzed. The results showed, the growth of the co-culture was inhibited upon fluoride stress, and kept the stable cell density at high fluoride stress. As for iron oxidation activity, the co-culture was worse than the pure iron-oxidating bacteria. As for sulfur oxidation activity, the co-culture was better. The sulfur activity of the pure sulfur-oxidation bacteria was almost disappeared, while the co-culture's was not affected by fluoride stress.
     Microbial community dynamics of the co-culture was analyzed by real-time PCR. It showed that L. ferriphilum YSK and A. caldus S1was always the dominant species at fluoride stress or non-stress, while the minor was A. ferrooxidans ATCC23270, S. thermosulfidooxidans ST, A. thiooxidans A01. Besides, S. thermosulfidooxidans was inhibited most obviously in the co-culture, secondly A. caldus, A. thiooxidans, A. ferrooxidans, while the L. ferriphilum kept a very stable growth.
     6Gene regulation mechanism of the co-culture upon fluoride stress was studied by the functional gene array.
     The gene expression profile of the co-culture upon4.8mM fluoride stress was investigated using the functional gene array. The results showed, the genes associated with fluoride stress were involved with sulfur metabolism, cell membrane, electron transport, detoxification, carbon fixation, nitrogen metabolism, and so on. Additionally, majority of genes was induced upon the short time (<60min) fluoride stress, while repressed upon the long time (>120min) fluoride stress.
     The effects of fluoride stress on different microbial population in the co-culture were different. The results revealed that the dominant species in the co-culture played the crucial role for resisting fluoride stress, while the minor species to a large extent assisted the oxidation ability preservation and growth of the dominant species.
引文
[1]郑明光,叶成,韩旭.新能源中的核电发展.核技术,2010,33(2):81-86
    [2]侯建朝,施泉生,谭忠富.我国核电发展的铀资源供应风险及对策.中国电力,2010,43(12):1-4
    [3]Brierley J, Brierley C. Present and future commercial applications of biohydrometallurgy. Hydrometallurgy,2001,59:233-239
    [4]Ehrlich HL. Past, present and future of biometallurgy. Hydrometallurgy,2001,59: 127-134
    [5]Ehrlich HL. Beginnings of rational bioleaching and highlights in the development of biohydrometallurgy:A brief history. European Journal of Mineral Processing and Environmental Protection,2004,4:102-112
    [6]Watling HR. The bioleaching of sulphide minerals with emphasis on copper sulphides—a review. Hydrometallurgy,2006,84:81-108
    [7]Akcil A, Deveci H. Mineral Biotechnology of Sulphides (Chapter 4). In: Jain S, Khan A, Rai MK, Eds. Geomicrobiology. Science Publishers, Enfield, New Hampshire, USA,2010.101-137.
    [8]Breed AW, Dempers CJN, Hansford GS. Studies on the bioleaching of refractory concentrates. Journal of the South African Institute of Mining and Metallurgy, 2000,100:389-397
    [9]Fu B, Zhou H, Zhang R, Qiu G. Bioleaching of chalcopyrite by pure and mixed cultures of Acidithiobacillus spp. and Leptospirillum ferriphilum. International Biodeterioration and Biodegradation.2008,62:109-115
    [10]Johnson DB. Biodiversity and interactions of acidophiles:Key to understanding and optimizing microbial processing of ores and concentrates. Transactions of Nonferrous Metals Society of China.2008,18,1367-1373
    [11]Czegledi B, Fekete L, Egyed J, Czako-ver K. Sodic processing of Hungarian low-grade and waste uranium ores by help of microbiological processes. In: Vienna, Atomic Energy Authority.1983.40
    [12]Bruynesteyn A. The biological aspects of heap and in-place leaching of uranium ores. In: 6th Annu. Uranium Seminar. SME-AIME, New York,1983.59-65.
