组织工程牙根HA/TCP支架材料的载银抗菌策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牙列缺损与缺失是人类口颌系统的常见病与多发病,自17世纪起,人们就在尝试用人工材料“替代”缺牙来恢复牙列的完整,在400多年后的今天,虽然修复理念从单纯保持美观演变成兼顾美观与口颌系统功能,修复材料从兽骨、象牙、木头发展成树脂、金属、陶瓷,修复工艺也由计算机仿真设计与制作逐步替代传统的手工加工,使得修复精度更高,修复效果也更为自然、逼真,但从本质上来说,这还仅仅是对牙冠部分的恢复。上世纪八十年代,瑞典骨科医生Branemark教授创立的种植体理论与技术体系,开辟了口腔颌面部“重建”修复的新纪元,但由于种植体与牙槽骨之间的骨性结合相对于自然牙与牙槽骨之间的牙周膜连接而言,对咬合力的缓冲作用大大减弱,也不能对超出生理范围的破坏性咬合力做出保护反应,达不到生理意义上的完全重建。因此,能够使缺失的牙齿自然“再生”一直是人类的一个梦想。
     干细胞和组织工程技术的发展为牙齿再生带来了曙光,完整牙齿包含了牙釉质、牙本质、牙骨质和牙髓等多种组织,受复杂调控因素影响,其再生稳定性和成功率还远远达不到临床治疗需求。近年来,基于三维组织工程方法开展的牙根再生研究取得了突破性进展,2006年,Sonoyama报道通过将根尖牙乳头干细胞(SCAP)与HA/TCP支架材料复合,并在HA/TCP支架外围包裹一层复合牙周膜干细胞的明胶海绵植入小型猪牙槽骨,得到了矿化的组织工程牙根,并初步实现了组织工程牙根与牙槽骨的牙周膜性结合。然而,当课题组在对牙根进行上部结构修复后不久,便发现修复体周围牙龈结合不紧密,形成较深的牙周袋,并有炎性组织存在,类似于种植体周围炎症状,严重影响了组织工程牙根的远期疗效。因此,作为影响组织工程牙根临床应用的一个关键问题,开展其与牙龈组织的结合研究十分必要。
     自然牙齿与牙龈的结合包括上皮和固有层与牙齿贴附,其中上皮层主要通过半桥粒与牙釉质或牙骨质连接,而以胶原纤维为主体的固有层通过致密的结缔组织与牙槽骨和牙齿的颈部形成牢固结合,起到较强的防御作用,并抑制牙龈上皮向根向移动,由此可见固有层在牙颈部软组织封闭中起到重要的作用。从目前的研究进展来看,影响牙龈与组织工程牙根结合的最关键因素就是因细菌附着而导致的局部感染。探索一种既具备一定抗菌能力,又不影响牙龈细胞生物学活性的穿龈模式,将会有效促进牙龈与组织工程牙根的结合。银由于抗菌谱广、抗菌时间持久、不易引起耐药等优点,已经成为口腔医学领域的一种重要的抗菌剂,而且其特有的选择毒性,可以使其在对动物细胞相对安全的情况下,具备较强的抗菌能力。
     基于此理念,本课题组在前期成功构建组织工程牙根的基础上,对其穿龈部位的HA/TCP支架载银抗菌策略进行研究,研究分为三部分:(1)HA/TCP材料对牙龈成纤维细胞(GFs)、牙髓干细胞(DPSCs)的生物学行为影响研究(;2)载银HA/TCP材料的构建与抗菌性能研究;(3)载银HA/TCP材料对GFs、DPSCs的生物学行为影响的研究。结果如下:
     1、HA/TCP材料为无毒性材料。电镜及免疫荧光染色显示,接种于HA/TCP材料表面GFs和DPSCs,细胞伸展,胞浆饱满,生长情况良好。
     2、用AgNO3溶液浸泡,并以紫外光照射法,可以制备载银HA/TCP材料,载银量可以通过调整浸泡的AgNO3溶液浓度来实现。载银HA/TCP的银释放在最初24h呈突释状态,但24h后呈缓慢释放,并逐渐趋于稳定,且前24h内银的突释量与载银浓度呈正相关。
     3、载银HA/TCP材料可以有效抑制细菌的生长,其抗菌性能与载银量呈正相关关系,但材料的最低有效抑菌浓度还有待于进一步研究。
     4、MTT法检测四种载银浓度的HA/TCP材料,0.5mol/L、1mol/L、1.5mol/L和2mol/LAgNO3溶液浸泡制备的载银HA/TCP的RGR值分别为83.22%,51.01%,38.67%和19.84%,根据细胞毒性分级,0.5mol/L组试样的细胞毒性分级为1级,为轻度毒性,生物安全性合格;1mol/L组试样的细胞毒性为2级,属于中度毒性,其余2组试样的细胞毒性分级为3级和4级,属于重度毒性,除0.5mol/L组外,其余三组载银试样的生物安全性均不合格。
     5、免疫荧光染色显示,接种于0.5mol/L组试样的GFs生长状态基本良好,有少部分细胞溶解成碎片,接种于其余三组的GFs细胞出现大部分的溶解,提示0.5mol/L组试样与GFs具有较好的生物相容性;接种于0.5mol/L组试样的DPSCs生长情况与GFs相似,有个别细胞溶解呈团块,接种于其余三组的DPSCs大部分出现溶解,提示0.5mol/L组试样与DPSCs具有较好的生物相容性。
Defect of dentition is very common in humans. It is recorded that people hadtried to complete the defective dentition with artificial materials since1600s.Today, more than400years later, although dentists focus more and more on bothesthetic and function of gnathostomatic system, the materials have developedfrom animal bones, wood or ivory to metal, resin and porcelain, the processingtechnic has changed from hand-crafted to computer-aided-design andcomputer-aided-manufacture, it is still similar to the old technique of replacement,because it can only replace the crown. In1980s, Branemark,a Swedishorthopedist built the theoretical and technical system of dental implant, whichopen up a new epoch of dental and maxillofacial reconstruction. But thesynostosis between implant and alveolar bone can’t buffer the occlusal force asmuch as the natural combination between tooth root and alveolar bone bypericementum. It can also not protect the implant out of the destructive occlusalforce and keep the reconstruction physiological. So, how to regenerate teeth has become a dream of mankind for a long time.
