结直肠癌中miRNAs表达谱的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结直肠癌(colorectal cancer, CRC)是一种常见的消化道恶性肿瘤。其发病与高脂肪和缺少膳食纤维的不良饮食结构有关。随着我国人民群众生活水平的大幅提高和生活方式的西化,CRC的发病率逐年提高。近年,CRC在我国发病率已经上升到第5位,死亡率也居第5位。根据世界其他国家CRC发生发展的变化规律,结合我国各地区近年来癌症发病率动态,CRC将成为本世纪我国发病率上升速度最快的恶性肿瘤之一。
     microRNA属于内源性非蛋白质编码小RN A (small non-protein-coding RN A)。 miRNA最早是在分析线虫遗传学信息时发现,并命名为1in-14。在细胞的生长、组织分化、各种疾病的发生、甚至在肿瘤的发生发展中miRNA都发挥着极为重要的作用。
     研究证实miRNA异常表达在多数肿瘤发生发展过程中均以癌基因或抑癌基因的角色起到重要的调控作用。从各种miRNA数据库的资料中可以看出每个miRNA可调控几十甚至数百个靶基因,而同一个基因的表达也可以同时受多个miRNA干扰。这使得为数众多的miRNA与其靶基因之间形成复杂的网络系统。众多的研究表明miRNA-31在不同的肿瘤内有着不同的表达,在某些组织其表达显著升高如:大肠癌,头颈部鳞癌,肝细胞癌,口腔鳞癌,肺癌;但在其他一些组织却出现了表达下调如:膀胱癌,前列腺癌,胃癌,乳腺癌,浆液性卵巢癌等。miR-31的表达高低与肿瘤的侵袭及浸润也有相关性,如在乳腺癌miR-31的高表达导致侵袭性降低,而在结直肠癌其表达升高与侵袭性呈正相关。Ezrin蛋白是细胞膜与细胞骨架之间的连接蛋白,与肿瘤的侵袭性密切相关,是ERM蛋白(Ezrin、Radixm Moesin)家族的一员,以往又称为eytovillin、P81或villin-2。
     miRNA的研究尚处于起步阶段,miRNA的表达与结肠癌的发生发展以及浸润和转移之间到底存在着什么样的具体关系,目前还不是十分明了。本研究拟采用miRNA芯片及RT-PCR,免疫组织化学等研究方法,旨在通过对比研究结直肠癌及其癌旁正常组织中micro RNAs (miRNAs)的差异表达,初步探讨结直肠癌组织中miRNA的差异表达谱及其在结直肠癌临床生物学特点判定中的检测意义。
     本文收集手术切除的11例新鲜的结直肠癌和其癌旁正常组织标本,立即低温保存并提取RNA。应用AFFX miRNA表达谱芯片实验初步筛查癌及癌旁正常组织中]miRNAs的差异表达,并采用实时定量PCR技术验证芯片检测结果。结果表明结直肠癌和癌旁正常组织中miRNAs表达有明显羊异,与癌旁正常组织相比,结直肠癌中有25个miRNAs表达显著不同(P<0.001),包括15个上调和10个下调的miRNAs。高表达的miRNAs分别是:hsa-miR-31, hsa-miR-767-5p, hsa-miR-105, hsa-miR-196b, hsa-miR-224, hsa-miR-483-5, hsa-miR-1246, hsa-miR-196b, hsa-miR-663b, hsa-miR-584, hsa-miR-141, hsa-miR-18a, hsa-miR-19a, hsa-miR-452, hsa-miR-622。低表达的miRNAs分别是:hsa-miR-215, hsa-miR-4298, hsa-miR-139-5p, hsa-miR-490-5p, hsa-miR-3201, hsa-miR-363, hsa-miR-187, hsa-miR-133a, hsa-miR-1825, hsa-miR-30a。进一步的qRT-PCR结果显示:与癌旁正常组织相比,癌组织中miR-31, miR-105, miR-196b, miR-224, miR-483-5p和:miR-767-5p的mRNA表达水平明显上调(P<0.05),而miR-139-5p, miR-215, miR-490-5p和miR-4298等mRNA水平明显下调(P<0.05),与芯片结果一致。
     在此基础上,选取结直肠癌中显著高表达的miR-31, miR-105和miR-196b作为进一步深入研究的对象,并进一步扩大了病例数,以53例新鲜的结直肠癌及其15例癌旁正常组织作为研究对象,应用qRT-PCR技术对比分析其异常表达与临床生物学特点之间的相关性。同时,通过Targets Scan检索,分析miR-31的密切相关基因—Ezrin,并应用免疫组化及RT-PCR方法确定其在CRC组织中的过表达意义。结合临床病理资料发现:miR-31与结直肠癌的病理分型(P<0.01)和临床分期(P<0.05)显著相关,但与淋巴转移及远处转移不相关(P>0.05); miR-105与病理分型,临床分期,淋巴结转移及远处转移均呈正相关(P<0.05);而miR-196b只与病理分型有关(P<0.05),但与淋巴结转移和远处转移及临床分期均无关(P>0.05)。另外,实验发现Ezrin蛋白和其mRNA均在CRC组织中存在高表达,且与结直肠癌淋巴结转移关系密切。
     结论结直肠癌中存在着明显的miRNAs差异表达,miRNAs特异表达可能成为结直肠癌的潜在的诊断和治疗的分子靶点。miR-31, miR-105和miR-196b高表达预示结直肠癌的不良预后。miR-31的相关基因Ezrin基因mRNA和蛋白水平的高表达可以预示结直肠癌的不良预后,即淋巴结转移。
Colorectal cancer (CRC) remains a common malignant tumor of digestive tract in the worldwide. Several dietary and other lifestyle factors have been implicated in the development of colorectal cancer. As our country's economy developed at high-speed, people's living level improved greatly and lifestyle has been Western, the incidence of CRC has improved significantly year by year. In recent years, the incidence and death rate of CRC has risen to No.5and No.5in our country. According to the changes of initiation and development of CRC in other countries and the dynamic of incidence rate of cancer in all regions of China in recent years, we can see that CRC will be one of the fastest rising malignancy cancers in China of this century.