    [13]McCready RGL, Wadden D, Marchbank A. Nutrient requirements for the in-place leaching of uranium by Thiobacillus ferrooxidans. Hydrometallurgy,1986,17(1): 61-71
    [14]Wadden D, Gallant A. The in-place leaching of uranium at Denison mines. Canadian Metallurgical Quarterly,1985,2:127-134
    [15]刘健,樊保团,张传敬.抚州铀矿细菌堆浸半工业试验研究.铀矿冶,2001,20(1):15-26
    [16]王清良,胡凯光,阳奕汉.伊宁铀矿512矿床地浸中细菌代替双氧水初步试验研究.铀矿冶,1999,18(4):262-267
    [17]胡凯光,李传乙,黄爱武,史文革.湖南某矿细菌浸铀.矿冶,2003,12(2):10-13
    [18]王德义,谌竟清,赵淑良,姜志新.铀的提取与精制工艺学.北京:原子能出版社,1982.50-66
    [19]余达淦,吴仁贵,陈培荣.哈尔滨:工程大学出版社,2005.16-18
    [20]余达淦,吴仁贵,陈培荣.哈尔滨:工程大学出版社,2005.48-76
    [21]梅里特R C.铀的提取冶金学.北京:科学出版社,1978.515-522
    [22]余达淦,吴仁贵,陈培荣.哈尔滨:工程大学出版社,2005.44-47
    [23]IAEA.铀提取工艺.北京:出版者不详,1995.85-94
    [24]Munoz JA, Gonzalez F, Blasquez ML, Ballester A. A study of the bioleaching of a Spanish uranium ore, Part Ⅰ:A review of the bacterial leaching in the treatment of uranium ores. Hydrometallurgy,1995,38,39-57
    [25]Munoz JA, Ballester A, Gonzalez F, Blasquez ML. A study of the bioleaching of a Spanish uranium ore, Part Ⅱ:Orbital shaker experiments. Hydrometallurgy,1995, 38,59-78
    [26]Lottering MJ, Lorenzen L, Phala NS, Smit JT, Schalkwyk GAC. Mineralogy and uranium leaching response of low grade South African ores. Minerals Engineering,2008,21:16-22
    [27]Ginder-Vogel M, Stewart B, Fendorf S. Kinetic and mechanistic constraints on the oxidation of biogenic uraninite by ferrihydrite. Environmental Science and Technology,2010,44(1):163-169
    [28]Rohwerder T, Gehrke T, Kinzler K, Sand W. Bioleaching review part A: fundamentals and mechanisms of bacterial metal sulfide oxidation. Applied Microbiology and Biotechnology,2003,63(3):239-248
    [29]Sand W, Gerke T, Hallmann R, Schippers A. Sulfur chemistry, biofilm, and the (in) direct attack mechanism—a critical evaluation of bacterial leaching. Applied Microbiology and Biotechnology,1995,43(6):961-966
    [30]Crundwell F. How do bacteria interact with minerals? Hydrometallurgy,2003,71: 75-81
    [31]李定龙,钟平汝,李振宗,李铁球,赵国华.泥矿和高品位精矿搅拌浸出工艺研究.铀矿冶,2011,30(1):26-31
    [32]邓洪星,孙丽敏,刘金辉.细粒径矿石中铀浸出方法的初步研究.中国高新技术企业,2010,21:45-48
    [33]李广悦,刘玉龙,王永东,丁德馨.低品位铀矿石硫酸搅拌浸出与细菌搅拌浸出研究.核科学与工程,2009,29(1):92-96
    [34]曾毅君,牛玉清,张飞凤,钟平汝.中国铀矿冶生产技术进展综述.铀矿冶,2003,22(1):24-28
    [35]苑俊廷,孙占学.细菌堆浸浸铀技术的发展及展望.中国矿业,2008,17(6):45-48
    [36]刘建,樊保团,孟运生,郑英,刘超,周磊.我国铀矿石微生物浸出的实践与展望.铀矿冶,2008,27(3):118-123
    [37]肖芳欢.三二0铀矿床改用留矿淋浸采矿法可行性初探.铀矿开采,1990,1:7-11
    [38]陈仕安,黄祥富,樊保团.细菌氧化再生逆流淋浸铀矿的实践.铀矿冶,1995,14(4):230-234
    [39]刘建,樊保团,孟运生.赣州铀矿草桃背细菌堆浸试验研究.铀矿冶,2001,20(3):151-156
    [40]樊保团,孟运生,刘建.赣州铀矿草桃背分矿细菌堆浸工业试验.铀矿冶,2002,21(2):65-73
    [41]刘建,肖金峰,樊保团等.细菌堆浸在赣州铀矿的工业应用.铀矿冶,2003,22(2):65-70
    [42]全爱国,寇子顺,张春晖,黄斌,施祖远.赣州铀矿某群脉状铀矿床原地爆破浸出试验.铀矿冶,2004,23(4):169-173
    [43]钟永明,谢国森,李凌波,李秦,王小波.我国原地爆破浸出采铀工艺技术研究与应用.中国矿业,2004,13(6):63-65
    [44]全爱国,欧阳建功.我国原地爆破浸出开采及其发展前景.铀矿冶,2001,20(1):1-4
    [45]马新林.原地浸出采铀的科学试验与技术应用.铀矿冶,2000,19(3):145-151
    [46]Klimkova S, Cernik M, Lacinova L, Filip J, Jancik D, Zboril R. Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching. Chemosphere,2011,82:1178-1184
    [47]Mudd GM. Critical review of acid in situ leach uranium mining:1. USA and Australia. Environmental Geology,2001,41(3-4):390-403
    [48]Mudd GM. Critical review of acid in situ leach uranium mining:2. Soviet Block and Asia. Environmental Geology,2001,41(3-4):404-416
    [49]胡凯光,王清良,刘迎九等.381地浸工业中的细菌氧化扩大试验.铀矿冶,1999,18(4):262-267
    [50]李雄,柴立元,王云燕.生物浸矿技术研究进展.工业安全与环保,2006,32(3):1-3
    [51]McCready RGL, Gould WB. Bioleaching of uranium. In: Ehrlich HL, Brierley CL (eds) Microbial mineral recovery. McGraw-Hill, New York,1990.107-125
    [52]Rawlings DE, Silver S. Mining with microbes. Biotechnology,1995,13:773-778
    [53]刘汉钊.张永奎微生物在矿物工程上应用的新进展.国外金属矿选矿,1999,12:9-12
    [54]陈仕安.细菌氧化再生逆流淋浸铀矿石的技术应用(中国核科技报告,CNIC-00977 BICM-0013).北京:原子能出版社,1995.199
    [55]张鉴堂.生物膜连续氧化溶液中亚铁的研究.铀矿选冶,1980,(3):7-12
    [56]Bosecker K. Bioleaching:metal solubilization by microorganisms. FEMS Microbiology Reviews,1997,20,591-604
    [57]Yang S, Xie J, Qiu G, Hu Y. Research and application of bioleaching and biooxidation technologies in China. Minerals Engineering,2002,15:361-363
    [58]Hallberg KB. New perspectives in acid mine drainage microbiology. Hydrometallurgy,2010,104:448-453
    [59]Rawlings DE, Johnson DB. The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia. Microbiology,2007,153: 315-324