     The development of stem cells and tissue engineering technique bringsbright sunshine to the tooth regeneration. Tooth is a complex organ whichcontains enamel, dentin, cementum and pulp. The stability and success rate ofwhole tooth regeneration is far from the clinical therapy because of thecomplicated control mechanism. Tooth root regeneration, which based on the3D tissue engineering technique, makes a breakthrough in recent years. In2006, areport on tooth root regeneration was presented by Sonoyama. They used humanSCAP to regenerate dentin on a HA/TCP carrier, while using human PDLSCs toregenerate PDL on a Gelfoam which was covered around the HA/TCP carrier.CT examination revealed a HA/SCAP Gelfoam/PDLSC structure forming insidethe alveolar bone with mineralized root-like tissue formation and periodontalligament space. However, shortly after the root in conjunction with the dentalcrown, they found there was a deep periodontal pocket around the root, withsome inflammatory tissue inside the pocket, which looked likes the symptom ofperi-implantitis. In order to promote the long term effect of tissue engineeringtooth root, it is essential to research the combination between gingival and theroot.
     The natural combination between tooth and gingiva contains two parts, theone is epidermis, while the other is gingival lamina propria. Epidermis attach theenamel or cementum of dental cervix by hemidesmosome, and the gingivallamina propria, which mainly consists of collagenous fibre, can adhere to thetooth tightly by compact connective tissue to protect the clearance betweengingival and tooth from the bacterial attack. It can also inhibit the epidermismove to the root apex direction. So, the gingival lamina propria may plays a moreimportant role in the soft tissue closure on dental cervix. According to current result, the inflammation on the periodontal pocket may be the most importantfactor of interrupting gingival tissue to adhere to the root. If the inflammationwas removed, the combination between gingival and the root may be better.Nowadays, silver has become a kind of very important antimicrobial in dentalcare, because of its wide antimicrobial spectrum, long-acting antibiotic activityand low drug resistance. Furthermore, the toxicity of silver is selective, it canresist the bacterial specially, while the cell is relatively safe.
     So, the aim of this research is to explore an antibacterial strategy of theHA/TCP scaffold which is on the gingiva-crossing part of the tooth root. Basedon the pre-research by Sonoyama, our research work can be devided into threepart,(1) The biological behaviour of GFs and DPSCs when they are cultured onthe HA/TCP.(2) The preparation of Ag+-HA/TCP and the research of itsantibacterial activity.(3) How the Ag+-HA/TCP affect the biological behaviour ofGFs and DPSCs. The results is reported as follows.
     1. HA/TCP is a kind of innoxious material. Both SEM andimmunofluorescence shows that the GFs and DPSCs which cultured on theHA/TCP extends well, and the cytoplasm is full.
     2. Irradiate by UV-light after marinated in AgNO3is a new way ofpreparing Ag+-HA/TCP. The content of Ag+in Ag+–HA/TCP can be adjusted bychanging the viscosity of AgNO3。Ag+releases abruptly in the beginning24h,and goes slowly after24h, finally it tended towards stability. There is a positivecorrelation between the released Ag+and the viscosity of AgNO3in the first24h.
     3. Ag+–HA/TCP can inhibit the growth of bacterial.0.5mol/L group showeda weaker antibacterial activity than the other3groups (1mol/L group,1.5mol/Lgroup and2mol/L group), but there is no remarkable difference between thelatter3groups. It is indicated that there maybe also a positive correlation between the antibacterial activity and the viscosity of AgNO3, but the minimalantibacterial viscosity still needs to be researched.
     4. Use MTT method to investigate the safety of Ag+–HA/TCP. The RGR ofthe4groups were83.22%,51.01%,38.67%and19.84%. It means that the0.5mol/L group has a little cytotoxicity and is qualified for the biologicalexperiment, while the other3groups are not fit for the clinical use.
     5. According to the immunofluorescence, the GFs cultured on the0.5mol/Lgroup grows much better than the other3groups, there is only a little cellsdissolved, while most cells cultured on the other3groups died. Similar situationoccurs in the DPSCs. So we conclude that0.5mol/L group has a goodbiocompatibility with both GFs and DPSCs.
引文
[1] WANG Ying, PRESTON B, QIANG G G. Tooth bioengineering leads thenext Generation of dentistry[J]. Int J Paediatr Dent,2012,8(1): Epubahead of print.
    [2] SAITO M, HANDA K, KIYONO T, et al. Immortalization ofcementoblast progenitor cells with Bmi-1and TERT.[J]. J Bone MinerRES,2005,20(1):50-57.
    [3] MORSCZECK C, MOEHL C, G TZ W, et al. In vitro differentiation ofhuman dental follicle cells with dexamethasone and insulin[J]. Cell BIOLINT,2005,29(7):567-575.
    [4] HANDA K, SAITO M, TSUNODA A, et al. Progenitor cells from dentalfollicle are able to form cementum matrix in vivo[J]. Connect Tissue RES,2002,43(2):406-408.
    [5] WU J, JIN F, TANG L, et al. Dentin non-collagenous proteins (dNCPs)can stimulate dental follicle cells to differentiate into cementoblastlineages[J]. BIOL Cell,2008,100(5):291-302.
    [6] YOKOI T, SAITO M, KIYONO T, et al. Establishment of immortalizeddental follicle cells for generating periodontal ligament in vivo[J]. CellTissue RES,2007,327(2):301-311.
    [7] SONOYAMA W, LIU Y, FANG D, et al. Mesenchymal stemcell-mediated functional tooth regeneration in swine[J]. PLOS ONE,2006,20(1): e79.
    [8] HUANG G-t, YAMAZA T, SHEA L D, et al. Stem/progenitorcell-mediated de novo regeneration of dental pulp with newly depositedcontinuous layer of dentin in an in vivo model[J]. Tissue ENG Part a,2010,16(2):605-615.
    [9] GRONTHOS S, MANKANI M, BRAHIM J, et al. Postnatal humandental pulp stem cells (DPSCs) in vitro and in vivo[J]. PROC NATLACAD SCI U S a,2000,97(25):13625-13630.
    [10] GRONTHOS S, BRAHIM J, LI W, et al. Stem cell properties of humandental pulp stem cells[J]. J DENT RES,2002,81(8):531-535.
    [11] OTAKI S, UESHIMA S, SHIRAISHI K, et al. Mesenchymal progenitorcells in adult human dental pulp and their ability to form bone whentransplanted into immunocompromised mice.[J]. Cell BIOL INT,2007,31(10):1191-1197.
    [12] MIURA M, GRONTHOS S, ZHAO M, et al. SHED: stem cells fromhuman exfoliated deciduous teeth[J]. PROC NATL ACAD SCI U S a,2003,100(10):5807-5812.
    [13] CORDEIRO M M, DONG Z, KANEKO T, et al. Dental pulp tissueengineering with stem cells from exfoliated deciduous teeth[J]. J Endod,2008,34(8):962-969.
    [14] SEO B M, MIURA M, GRONTHOS S, et al. Investigation of multipotentpostnatal stem cells from human periodontal ligament[J]. Lancet.,2004,364(9429):149-155.
    [15] MA Z, LI S, SONG Y, et al. The biological effect of dentinnoncollagenous proteins (DNCPs) on the human periodontal ligamentstem cells (HPDLSCs) in vitro and in vivo[J]. Tissue ENG Part a,2008,14(12):2059-2068.
    [16] YANG Z-h, ZHANG X-j, DANG N-n, et al. Apical tooth germcell-conditioned medium enhances the differentiation of periodontalligament stem cells into cementum/periodontal ligament-like tissues[J]. JPeriodontal RES,2009,44(2):199-210.
    [17] YU J, WANG Y, DENG Z, et al. Odontogenic capability: bone marrowstromal stem cells versus dental pulp stem cells[J]. BIOL Cell,2007,99(8):465-474.
    [18]卢婷利,张宏,王韵晴,等.组织工程支架材料生物功能化的研究进展[J].材料科学与工程学报,2011,29(2):301-307.
    [19]黄明华,陈庆华,刘美红,等.组织工程支架材料研究进展及发展趋势[J].材料导报,2006,11(20):365-368.
    [20]王吴,张西正,田丰.骨组织工程支架材料[J].医疗卫生设备,2003,24(8):24-26.
    [21]张明义,王永欣,陈铮,等.Ni-Al-V合金L12相间有序畴界面的微观相场模拟[J/OL].金属学报,2007,43(10):1101-1106.
    [22] SUH J K, MATTHEW H W. Application of chitosan-basedpolysaccharide biomaterials in cartilage tissue engineering: a review[J].Biomaterials,2000,21(24):2589-2598.
    [23] MA L, GAO C, MAO Z, et al. Collagen/chitosan porous scaffolds withimproved biostability for skin tissue engineering[J]. Biomaterials,2003,24(26):4833-4841.
    [24] CHEN V-j, MA P-x. The effect of surface area on the degradation rate ofnano-fibrous poly(L-lactic acid) foams[J]. Biomaterials,2006,27(20):3708-3715.
    [25] HOI-YAN C, Lau Tung-Po Lu Kin-Tak. A critical review onpolymer—based bio-engineered materials for scaffold development[J].Bio-engineered Composites:Part B,2007,38(3):291-300.
    [26]岳秀艳,索海瑞,史廷春,等.高分子生物材料的组织工程支架成形方法[J].唐山学院学报,2008,21(2):55-59.
    [27] WILLERTH S M, SAKIYAMA-ELBERT S E. Approaches to neuraltissue engineering using scaffolds for drug delivery.[J]. ADV Drug DelivREV,2007,59(4):325-338.
    [28]陈希哲,杨连甲.生物陶瓷与骨组织工程[J].国外医学·生物医学工程分册,2000,23(23):6-10.
    [29] DONG J, UEMURA T, SHIRASAKI Y, et al. Promotion of boneformation using highly pure porous beta-TCP combined with bonemarrow-derived osteoprogenitor cells[J]. Biomaterials,2002,23(23):4493-4502.
    [30]张森林,毛天球.富含血小板血浆在骨组织工程中的应用进展[J].医学研究生学报,2007,19(8):737-740.
    [31] BRUDER S S. The effect of implants loaded with autologousmesenchymal stem cells on the healing of canine segmental bonedefects[J]. J Bone Joint SURG Am,1998,80(7):985-996.
    [32] BOSETTI M, CANNAS M. The effect of bioactive glasses on bonemarrow stromal cells differentiation[J]. Biomaterials,2005,26(18):3873-3879.
    [33] LASTUM KI T M, KALLIO T T, VALLITTU P K. The bond strengthof light-curing composite resin to finally polymerized and aged glassfiber-reinforced composite substrate[J]. Biomaterials,2002,23(23):4533-4539.
    [34] ROETHER J A, BOCCACCINI A R, HENCH L L, et al. Developmentand in vitro characterisation of novel bioresorbable and bioactivecomposite materials based on polylactide foams and Bioglass for tissueengineering applications[J]. Biomaterials,2002,23(18):3871-3878.
    [35] HIRATA E A.3D collagen scaffolds coated with multiwalled Carbonnanotubes: initial cell attachment to internal surface[J]. J Biomed MaterRES B APPL Biomater,2010,93(2):544-550.
    [36] CROLL T I, O'CONNOR A J, STEVENS G W, et al. Controllablesurface modification of poly(lactic-co-glycolic acid)(PLGA) byhydrolysis or aminolysis I: physical, chemical, and theoretical aspects[J].Biomacromolecules.,2004,5(2):463-473.
    [37] ZHANG S. Fabrication of novel biomaterials through molecularself-assembly[J]. NAT Biotechnol,2003,21(10):1171-1178.
    [38] KUMADA Y, ZHANG S. Significant type I and type III collagenproduction from human periodontal ligament fibroblasts in3D peptidescaffolds without extra growth factors[J]. PLOS ONE,2010,5(4):e10305.
    [39]于金华,史俊南,金岩.牙齿再生的研究[J].牙体牙髓牙周病学杂志,2007,17(7):367-371.
    [40] RUOSLAHTI E. The RGD story: a personal account.[J]. Matrix BIOL,2003,22(6):459-465.
    [41] DECUP F, SIX N, PALMIER B, et al. Bone sialoprotein-inducedreparative dentinogenesis in the pulp of rat's molar.[J]. CLIN OralInvestig,2000,4(2):110-119.
    [42] NAKASHIMA M. Induction of dentine in amputated pulp of dogs byrecombinant human bone morphogenetic proteins-2and-4with collagenmatrix.[J]. Arch Oral BIOL,1994,39(12):1085-1089.
    [43] NAKASHIMA M. Induction of dentin formation on canine amputatedpulp by recombinant human bone morphogenetic proteins (BMP)-2and-4.[J]. J DENT RES,1994,73(9):1515-1522.
    [44] TZIAFAS D, ALVANOU A, PAPADIMITRIOU S, et al. Effects ofrecombinant basic fibroblast growth factor, insulin-like growth factor-IIand transforming growth factor-beta1on dog dental pulp cells in vivo.[J].Arch Oral Biol.,1998,43(6):431-444.
    [45] LOVSCHALL H A. Pulp-capping with recombinant human insulin-likegrowth factor I (rhIGF-I) in rat molars[J]. ADV DENT RES,2001,15(1):108-112.
    [46] ENGLER A J, SEN S, SWEENEY H L, et al. Matrix elasticity directsstem cell lineage specification.[J]. Cell,2006,126(4):677-689.
    [47] CHEN Fm r wang xj sun hh wu-zf. In vitro cellular responses to scaffoldscontaining two microencapulated growth factors[J]. Biomaterials.,2009,30(28):5215-5224.