    [60]Munoz JA, Blasquez ML, Ballester A, Gonzalez F. A study of the bioleaching of a Spanish uranium ore, Part III:column experiments. Hydrometallurgy,1995,38: 79-97
    [61]Qiu G, Li Q, Yu R, Sun Z, Liu Y, Chen M, Yin H, Zhang Y, Liang Y, Xu L, Sun L, Liu X. Column bioleaching of uranium embedded in granite porphyry by a mesophilic acidophilic consortium. Bioresource Technology,2011,102(7): 4697-4702
    [62]Curutchet G, Pogliani C, Donati E, Tedesco P. Effect of iron (III) and its hydrolysis products (jarosites) on Thiobacillus ferrooxidans growth and on bacterial leaching. Biotechnology letters,1992,14(4):329-334
    [63]Stott MB, Waliting HR, Franzmann PD, Sutton D. The role of iron-hydroxy precipitates in the passivation of chalcopyrite during bioleaching. Minerals Engineering,2000,13(10):1117-1127
    [64]Dutrizac J. Elemental sulphur formation during the ferric sulphate leaching of chalcopyrite. Canadian Metallurgical Quarterly,1989,28(4):337-344
    [65]Lottering MJ, Lorenzen L, Phala NS, Smit JT, Schalkwyk GAC. Mineralogy and uranium leaching response of low grade South African ores. Minerals Engineering,2008,21:16-22
    [66]周泉,刘松军.添加渗滤物质改善堆浸铀矿石渗透性.铀矿冶,2002,3:163-165
    [67]Xia L, Liu X, Zeng J, Yin C, Gao J, Liu J, Qiu G. Mechanism of enhanced bioleaching efficiency of Acidithiobacillus ferrooxidans after adaptation with chalcopyrite. Hydrometallurgy,2008,92:95-101
    [68]Elzeky M, Attia YA. Effect of bacterial adaptation on kinetics and mechanisms of bioleaching ferrous sulfides. The Chemical Engineering Journal,1995,56: 115-124
    [69]Zagurya GJ, Narasiaha KS, Tyagib RD. Adaptation of indigenous iron-oxidizing bacteria for bioleaching of heavy metals in contaminated soils. Environmental Technology,1994,15(6):517-530
    [70]Bruins MR, Kapil S, Oehme FW. Microbial Resistance to Metals in the Environment. Ecotoxicology and Environmental Safety,2000,45:198-207
    [71]Stepanauskas R, Glenn TC, Jagoe CH, Tuckfield RC, Lindell AH, McArthur JV. Elevated Microbial Tolerance to Metals and Antibiotics in Metal-Contaminated Industrial Environments. Environmental Science and technology,2005,39: 3671-3678
    [72]Brul S, Coote P. Preservative agents in foods Mode of action and microbial resistance mechanisms. International Journal of Food Microbiology,1999,50: 1-17
    [73]Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet, 2001,358:135-38
    [74]Dopson M, Baker-Austin C, Koppineedi PR, Bond PL. Growth in sulfidic mineral environments:metal resistance mechanisms in acidophilic microorganisms. Microbiology,2003,149:1959-1970
    [75]Chen S, Wilson DB. Genetic engineering of bacteria and their potential for Hg2+ bioremediation. Biodegradation,1997,8:97-103
    [76]马宏.氟化物对口腔微生物的生物学作用.北京口腔医学,1998,6(3):132-134
    [77]Marquis RE, Clock SA, Mota-Meira M. Fluoride and organic weak acids as modulators of microbial Physiology. FEMS Microbiology Reviews,2003,26: 493-510
    [78]Bibby BG, van Kesteren M. The Effect of Fluorine on Mouth Bacteria. Journal of Dental Research,1940,19:391-402
    [79]Ishihara M, Kosaka T, Nakamura T, Tsugawa K, Hasegawa M, Kokai F, Koga Y. Antibacterial activity of fluorine incorporated DLC films. Diamond and Related Materials,2006,15:1011-1014
    [80]Wang D, Fan L, Zheng C, Fang Z. Synthesis and anti-microbial activity of some new fluorinated 1H-pyrazoles. Journal of Fluorine Chemistry,2010,131: 584-586
    [81]Gyo M, Nikaido T, Okada K, Yamauchi J, Tagami J, Matin K. Surface response of fluorine polymer-Incorporated resin composites to cariogenic biofilm adherence. Applied and Environmental Microbiology,2008,74:1428-1435
    [82]Nurhaerani, Arita K, Shinonaga Y, Nishino M. Plasma-based fluorine ion implantation into dental materials for inhibition of bacterial adhesion. Dental Materials Journal,2006,25:684-692
    [83]Tscherko D, Kandeler E. Ecotoxicological effects of fluorine deposits on microbial biomass and enzyme activity in grassland. European Journal of Soil Science,1997,48:329-335
    [84]Sorokin ND, Afanasova EN. Microbial indication of soils contaminated with industrial emissions. Contemporary Problems of Ecology,2011,4:508-512
    [85]Marquis RE. Antimicrobial actions of fuoride for oral bacteria. Canadian Journal of Microbiology,1995,41:955-964
    [86]Thongboonkerd V, Luengpailin J, Cao J, Pierce WM, Cai J, Klein JB, Doyle RJ. Fluoride exposure attenuates expression of Streptococcus pyogenes virulence factors. Journal of Biological Chemistry,2002,277:16599-16605