    [48] XU L, TANG L, JIN F, et al. The apical region of developing tooth rootconstitutes a complex and maintains the ability to generate root andperiodontium-like tissues[J]. J Periodontal RES,2009,44(2):275-282.
    [49]刘丽,林运鸿,邓春梅,等.牙齿发育与BMP信号通路的关系[J].现代生物医学进展,2010,10(19):3760-3761.
    [50] VAINIO S I. Identification of BMP-4as a signal mediating secondaryinduction between epithelial and mesenchymal tissues during early toothdevelopment[J]. Cell,1993,75(1):45-48.
    [51] BEI M maas-r. FGFs and BMP4induce both Msx1-independent andMsx1-dependent signaling pathways in early tooth development.[J].Development.,1998,125(21):4325-4333.
    [52] KER NEN S V, KETTUNEN P, ABERG T, et al. Gene expressionpatterns associated with suppression of odontogenesis in mouse and volediastema regions[J]. DEV Genes EVOL,1999,209(8):495-506.
    [53] TUCKER A S, MATTHEWS K L, SHARPE P T. Transformation oftooth type induced by inhibition of BMP signaling.[J]. Science.,1998,282(5391):1136-1138.
    [54] MITSIADIS T A, HIRSINGER E, LENDAHL U, et al. Delta-notchsignaling in odontogenesis: correlation with cytodifferentiation andevidence for feedback regulation[J]. DEV BIOL,1998,204(2):420-431.
    [55] MITSIADIS T I. Expression of notch1,2and3is regulated byepithelial-mesenchymal interactions and retinoic acid in the developingmouse tooth and associated with determination of ameloblast cell fate[J].J Cell BIOL,1995,130(2):407-418.
    [56] BRAULT V, MOORE R, KUTSCH S, et al. Inactivation of thebeta-catenin gene by Wnt1-Cre-mediated deletion results in dramaticbrain malformation and failure of craniofacial development[J].Development.,2001,128(8):1253-1264.
    [57] MUNNE P J. Splitting placodes: effects of bone morphogenetic proteinand Activin on the patterning and identity of mouse incisors[J]. EVOLDEV,2010,12(4):383-392.
    [58] DUAILIBI M T, DUAILIBI S E, YOUNG C S, et al. Bioengineered teethfrom cultured rat tooth BUD cells[J]. J DENT RES,2004,83(7):523-528.
    [59] GRONTHOS S S. Postnatal human dental pulp stem cells (DPSCs) invitro and in vivo.[J]. PROC NATL ACAD SCI U S a,2000,97(25):11363-13625.
    [60] BATOULI S S. Comparison of stem-cell-mediated osteogenesis anddentinogenesis[J]. J DENT RES,2003,82(12):976-981.
    [61] HONDA M J, TSUCHIYA S, SUMITA Y, et al. The sequential seedingof epithelial and mesenchymal cells for tissue-engineered toothregeneration.[J]. Biomaterials.,4(680-689):680-689.
    [62] OHAZAMA A, MODINO S A, MILETICH I, et al. Stem-cell-basedTissue Engineering of Murine Teeth[J]. J DENT RES,2004,83(7):518-522.
    [63] MODINO S A, SHARPE P T. Tissue engineering of teeth using adultstem cells.[J]. Arch Oral BIOL,2005,50(2):255-258.
    [64] TUMMERS M. Root or crown: a developmental choice orchestrated bythe differential regulation of the epithelial stem cell niche in the tooth oftwo rodent species.[J]. Development,2003,130(6):1049-1057.
    [65] SONOYAMA W, LIU Y, FANG D, et al. Mesenchymal stemcell-mediated functional tooth regeneration in swine[J]. PLOS ONE,2006,20(1): e79.
    [66] GUO W, HE Y, ZHANG X, et al. The use of dentin matrix scaffold anddental follicle cells for dentin regeneration[J]. Biomaterials,2009,30(35):6708-6723.
    [67] GUO W, GONG K, SHI H, et al. Dental follicle cells and treated dentinmatrix scaffold for tissue engineering the tooth root[J]. Biomaterials,2012,33(5):1291-1301.
    [68]梅盛林,张玉梅,赵领洲.牙科种植体表面特征对软组织界面影响的研究进展[J].第四军医大学学报,2009,30(24):3186-3188.
    [69] R IS NEN L, K N NEN M, JUHANOJA J, et al. Expression of celladhesion complexes in epithelial cells seeded on biomaterial surfaces[J]. JBiomed Mater RES,2000,49(1):79-87.
    [70] EISENBARTH E J. Influence of the surface structure of Titaniummaterials on the adhesion of fibroblasts[J]. Biomaterials,1996,17(14):1399-1403.
    [71] COMUT A A, WEBER H P, SHORTKROFF S, et al. Connective tissueorientation around dental implants in a canine model[J]. CLIN OralImplants RES,2001,12(5):433-440.
    [72] WIEDMANN-AL-AHMAD G W. The Titanium surface texture effectsadherence and growth of human gingival keratinocytes and humanmaxillar osteoblast-like cells in vitro[J]. Biomaterials.,2001,22(20):2799-2809.
    [73] BAHARLOO B, TEXTOR M, BRUNETTE D M. Substratum roughnessalters the growth, area, and focal adhesions of epithelial cells, and theirproximity to Titanium surfaces.[J]. J Biomed Mater RES a,2005,74(1):12-22.
    [74]王亚敏,宋光保,于婷婷,等.不同粗化纯钛表面对人成骨样细胞生物学行为的影响[J].广东牙病防治,2011,19(5):245-249.
    [75] HORMIA M M. Immunolocalization of fibronectin and vitronectinreceptors in human gingival fibroblasts spreading on Titanium surfaces.[J].J Periodontal RES,1994,29(2):146-152.
    [76] SIMION M, BALDONI M, ROSSI P. A study on the attachment ofhuman gingival cell structures to oral implant materials.[J]. INT JProsthodont,1991,4(6):543-547.
    [77] MUSTAFA K K. The influence of surface topography of ceramicabutments on the attachment and proliferation of human oral fibroblasts[J].Biomaterials,2005,26(4):373-381.
    [78] CHEHROUDI B D. Effects of a grooved titanium-coated implant surfaceon epithelial cell behavior in vitro and in vivo[J]. J Biomed Mater RES,1989,23(9):1067-1085.
    [79] CHEHROUDI B D. A light and electron microscopic study of the effectsof surface topography on the behavior of cells attached to titanium-coatedpercutaneous implants[J]. J Biomed Mater RES,1991,25(3):387-405.
    [80] TAMURA R J. Coating of Titanium alloy with soluble laminin-5promotes cell attachment and hemidesmosome assembly in gingivalepithelial cells: potential application to dental implants[J]. J PeriodontalRES,1997,32(3):287-294.
    [81] PARK J C, KIM H M, KO J. Effects of extraeellular matrix constituent onthe attachment of human oral epithelial cells at the Titanium surface[J].INT J Oral Maxillofac Implants,1998,13(6):826-836.
    [82] TOSATTI S, DE Paul-sm, ASKENDAL A, et al. Peptide functionalizedpoly(L-lysine)-g-poly(ethylene glycol) on Titanium: resistance to proteinadsorption in full heparinized human blood plasma[J]. Biomaterials,2003,24(27):4949-4958.
    [83] SCHULER M S. Biomimetic modification of Titanium dental implantmodel surfaces using the RGDSP-peptide sequence: a cell morphologystudy[J]. Biomaterials,2006,27(21):4003-4015.
    [84] GROESSNER-SCHREIBER B, NEUBERT A, MüLLER W D, et al.Fibroblast growth on surface-modified dental implants: an in vitrostudy.[J]. J Biomed Mater RES a,2003,64(4):591-599.
    [85] CYSTER L A, PARKER K G, PARKER T L, et al. The effect of surfacechemistry and nanotopography of Titanium nitride (Tin) films on3T3-L1fibroblasts.[J]. J Biomed Mater RES a,2009,67(1):138-147.
    [86] KOKOTI M P. Comparison of cell proliferation on modified dentalceramics.[J]. J Oral Rehabil,2001,28(9):880-887.
    [87] MAITZ M E. Ion beam treatment of Titanium surfaces for enhancingdeposition of hydroxyapatite from solution[J]. Biomol Eng.,2002,19(2/6):269-272.
    [88]王强,张扬,张松.钛激光气体氮化改性种植体的研究[J].华西口腔医学杂志,2008,26(3):324-326.
    [89]韩雪,陶晓杰,李述军.新型钛合金阳极氧化后对成骨细胞增殖、分化的影响[J].实用口腔医学杂志,2006,22(2):252-254.
    [90] SALEMI H, BEHNAMGHADER A, AFSHAR A, et al. Biomimeticsynthesis of Calcium phosphate materials on alkaline-treated Titanium[J].CONF PROC IEEE ENG MED BIOL SOC,2007,2007:5854-5857.
    [91]张天夫,王伟,孙晓东.钛生物陶瓷涂层种植体的实验研究[J].吉林大学学报,2002,28(6):597-599.
    [92]唐霞.种植体的表面改性与促进成骨[J].国际口腔医学杂志,2008,35(1):225-228.
    [93] SCHULER M, OWEN G R, HAMILTON D W, et al. Biomimeticmodification of Titanium dental implant model surfaces using theRGDSP-peptide sequence: a cell morphology study[J]. Biomaterials.,2006,27(25):4003-4015.
    [94] HOANG A D. Amelogenin is a cell adhesion protein.[J]. J DENT RES,2002,81(7):497-500.
    [95] FüRST M M, SALVI G, LANG N-p, et al. Bacterial colonizationimmediately after installation on oral Titanium implants[J]. CLIN OralImplants RES,2007,18(4):501-508.
    [96] NGUYEN-HIEU T, BORGHETTI A, ABOUDHARAM G.Peri-implantitis: from diagnosis to therapeutics.[J]. J Investig CLINDENT,2012,3(2):79-94
    [97] ATASSI F. Periimplant probing: positives and negatives[J]. ImplantDENT,2002,11(4):356-362.
    [98] EKE P M. Microbiota associated with experimental peri-implantitis andperiodontitis in adult Macaca mulatta monkeys[J]. J Periodontol,1998,69(2):190-194.
    [99] BUSER D, INGIMARSSON S, DULA K, et al. Long-term stability ofosseointegrated implants in augmented bone: a5-year prospective studyin partially edentulous patients[J]. INT J Periodontics Restorative DENT,2002,22(2):109-117.
    [100] GRISTINA A Q. Cell biology and molecular mechanisms in artificialdevice infections.[J]. INT J Artif Organs,1993,16(11):755-763.
    [101] PERALA D G, CHAPMAN R J, GELFAND J A, et al. Relativeproduction of IL-1beta and TNF alpha by mononuclear cells afterexposure to dental implants[J]. J Periodontol,1992,63(5):426-430.
    [102] KONTTINEN Y O. Immunohistochemical evaluation of inflammatorymediators in failing implants.[J]. INT J Periodontics Restorative DENT,2006,26(2):135-141.
    [103] MURATA M H. Osteocalcin, deoxypyridinoline and interleukin-1beta inperi-implant crevicular fluid of patients with peri-implantitis[J]. CLINOral Implants RES,2002,13(6):637-643.
    [104]唐志辉,曹采方.超声洁治和局部用甲硝唑治疗轻、中度种植体周围炎[J].中华口腔医学杂志,2002,37(3):173-175.
    [105]杨泓,朱冬梅,陈娜.种植体周围炎[J].伤残医学杂志,2004,12(3):39-41.
    [106] ROMEO E G. Therapy of peri-implantitis with resective surgery. A3-year clinical trial on rough screw-shaped oral implants. Part I: clinicaloutcome.[J]. CLIN Oral Implants RES,2005,16(1):9-18.
    [107]黄盛兴,REUTER E, KASSAN E.Gore-Tex膜引导骨再生技术在种植体周围炎治疗中的应用[J].中国口腔种植杂志,2000,5(4):177-179.
    [108] NOROWSKI P J, BUMGARDNER J D. Biomaterial and antibioticstrategies for peri-implantitis: a review.[J]. J Biomed Mater RES B APPLBiomater,2009,88(2):530-543.
    [109] HUANG J, LI X, KOLLER G P, et al. Electrohydrodynamic deposition ofnanotitanium doped hydroxyapatite coating for medical and dentalapplications[J]. J Mater SCI Mater MED,2011,22(3):491-496.
    [110] XIE C, LU H, LI W, et al. The use of Calcium phosphate-basedbiomaterials in implant dentistry[J]. XIE C, LU H, LI W, CHEN Fm,ZHAO Ym.,2012,23(3):853-862.
    [111] GAUTIER H C. Association of vancomycin and Calcium phosphate bydynamic compaction: in vitro characterization and microbiologicalactivity[J]. Biomaterials,2001,22(18):2481-2487.
    [112] GAUTIER H, MERLE C, AUGET J L, et al. Isostatic compression, a newprocess for incorporating vancomycin into biphasic Calcium phosphate:comparison with a classical method.[J]. Biomaterials.,2000,21(3):243-249.