    [87]Butcher BG, Rawlings DE. The divergent chromosomal ars operon of Acidithiobacillus ferrooxidans is regulated by an atypical ArsR protein. Microbiology,2002,148:3983-3992
    [88]Butcher BG, Shelly MD, Rawlings DE. The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli. Applied and Environmental Microbiology,2000,66:1826-1833
    [89]Kalyaeva ES, Kholodii GY, Bass IA, Gorlenko ZM, Yureiva OV, Nikiforov VG Tn5037, a Tn21-like mercury resistance transposon from Thiobacillus ferrooxidans. Russian Journal of Genetics,2001,37,972-975
    [90]Velasco A, Acebo P, Flores N, Perera J. The mer operon of the acidophilic bacterium Thiobacillus T3.2 diverges from its Thiobacillus ferrooxidans counterpart. Extremophiles,1999,3,35-43
    [91]Harvey PI, Crundwell FK. The effect of As(III) on the growth of Thiobacillus ferrooxidans in an electrolytic cell under controlled redox potential. Minerals Engineering,1996,9:1059-1068
    [92]Baillet F, Magnin JP, Cheruy A, Ozil P. Chromium precipitation by the acidophilic bacterium Thiobacillus ferrooxidans. Biotechnology Letters,1998,20: 95-99
    [93]Dew DW, Muhlbauer R, van Buuren C. Bioleaching of copper sulphide concentrates with mesophiles and thermophiles. In:Dew DW, Muhlbauer R, et al. Alta Copper 99. Brisbane, Australia,1999
    [94]Makita M, Esperon M, Pereyra B, Lopez A, Orrantia E. Reduction of arsenic content in a complex galena concentrate by Acidithiobacillus ferrooxidans. BMC Biotechnology,2004,4
    [95]Kim S, Bae J, Park H, Cha D. Bioleaching of cadmium and nickel from synthetic sediments by Acidithiobacillus ferrooxidans. Environmental Geochemistry and Health,2005,27(3):229-235
    [96]Cabrera G, Gomez JM, Cantero D. Kinetic study of ferrous sulphate oxidation of Acidithiobacillus ferrooxidans in the presence of heavy metal ions. Enzyme and Microbial Technology,2005,36(2-3):301-306
    [97]Leng FF, Li KY, Zhang XX, Li YQ, Zhu Y, Lu JF, Li HY. Comparative study of inorganic arsenic resistance of several strains of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans. Hydrometallurgy,2009,98(3-4):235-240
    [98]Gholami RM, Borghei SM, Mousavi SM. Bacterial leaching of a spent Mo-Co-Ni refinery catalyst using Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Hydrometallurgy,2011,106(1-2):26-31
    [99]Olson GJ, Brierley JA, Brierley CL. Bioleaching review part B:Progress in bioleaching:applications of microbial processes by the minerals industries. Applied Microbiology and Biotechnology,2003,63(3):249-257
    [100]Brierley CL. Bacterial leaching. Critical Reviews in Microbiology,1978,6: 207-262
    [101]Hansford GS, Vargas T. Chemical and electrochemical basis of bioleaching processes. Hydrometallurgy,2001,59:135-145
    [102]Johnson DB. Biohydrometallurgy and the environment:Intimate and important interplay. Hydrometallurgy,2006,83:153-166
    [103]Simate GS, Ndlovu S, Gericke M. Bacterial leaching of nickel laterites using chemolithotrophic microorganisms:Process optimisation using response surface methodology and central composite rotatable design. Hydrometallurgy,2009,98: 241-246
    [104]Mousavi SM, Yaghmaei S, Vossoughi M, Roostaazad R, Jafari A, Ebrahimi M, Chabok OH, Turunen I. The effects of Fe(II) and Fe(III) concentration and initial pH on microbial leaching of low-grade sphalerite ore in a column reactor. Bioresource Technology,2008,99:2840-2845
    [105]Mazuelos A, Iglesias N, Carranza F. Inhibition of bioleaching processes by organics from solvent extraction. Process Biochemistry,1999,35:425-431
    [106]Cameron RA5 Lastra R, Mortazavi S, Gould WD, Thibault Y, Bedard PL, Morin L, Kennedy KJ. Elevated-pH bioleaching of a low-grade ultramafic nickel sulphide ore in stirred-tank reactors at 5 to 45 ℃. Hydrometallurgy,2009,99:77-83
    [107]Halinen AK, Rahunen N, Kaksonen AH, Puhakka JA. Heap bioleaching of a complex sulfide ore Part Ⅰ:Effect of pH on metal extraction and microbial composition in pH controlled columns. Hydrometallurgy,2009,98:92-100
    [108]Halinen AK, Rahunen N, Kaksonen AH, Puhakka JA. Heap bioleaching of a complex sulfide ore:Part Ⅱ. Effect of temperature on base metal extraction and bacterial compositions. Hydrometallurgy,2009,98:101-107