    [113] JAHODA D, NYC O, POKORNY D, et al. Antibiotic treatment forprevention of infectious complications in joint replacement[J]. ACTACHIR Orthop Traumatol CECH,2006,73(2):108-114.
    [114] ENGESAETER L L. Antibiotic prophylaxis in total hip arthroplasty:effects of antibiotic prophylaxis systemically and in bone cement on therevision rate of22,170primary hip replacements followed0-14years inthe Norwegian Arthroplasty Register[J]. ACTA Orthop Scand,2003,74(6):644-651.
    [115] RADIN S, CAMPBELL J T, DUCHEYNE P, et al. Calcium phosphateceramic coatings as carriers of vancomycin.[J]. Biomaterials,1997,18(11):777-782.
    [116] YAMAMURA K T. Synthesis of antibiotic-loaded hydroxyapatite beadsand in vitro drug release testing[J]. J Biomed Mater RES,1992,26(8):1053-1064.
    [117] BARRERE F P. Influence of Ionic strength and carbonate on the Ca-Pcoating formation from SBFx5solution[J]. Biomaterials.,2002,23(9):1921-1930.
    [118] STIGTER M, BEZEMER J, GROOT K, et al. Incorporation of differentantibiotics into carbonated hydroxyapatite coatings on Titanium implants,release and antibiotic efficacy[J]. J Control Release,2004,99(1):127-137.
    [119] STIGTER M P. Incorporation of tobramycin into biomimetichydroxyapatite coating on Titanium.[J]. Biomaterials,2002,23(2):143-153.
    [120] LUCKE M, SCHMIDMAIER G, SADONI S, et al. Gentamicin coating ofmetallic implants reduces implant-related osteomyelitis in rats[J]. Bone,2003,32(5):521-531.
    [121] RADIN S, DUCHEYNE P. Controlled release of vancomycin from thinsol-gel films on Titanium alloy fracture plate material[J]. Biomaterials,2007,28(9):1721-1729.
    [122] ANTOCI V J, ADAMS C T. The inhibition of Staphylococcusepidermidis biofilm formation by vancomycin-modified Titanium alloyand implications for the treatment of periprosthetic infection[J].Biomaterials,2008,29(35):4684-4690.
    [123] JOSE B J, ZEIGER A N. Vancomycin covalently bonded to Titaniumbeads kills Staphylococcus aureus[J]. CHEM BIOL,2005,12(9):1041-1048.
    [124] EDUPUGANTI O J, KING S J. Covalent bonding of vancomycin toTi6Al4V alloy pins provides long-term inhibition of Staphylococcusaureus colonization[J]. Bioorg MED CHEM LETT,2007,17(10):2692-2696.
    [125] TUNNEY M M, RAMAGE G, PATRICK S, et al. Antimicrobialsusceptibility of bacteria isolated from orthopedic implants followingrevision hip surgery[J]. Antimicrob Agents Chemother,1998,42(11):3002-3005.
    [126] WAHLIG H, DINGELDEIN E. Antibiotics and bone cements.Experimental and clinical long-term observations[J]. ACTA OrthopScand,1980,51(1):49-56.
    [127] INCE A, SCHUTZE N, HENDRICH C, et al. Effect of polyhexanide andgentamycin on human osteoblasts and endothelial cells[J]. Swiss MEDWKLY,2007,137(9/10):139-145.
    [128] INCE A, SCHUTZE N, HENDRICH C, et al. In vitro investigation oforthopedic titanium-coated and brushite-coated surfaces using humanosteoblasts in the presence of gentamycin[J]. J Arthroplasty,2008,23(5):762-771.
    [129] NAAL F D, SALZMANN G M, VON K F, et al. The effects ofclindamycin on human osteoblasts in vitro[J]. Arch Orthop TraumaSURG,2008,128(3):317-323.
    [130] SALZMANN G M, NAAL F D, VON K F, et al. Effects of cefuroximeon human osteoblasts in vitro[J]. J Biomed Mater RES a,2007,82(2):462-468.
    [131] CAMPBELL A A, SONG L, LI X-s, et al. Development, characterization,and anti-microbial efficacy of hydroxyapatite-chlorhexidine coatingsproduced by surface-induced mineralization[J]. J Biomed Mater RES,2000,53(4):400-407.
    [132] HARRIS L G, MEAD L, MULLER-OBERLANDER E, et al. Bacteriaand cell cytocompatibility studies on coated medical grade Titaniumsurfaces[J]. J Biomed Mater RES a,2006,78(1):50-58.
    [133] DAROUICHE R O, GREEN G, MANSOURI M D. Antimicrobialactivity of antiseptic-coated orthopaedic devices[J]. INT J AntimicrobAgents,1998,10(1):83-86.
    [134] KOZLOVSKY A, ARTZI Z, MOSES O, et al. Interaction ofchlorhexidine with smooth and rough types of Titanium surfaces.[J]. JPeriodontol.,2006,77(7):1194-1200.
    [135] EL-TURKI M D. Differential adhesion of Streptococcus gordonii toanatase and rutile Titanium dioxide surfaces with and withoutfunctionalization with chlorhexidine.[J]. J Biomed Mater RES a,2009,90(4):993-998.
    [136] HARRIS L G, MEAD L. Bacteria and cell cytocompatibility studies oncoated medical grade Titanium surfaces.[J]. J Biomed Mater RES a,2006,78(1):50-58.
    [137] BERGER T J, SPADARO J A, CHAPIN S E, et al. Electrically generatedSilver ions: quantitative effects on bacterial and mammalian cells[J].Antimicrob Agents Chemother,1976,9(2):357-358.
    [138] ZHANG W, LUO Y, WANG H, et al. Ag and Ag/N2plasmamodification of polyethylene for the enhancement of antibacterialproperties and cell growth/proliferation[J]. ACTA Biomater,2008,4(6):2028-2036.
    [139] EWALD A, GLüCKERMANN S K, THULL R, et al. AntimicrobialTitanium/Silver PVD coatings on Titanium[J]. Biomed ENG Online,2006,24(5):22-22.
    [140] CHEN W, LIU Y, COURTNEY H S, et al. In vitro anti-bacterial andbiological properties of magnetron co-sputtered silver-containinghydroxyapatite coating[J]. Biomaterials,2006,27(32):5512-5517.
    [141] BERGER T J, SPADARO J A, CHAPIN S E, et al. Electrically generatedSilver ions: quantitative effects on bacterial and mammalian cells.[J].Antimicrob Agents Chemother,1976,9(2):357-358.
    [142] SPADARO J A, BERGER T J, BARRANCO S D, et al. Antibacterialeffects of Silver electrodes with weak direct current[J]. AntimicrobAgents Chemother,1974,6(5):637-642.