    [109]Nemati M, Lowenadler J, Harrison STL. Particle size effects in bioleaching of pyrite by acidophilic thermophile Sulfolobus metallicus. Applied Microbiology and Biotechnology,2000,53:173-179
    [110]Olubambi PA, Potgieter JH, Ndlovu S, Borode JO. Electrochemical studies on interplay of mineralogical variation and particle size on bioleaching low grade complex sulphide ores. Transactions of Nonferrous Metals Society of China,2009, 19:1312-1325
    [111]Vilcaez J, Inoue C. Mathematical modeling of thermophilic bioleaching of chalcopyrite. Minerals Engineering,2009,22:951-960
    [112]Lizama HM, Fairweather MJ, Dai Z, Allegretto TD. How does bioleaching start? Hydrometallurgy,2003,69:109-116
    [113]Lizama HM. A kinetic description of percolation bioleaching. Minerals Engineering,2004,17:23-32
    [114]Haghshenas DF, Alamdari EK, Bonakdarpour B, Darvishi D, Nasernejad B. Kinetics of sphalerite bioleaching by Acidithiobacillus ferrooxidans. Hydrometallurgy,2009,99:202-208
    [115]Brochot S, Durance MV, Villeneuve J, Hugues P, Mugabi M. Modelling of the bioleaching of sulphide ores:application for the simulation of the bioleaching/gravity section of the Kasese Cobalt Company Ltd process plant. Minerals Engineering,2004,17:253-260
    [116]Cajo JF, Ter B. Canonical Correspondence Analysis:A New Eigenvector Technique for Multivariate Direct Gradient Analysis. Ecology,1986,67(5): 1167-1179
    [117]Gardner S, Gower JC, Roux NJ. A synthesis of canonical variate analysis, generalised canonical correlation and Procrustes analysis. Computational Statistics and Data Analysis,2006,50:107-134
    [118]Taskinen S, Croux C, Kankainen A, Ollila E, Oja H. Influence functions and efficiencies of the canonical correlation and vector estimates based on scatter and shape matrices. Journal of Multivariate Analysis,2006,97:359-384
    [119]Kennedy NM, Gleeson DE, Connolly J, Clipson NJW. Seasonal and management influences on bacterial community structure in an upland grassland soil. FEMS Microbiology Ecology,2005,53:329-337
    [120]Torres A, Velden M. Perceptual mapping of multiple variable batteries by plotting supplementary variables in correspondence analysis of rating data. Food Quality and Preference,2007,18:121-129
    [121]Batten KM, Scow KM. Sediment Microbial Community composition and methylmercury pollution at four mercury mine-impacted sites. Microbial Ecology, 2003,46:429-441
    [122]Johnson DB. Importance of microbial ecology in the development of new mineral technologies. Hydrometallurgy,2001,59:147-157
    [123]Klocke M, Mahnert P, Mundt K, Souidi K, Linke B. Microbial community analysis of a biogas-producing completely stirred tank reactor fed continuously with fodder beet silage as mono-substrate. Systematic and Applied Microbiology, 2007,30,139-151.
    [124]Mousavi SM, Jafari A, Yaghmaei S, Vossoughi M. Bioleaching of low-grade sphalerite using a column reactor. Hydrometallurgy,2006,82:75-82
    [125]Zeng W, Qiu G, Zhou H, Peng J, Chen M, Tan SM, Chao W, Liu X, Zhang Y. Community structure and dynamics of the free and attached microorganisms during moderately thermophilic bioleaching of chalcopyrite concentrate. Bioresource Technology,2010,101:7068-7075
    [126]Gao D, Tao Y. Current molecular biologic techniques for characterizing environmental microbial community. Frontiers of Environmental Science and Engineering,2012,6(1):82-97
    [127]Amann R, Snaidr J, Wagner M, Ludwig W, Schleifer KH. In situ visualization of high genetic diversity in a natural microbial community. Journal of Bacteriology, 1996,178(12):3496-3500
    [128]Zhou J, Bruns MA, Tiedje JM. DNA Recovery from Soils of Diverse Composition. Applied and Environmental Microbiology,1996,62:316-322
    [129]Espejo RT, Feijoo CG, Romero J, Vasquez M. Page analysis of the heteroduplexes formed between PCR amplified 16S ribosomal RNA genes:estimation of sequence similarity and rDNA complexity. Microbiology,1998,144:1611-1617
    [130]Gargarello RM, Gregorio DD, Huck H, Fernandez NJ, Curutchet G. Reduction of uranium(VI) by Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans. Hydrometallurgy,2010.104:529-532
    [131]Pal S, Pradhan D, Das T, Sukla LB, Chaudhury GR. Bioleaching of low-grade uranium ore using Acidithiobacillus ferrooxidans. Indian Journal of Microbiology, 2010,50:70-75
    [132]Tsezos M, Volesky B. Biosorption of uranium and thorium. Biotechnology and Bioengineering,1981,23:583-604
    [133]Veglio F, Beolchini F. Removal of metals by biosorption:a review. Hydrometallurgy,1997,44:301-316
    [134]李江,饶军,刘亚洁,孙占学,李学礼,史维浚.高氟铀矿石微生物堆浸工业试验.有色金属,2011,(7):26-29
    [135]Kotze AA, Tuffin IM, Deane SM, Rawlings DE. Cloning and characterization of the chromosomal arsenic resistance genes from Acidithiobacillus caldus and enhanced arsenic resistance on conjugal transfer of ars genes located on transposon TnAtcArs. Microbiology,2006,152:3552-3560
    [136]Kotze AA, Tuffin IM, Deane SM, Rawlings DE. Multiple sets of arsenic resistance genes are present within highly arsenic-resistant industrial strains of the biomining bacterium, Acidithiobacillus caldus. Microbiology,2005,1275: 165-172
    [137]de Groot P, Deane SM, Rawlings DE. A transposon-located arsenic resistance mechanism from a strain of Acidithiobacillus caldus isolated from commercial, arsenopyrite biooxidation tanks. Hydrometallurgy,2003,71(1-2):115-123
    [138]Chen DD, Lin JQ, Che YY, Liu XM, Lin JQ. Construction of recombinant mercury resistant Acidithiobacillus caldus. Microbiological Research,2011, 166(7):515-520
    [139]Dopson M, Lindstrom EB, Hallberg KB. Chromosomally encoded arsenical resistance of the moderately thermophilic acidophile Acidithiobacillus caldus. Extremophiles,2001,5(4):247-255
    [140]Tuffin IM, de Groot P, Deane SM, Rawlings DE. An unusual Tn21-like transposon containing an ars operon is present in highly arsenic-resistant strains of the biomining bacterium Acidithiobacillus caldus. Microbiology,2005,151: 3027-3039
    [141]Watkin ELJ, Keeling SE, Perrot FA, Shiers DW, Palmer ML, Watling HR. Metals tolerance in moderately thermophilic isolates from a spent copper sulfide heap, closely related to Acidithiobacillus caldus, Acidimicrobium ferrooxidans and Sulfobacillus thermosulfidooxidans. Journal of Industrial Microbiology and Biotechnology,2009,36(3):461-465
    [142]Chen BY, Liu HL, Chen YW, Cheng YC. Synergistic interactions of binary metal toxicity to indigenous Acidithiobacillus thiooxidans. Journal of the Chinese Institute of Chemical Engineers,2006,37(3):217-225
    [143]Liu HL, Chiu CW, Cheng YC. The effects of metabolites from the indigenous Acidithiobacillus thiooxidans and temperature on the bioleaching of cadmium from soil. Biotechnology and Bioengineering,2003,83(6):638-645
    [144]Tuffin M, Hector SB, Deane SM, Rawlings DE. Resistance determinants of a highly arsenic-resistant strain of Leptospirillum ferriphilum isolated from a commercial biooxidation tank. Applied and Environmental Microbiology,2006, 72(3):2247-2253
    [145]Li B, Lin J, Mi S, Lin J. Arsenic resistance operon structure in Leptospirillum ferriphilum and proteomic response to arsenic stress. Bioresource Technology, 2010,101:9811-9814
    [146]Rawlings DE. High level arsenic resistance in bacteria present in biooxidation tanks used to treat gold-bearing arsenopyrite concentrates:A review. Transactions of Nonferrous Metals Society of China,2008,18:1311-1318
    [147]Kloppers A, Larmuth K, Deane S, Rawlings DE. Leptospirilli from different continents have acquired related arsenic-resistance transposons. Hydrometallurgy, 2008,94:170-174
    [148]Tian J, Wu N, Li J, Liu Y, Guo J, Yao B, Fan Y. Nickel-Resistant Determinant from Leptospirillum ferriphilum. Applied and Environmental Microbiology,2007, 73(7):2364-2368
    [149]Nurmi P, Ozkaya B, Kaksonen AH, Tuovinen OH, Puhakka JA. Inhibition kinetics of iron oxidation by Leptospirillum ferriphilum in the presence of ferric, nickel and zinc ions. Hydrometallurgy,2009,97:137-145
    [150]van der Merwe JA, Deane SM, Rawlings DE. Chromosomal arsenic resistance genes from Sulfobacillus thermosulfidooxidans and a demonstration that the genetic diversity of arsB among the sulfobacilli is similar to that of their 16S rRNA genes. Biohydrometallurgy:A Meeting Point between Microbial Ecology, Metal Recovery Processes and Environmental Remediation,2009,71-73: 171-174
    [151]van der Merwe JA, Deane SM, Rawlings DE. The chromosomal arsenic resistance genes of Sulfobacillus thermosulfidooxidans. Hydrometallurgy,2010, 104(3-4):477-482
    [152]Leduc LG, Ferroni GD. The chemolithotrophic bacterium Thiobacillus ferrooxidans. FEMS Microbiology Reviews,1994,14(2):103-119
    [153]Torma A. The role of Thiobacillus ferrooxidans in hydrometallurgical processes. Advances in Biochemical Engineering,1977,6:1-37