    [143] SECINTI K D, AYTEN M, KAHILOGULLARI G, et al. Antibacterialeffects of electrically activated vertebral implants.[J]. J CLIN Neurosci,2008,15(4):434-439.
    [144]李箐,冯希平,廖运茂.钛表面载银HA—TCP溶胶凝胶涂层的制备及其抗菌性的研究[J].中国口腔颌面外科杂志,2008,6(2):127-130.
    [145] CHEN W, OH S, ONG A P, et al. Antibacterial and osteogenic propertiesof silver-containing hydroxyapatite coatings produced using a sol gelprocess[J]. J Biomed Mater RES a,2007,82(4):899-906.
    [146] BALAMURUGAN A, BALOSSIER G, LAURENT-MAQUIN D, et al.An in vitro biological and anti-bacterial study on a sol-gel derivedsilver-incorporated bioglass system[J]. DENT Mater.,2008,24(10):1343-1351.
    [147] HARRIS L G, TOSATTI S, WIELAND M, et al. Staphylococcus aureusadhesion to Titanium oxide surfaces coated with non-functionalized andpeptide-functionalized poly(L-lysine)-grafted-poly(ethylene glycol)copolymers[J]. Biomaterials,2004,25(18):4135-4148.
    [148]司家文,胡启凡,孙惠强.种植体表面抗菌涂层技术[J].口腔颌面修复学杂志,2011,12(2):119-122.
    [149] HEIDENAU F, MITTELMEIER W, DETSCH R, et al. A novelantibacterial Titania coating: metal ion toxicity and in vitro surfacecolonization[J]. J Mater SCI Mater MED,2005,16(10):883-888.
    [150] MUZZARELLI R, TARSI R, FILIPPINI O, et al. Antimicrobialproperties of N-carboxybutyl chitosan.[J]. Antimicrob Agents Chemother,1990,34(10):2019-2023.
    [151] SINGLA A K, CHAWLA M. Chitosan: some pharmaceutical andbiological aspects--an update[J]. J Pharm Pharmacol,2001,53(8):1047-1067.
    [152] CHUA P H, NEOH K G, KANG E-t, et al. Surface functionalization ofTitanium with hyaluronic acid/chitosan polyelectrolyte multilayers andRGD for promoting osteoblast functions and inhibiting bacterialadhesion[J]. Biomaterials,2008,29(10):1412-1421.
    [153] GALLARDO-MORENO A M, PACHA-OLIVENZA M, SALDA A L,et al. In vitro biocompatibility and bacterial adhesion ofphysico-chemically modified Ti6Al4V surface by means of UVirradiation[J]. ACTA Biomater,2009,5(1):181-192.
    [154] KIM I Y, SEO S J, MOON H S, et al. Chitosan and its derivatives fortissue engineering applications[J]. Biotechnol ADV,2008,26(1):1-21.
    [155] MARTIN H J, SCHULZ K H, BUMGARDNER J D, et al. An XPS studyon the attachment of triethoxsilylbutyraldehyde to two Titanium surfacesas a way to bond chitosan[J]. APPL SURF SCI,2008,254(11):4599-4605.
    [156] BELLANTONE M, WILLIAMS H D, HENCH L L. Broad-spectrumbactericidal activity of Ag(2)O-doped bioactive glass[J]. AntimicrobAgents Chemother,2002,46(6):1940-1945.
    [157] KüHN K P, CHABERNY I F, MASSHOLDER K, et al. Disinfection ofsurfaces by photocatalytic oxidation with Titanium dioxide and UVAlight.[J]. Chemosphere.,2003,53(1):71-77.
    [158] ZHOU H gan x wang j zhu x li-g. Hemoglobin-based Hydrogen peroxidebiosensor tuned by the photovoltaic effect of nano Titanium dioxide[J].ANAL CHEM,2005,77(18):6102-6104.
    [159] AREVA S, PALDAN H, PELTOLA T, et al. Use of sol-gel-derivedTitania coating for direct soft tissue attachment[J]. J Biomed Mater RES a,2004,70(2):169-178.
    [160] MANCINELLI R L, MCKAY C P. Effects of nitric oxide and Nitrogendioxide on bacterial growth[J]. APPL Environ Microbiol,1983,46(1):198-202.
    [161] VARU V N, TSIHLIS N D, KIBBE M R. Basic science review: nitricoxide--releasing prosthetic materials[J]. VASC Endovascular SURG,2009,43(2):121-131.
    [162] MACMICKING J, XIE Q-w, NATHAN C. Nitric oxide and macrophagefunction.[J]. ANNU REV Immunol,1997,15(1):323-350.
    [163] NABLO B J, ROTHROCK A R, SCHOENFISCH M H. Nitricoxide-releasing sol-gels as antibacterial coatings for orthopedicimplants.[J]. Biomaterials.,2005,26(8):917-924.
    [164] NABLO B M. Antibacterial properties of nitric oxide-releasing sol-gels[J].J Biomed Mater RES a,2003,67(4):1276-1283.
    [165] NABLO B J, SCHOENFISCH M H. Poly(vinyl chloride)-coated sol-gelsfor studying the effects of nitric oxide release on bacterial adhesion[J].Biomacromolecules,2004,5(5):2034-2041.
    [166] TAMURA Y, YOKOYAMA A, WATARI F, et al. Surface properties andbiocompatibility of nitrided Titanium for abrasion resistant implantmaterials.[J]. DENT Mater J.,2002,21(4):355-372.
    [167] GR SSNER-SCHREIBER B, GRIEPENTROG M, HAUSTEIN I, et al.Plaque formation on surface modified dental implants. An in vitrostudy.[J]. CLIN Oral Implants RES,2001,12(6):543-551.
    [168]崔娟,孙克勤,李霞,等.人牙龈成纤维细胞的原代培养及鉴定[J].中国医药导报,2010,7(3):26-27.
    [169]王方,谢诚,吴国锋,等.组织工程牙周膜细胞片的体内实验研究[J].实用口腔医学杂志,2011,27(2):177-180.
    [170] CARMONA F J. Development of the cornea of true moles (Talpidae):morphogenesis and expression of PAX6and cytokeratins[J]. J ANAT,2010,217(5):488-500.
    [171] JAISWAL N, HAYNESWORTH S E, CAPLAN A, et al. Osteogenicdifferentiation of purified, culture-expanded human mesenchymal stemcells in vitro[J]. J Cell Biochem,1997,64(2):295-312.
    [172] PITTENGER M F, MACKAY A M, BECK S C, et al. Multilineagepotential of adult human mesenchymal stem cells[J]. Science,1999,284(5411):143-147.
    [173] ROY N S, BENRAISS A, WANG S, et al. Promoter-targeted selectionand isolation of neural progenitor cells from the adult human ventricularzone[J]. J Neurosci RES,2000,59(3):321-331.