    [154]Braddock JF, Luong HV, Brown EJ. Growth kinetics of Thiobacillus ferrooxidans isolated from arsenic mine drainage. Applied and Environmental Microbiology, 1984,48(1):48
    [155]邓恩建,杨朝晖,曾光明,徐峥勇.氧化亚铁硫杆菌的研究概况.黄金科学技术,2005,13(5):8-12
    [156]Zimmerley SR, Wilson DG, Prater JD. Cyclic leaching process employing iron oxidizing bacteria. US Patent,1958,2,829,964
    [157]Harrison VF, Gow WA, Ivarson KC. Leaching of uranium from Elliot Lake ore in the presence of bacteria. Canadian Mining Journal,1966,87:64-67
    [158]Marais HJ. Bacterial oxidation of arseno-pyrite refractory gold ore. In:Innovation in metallurgical plant. South African Institute of Mining and Metallurgy, Johannesburg,1990.125-129
    [159]Aswegen PC van, Godfrey MW, Miller DM, Haines AK. Developments and innovations in bacterial oxidation of refractory ores. Minerals and Metallurgical Processing,1991,11:188-191
    [160]Merroun M, Hennig C, Rossberg A, Reich T, Selenska-Pobell S. Characterization of U(VI)-Acidithiobacillus ferrooxidans complexes using EXAFS, transmission electron microscopy, and energy-dispersive X-ray analysis. Radiochimica Acta, 2003,91(10):583-592
    [161]Ohmura N, Matsumoto N, Sasaki K, Saiki H. Electrochemical regeneration of Fe(III) to support growth on anaerobic iron respiration. Applied and Environmental Microbiology,2002,68(1):405-407
    [162]王清良,刘迎九,胡凯光,胡鄂明,段晓恒.细菌耐酸耐氟驯化培养试验研究.矿业研究与开发,2005,25(2):35-36
    [163]王永东,丁德馨,李广悦,胡南.氧化亚铁硫杆菌耐铀氟离子的连续转接驯化和联合驯化.过程工程学报,2011,11(5):834-839
    [164]Brierley JA, Kuhn MC. Fluoride toxicity in a chalcocite bioleach heap process. Hydrometallurgy,2010,104:410-413
    [165]Gunneriusson L, Sandstrom A, Holmgren A, Kuzmann E, Kovacs K, Vertes A. Jarosite inclusion of fluoride and its potential significance to bioleaching of sulphide minerals. Hydrometallurgy,2009,96:108-116
    [166]Li Q, Shen L, Luo H, Yin H, Liao L, Qiu G, Liu X. Development and evaluation of whole-genome oligonucleotide array for Acidithiobacillus ferrooxidans ATCC 23270. Transactions of Nonferrous Metals Society of China,2008,18: 1343-1351
    [167]Xu D, Li G, Wu L, Zhou J, Xu Y. PRIMEGENS:robust and efficient design of gene-specific probes for microarray analysis. Bioinformatics,2002,18: 1432-1437
    [168]Verdnick D, Handran S, Pickett S. Key considerations for accurate microarray scanning and image analysis. In:Kamberova, G. (Ed.), DNA Image Analysis: Nuts and Bolts. DNA Press, Salem, Mass,2002.83-98
    [169]Eisen MB, Spellman PT, Brown PO, et al. Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences of the United States of America,1998,95(25):14863-14868
    [170]Fisher MA, Plikaytis BB, Shinnick TM. Microarray analysis of the Mycobacterium tuberculosis transcriptional response to the acidic conditions found in phagosomes. Journal of Bacteriology,2002,184:4025-4032
    [171]Helmann JD, Wu MF, Kobel PA, Gamo FJ, Wilson M, Morshedi MM, Navre M, Paddon C. Global transcriptional response of Bacillus subtilis to heat shock. Journal of Bacteriology,2001,183:7318-7328.
    [172]Smoot LM, Smoot JC, Graham MR, Somerville GA, Sturdevant DE, Migliaccio CA, Sylva GL, Musser JM. Global differential gene expression in response to growth temperature alteration in group A Streptococcus. Proceedings of the National Academy of Sciences of the United States of America,2001,98: 10416-10421.
    [173]Stintzi A. Gene expression profile of Campylobacter jejuni in response to growth temperature variation. Journal of Bacteriology,2003,185:2009-2016.
    [174]Haichun Gao, Yue Wang, Xueduan Liu, Tingfen Yan, Liyou Wu, Eric Alm, Adam Arkin, Dorothea K. Thompson, Jizhong Zhou. Global transcriptome analysis of the heat shock response of Shewanella oneidensis. Journal of Bacteriology,2004, 186:7796-7803.
    [175]Gao H, Yang ZK, Wu L, Thompson DK, Zhou J. Global transcriptome analysis of the cold shock response of Shewanella oneidensis MR-1 and mutational analysis of its classical cold shock proteins. Journal of Bacteriology,2006,188: 4560-4569.
    [176]Li Q, Ren Y, Qiu G, Li N, Liu H, Dai Z, Fu X, Shen L, Liang Y, Yin H, Liu X. Insights into the pH up-shift responsive mechanism of Acidithiobacillus ferrooxidans by microarray transcriptome profiling. Folia Microbiologica,2011, 56(5):439-451
    [177]Gutknecht J, Walter A. Hydrofluoric and nitric acid transport through lipid bilayer membranes. BBA-Biomembranes,1981,644:153-156.
    [178]Suzuki I, Lee D, Mackay B, Harahuc L, Oh JK. Effect of various ions, pH, and osmotic pressure on oxidation of elemental sulfur by Thiobacillus thiooxidans. Applied and Environmental Microbiology,1999,65:5163-5168
    [179]Veloso TC, Sicupira LC, Rodrigues ICB, Silva LAM, Leao VA. The effects of fluoride and aluminum ions on ferrous-iron oxidation and copper sulfide bioleaching with Sulfobacillus thermosulfidooxidans. Biochemical Engineering Journal,2012,62:48-55
    [180]Marquis RE, Clock SA, Mota-Meira M. Fluoride and organic weak acids as modulators of microbial physiology. FEMS Microbiology Reviews,2003,26: 493-510
    [181]Zhu L, Zhang Z, Liang J. Fatty-acid profiles and expression of the fabM gene in a fluoride-resistant strain of Streptococcus mutans. Archives of Oral Biology,2012, 57(1):10-14
    [182]Dominguez-Cuevas P, Gonzalez-Pastor JE, Marques S, Ramos JL, de Lorenzo V. Transcriptional tradeoff between metabolic and stress-response programs in Pseudomonas putida KT2440 cells exposed to toluene. The Journal of Biological Chemistry,2006,281(17):11981-11991
    [183]刘相梅,林建群,田克立等.极端嗜酸性专性化能自养硫细菌有机质代谢的研究进展.生物工程学报,2008,24(1):1-7
    [184]Alvarez S, Jerez CA. Copper ions stimulate polyphosphate degradation and phosphate efflux in Acidithiobacillus ferrooxidans. Applied and Environmental Microbiology,2004,70(9):5177-5182
    [185]Akcil A, Ciftci H, Deveci H. Role and contribution of pure and mixed cultures of mesophiles in bioleaching of a pyritic chalcopyrite concentrate. Minerals Engineering,2007,20:310-318
    [186]Zhang R, Wei M, Ji H, Chen X, Qiu G, Zhou H. Application of real-time PCR to monitor population dynamics of defined mixed cultures of moderate thermophiles involved in bioleaching of chalcopyrite. Applied Microbiology and Biotechnology, 2009,81:1161-1168
    [187]Plumb JJ, McSweeney NJ, Franzmann PD. Growth and activity of pure and mixed bioleaching strains on low grade chalcopyrite ore. Minerals Engineering, 2008,21:93-99
    [188]Dopson Mark, Lindstrom EB. Potential Role of Thiobacillus caldus in Arsenopyrite Bioleaching. Applied and Environmental Microbiology,1999,65(1): 36-40
    [189]Okibe N, Johnson DB. Biooxidation of pyrite by defined mixed cultures of moderately thermophilic acidophiles in pH-controlled bioreactors:significance of microbial interactions. Biotechnology and Bioengineering,2004,87(5):574-83
    [190]Wood AP, Kelly DP. Growth and sugar metabolism of a thermoacidophilic iron-oxidizing mixotrophic bacterium. Journal of General Microbiology,1984, 130:1337-1349
    [191]Xia L, Tang L, Xia J, Yin C, Cai L, Zhao X, Nie Z, Liu J, Qiu G. Relationships among bioleaching performance, additional elemental sulfur, microbial population dynamics and its energy metabolism in bioleaching of chalcopyrite. Transactions of Nonferrous Metal Society of China,2012,22:192-198
    [192]Mutch LA, Watling HR, Watkin ELJ. Microbial population dynamics of inoculated low-grade chalcopyrite bioleaching columns. Hydrometallurgy,2010, 104:391-398
    [193]Yin H, Cao L, Qiu G Wang D, Kellogg L, Zhou J, Liu X, Dai Z, Ding J, Liu X. Molecular diversity of 16S rRNA and gyrB genes in copper mines. Archives of Microbiology,2008,189:101-110
    [194]Yin H, Cao L, Xie M, Chen Q, Qiu G, Zhou J, Wu L, Wang D, Liu X. Bacterial diversity based on 16S rRNA andgyrB genes at Yinshan mine, China. Systematic and Applied Microbiology,2008,31:302-311
    [195]Norris PR. Acidophilic bacteria and their activity in mineral sulfide oxidation. In: Ehrlich HL, Brierley CL, eds. Microbial mineral recovery. McGraw-Hill, New York,1990,3-27
    [196]Johnson DB. Biodiversity and ecology of acidophilic microoganisms. FEMS Microbiology Ecology,1998,27:307-317
    [197]Schrenk MO, Edwards KJ, Goodman RM, Hamers RJ, Banfield JF. Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans:implications for generation of acid mine drainage. Science,1998,279:1519-1521
    [198]Johnson DB, Biological desulfurization of coal using mixed populations of mesophilic and moderately thermophilic acidophilic bacteria. In:Dugan PR, Quigley DR, and Attia YA, Eds. Processing and Utilization of High Sulfur Coals. Amsterdam,1991,567-580
    [199]Yin H, Cao L, Qiu G, Wang D, Kellogg L, Zhou J, Dai Z, Liu X. Development and evaluation of 50-mer oligonucleotide arrays for detecting microbial populations in Acid Mine Drainages and bioleaching systems. Journal of Microbiological Methods,2007,70:165-178
    [200]Rzhepishevska OI, Valde's J, Marcinkeviciene L, Gallardo CA, Meskys R, Bonnefoy V, Holmes DS, Dopson M. Regulation of a novel Acidithiobacillus caldus gene cluster involved in metabolism of reduced inorganic sulfur compounds. Applied and Environmental Microbiology,2007,73:7367-7372

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700