    [174]郑颖,王晓颖,张春梅.小型猪乳牙牙髓干细胞体外分离培养及鉴定[J].北京口腔医学,2010,18(3):125-128.
    [175] BLEICHER F, COUBLE M L, FARGES J C, et al. Sequential expressionof matrix protein genes in developing rat teeth.[J]. Matrix BIOL,1999,18(2):133-143.
    [176] SJ GREN G, SLETTEN G, DAHL J E. Cytotoxicity of dental alloys,metals, and ceramics assessed by millipore filter, agar overlay, and MTTtests[J]. DENT J Prosthet,2000,84(2):229-236.
    [177] SCHEDLE A, SAMORAPOOMPICHIT P, RAUSCH-FAN X H, et al.Response of L-929fibroblasts, human gingival fibroblasts, and humantissue mast cells to various metal cations[J]. J DENT RES,1995,74(8):1513-1520.
    [178]陆钰,徐培,甘朝兵,等.MMT法评价多孔纳米羟基磷灰石/壳聚糖支架材料的细胞毒性[J].安徽医学,2011,32(11):1824-1826.
    [179]王国辉,陈维毅,谢永芳.力学刺激对巩膜成纤维细胞增殖活性及结缔组织生长因子表达的影响[J].医用生物力学,2010,25(3):186-189.
    [180] OGATA Y, NIISATO N, SAKURAI T, et al. Comparison of thecharacteristics of human gingival fibroblasts and periodontal ligamentcells.[J]. J Periodontol,1995,66(12):1025-1031.
    [181] GAO J, SYMONS A L, HAASE H, et al. Should cementoblasts Expressalkaline phosphatase activity? Preliminary study of rat cementoblasts invitro[J]. J Periodontol,1999,70(9):951-959.
    [182] LIN D-g, KENNY D J, BARRETT E J, et al. Storage conditions ofavulsed teeth affect the phenotype of cultured human periodontal ligamentcells[J]. J Periodontal RES,2000,35(1):42-50.
    [183]钟泉,闫福华,李艳芬.两种培养液对Beagle犬牙龈成纤维细胞生物学活性的影响[J].医学研究杂志,2010,39(8):42-45.
    [184]柴枫,鲜苏琴,高宁.口腔微生物与种植体周炎[J].中国口腔种植学杂志,1998,3(2):82-84.
    [185] BECKER W, BECKER B E, NEWMAN M G, et al. Clinical andmicrobiologic findings that May contribute to dental implant failure[J].INT J Oral Maxillofac Implants,1990,5(1):31-38.
    [186] SBORDONE L, BARONE A, RAMAGLIA L, et al. Antimicrobialsusceptibility of periodontopathic bacteria associated with failingimplants[J]. J Periodontol,1995,66(1):69-74.
    [187] CHO K H, PARK J E, OSAKA T. The study of antimicrobial activity andpreservative effects of nanosilver ingredient[J]. Electrochim ACTA,2005,51(1):956-963.
    [188] ZHAO G, STEVENS S J. Multiple parameters for the comprehensiveevaluation of the susceptibility of Escherichia coli to the Silver ion[J].Biometals,1998,11(1):27-32.
    [189]朱梓园,张富强,郑学斌.钛种植体载银抗茵羟基磷灰石涂层的制备及结构特征[J].上海口腔医学,2006,15(5):543-546.
    [190]耿志旺,王卉,林昌健.电化学沉积含纳米银羟基磷灰石涂层及抗菌性能研究[J].电化学,2008,14(3):243-247.
    [191] SONG W-h, RYU H S, HONG S-h. Antibacterial properties of Ag (orPt)-containing Calcium phosphate coatings formed by micro-arcoxidation[J]. J Biomed Mater RES a,2009,88(1):246-254.
    [192] NODA I, MIYAJI F, ANDO Y, et al. Development of novel thermalsprayed antibacterial coating and evaluation of release properties of Silverions[J]. J Biomed Mater RES B APPL Biomater,2009,89(2):456-465.
    [193] CHEN W, LIU Y, COURTNEY H S, et al. In vitro anti-bacterial andbiological properties of magnetron co-sputtered silver-containinghydroxyapatite coating.[J]. Biomaterials,2006,27(32):5512-5517.
    [194] ZHAO L, WANG H, HUO K, et al. Antibacterial nano-structured Titaniacoating incorporated with Silver nanoparticles[J]. Biomaterials,2011,32(24):5706-5716.
    [195] SHIRKHANZADEH M, AZADEGAN M, LIU G-q. Bioactive deliverysystems for the slow release of antibiotics: incorporation of Ag+ions intomicro-porous hydroxyapatite coatings[J]. Materials Letters,1995,24(1):7-12.
    [196]蒋庆连,田一光,银德海,等.载银羟基磷灰石抗菌剂的研究和应用[J].皮革与化工,2010,27(3):13-17.
    [197]张文钲,张羽天.载银抗茵剂的改进[J].化工新型材料,1999,27(4):20-22.
    [198]叶彬,崔凯,冯庆玲.载银氟磷灰石抗茵剂的制备和耐高温性能研究[J].无机材料学报,2003,18(2):485-489.
    [199] CHOLE R A, BRUMMETT R E, TINLING S P. Safety of Silveroxide-impregnated silastic tympanostomy tubes[J]. Am J OTOL,1995,16(6):722-724.
    [200] SCHAEFFER A J, STORY K O, JOHNSON S M. Effect of Silveroxide/trichloroisocyanuric acid antimicrobial urinary drainage system oncatheter-associated bacteriuria[J]. J Urol.,1988,139(1):69-73.
    [201] COWARD J E, CARR H S, ROSENKRANZ H S. Silver sulfadiazine:effect on the ultrastructure of Pseudomonas aeruginosa.[J]. AntimicrobAgents Chemother,1973,3(5):621-624.
    [202]杨辉,蔡日强,王栋,等.抗茵羟基磷灰石的一步合成及其表征[J].功能材料,2010,41(3):406-409.
    [203]朱梓园,张富强,李鸣宇,等.磷酸锆载银抗菌剂对种植体周炎致病菌抗菌效能研究[J].上海第二医科大学学报,2005,25(4):356-358.
    [204] MATSUMURA Y, YOSHIKATA K, KUNISAKI S, et al. Mode ofbactericidal action of Silver zeolite and its comparison with that of Silvernitrate[J]. APPL Environ Microbiol,2003,69(7):4278-4281.
    [205]张宇,张余,赵华福,等.不同浓度硝酸银负载珊瑚羟基磷灰石的细胞毒性实验[J].中国组织工程研究与临床康复,2009,13(42):8295-8298.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700