     MicroRNAs (miRNAs) are small nucleotide RNA species that are expressed from specialized genes. The first miRNA was characterized in the nematode by Lee et al, and was termed as lin-14. It has been reported that miRNAs plays an extremely important role in cell growth, cell death, apoptosis, and metastasis during the carcinogenesis and tumor progression.
     MiRNAs have been found to have links with multiple types of cancer. It acts as oncogene or cancer suppressor gene and plays an important part in regulation function. In recent years, a number of informative profiling studies have determined the levels of miRNAs in various types of cancer cell lines and tumors. Multiple functional studies on tumor suppressive or oncogenic miRNAs were identified from profiling, screens or due to their cancer-associated genomic loci. Numerous miRNAs and target genes formed a complex network. Many studies showed that miRNA-31has different expression levels in cancers. Previous studies found that miR-31over-expressed in colon cancer, head and neck cancer, hepatocellular cancer, oral cavity squamous cell cancer and lung cancer; low-expressed in bladder cancer, prostate cancer, gastric cancer, breast cancer, serous ovarian cancer and so on. Many evidence demonstrated the involvement of miR-31in tumor metastasis. For example.the high expression of miR-31could prevent the metastasis of breast cancer, but promote the invasion of CRC. This discrepancy could have resulted from the different role of miR-31in these cancers. Ezrin (also known as P81or villin-2) is a member of the ERM protein (Ezrin, Radixm, Moesin family). It is connexin between cell membrane and cytoskeleton and involved in the motility of cancer cells.
     The research of miRNA is still in the initial stage. But we still don't know the relationship between the expression of miRNA and the development, invasion and metastasis of CRC. In this study, we focused on the expression of miRNAs in CRC and the adjacent tissues by miRNA gene microarray, determined some cellular functions and molecular pathways targeted by these differentially expressed miRNAs, and discussed differential expression profile and the judgement of clinical biology characteristics in the CRC tissue.
     11CRC and adjacent tissue treated with surgery were collected and frozen immediately. For microarray analysis, the AFFX microRNA biochip was used. Total RNA was isolated from samples and more than thousand miRNAs were analyzed. The interested miRNAs were conformed by a real-time PCR analysis. This approach enabled the identification of miRNAs whose expression is significantly altered in CRC compared with the normal tissues from the same patient. In result,25miRANs were found to be differentially expressed in tumors compared with the adjacent tissues (P<0.001), including15over-expressed miRNAs (has-miR-31,has-miR-767-5. has-miR-105, has-miR-196b-star, has-miR-224, has-miR-483-5p, has-miR-1246, has-miR-196b, has-miR-663b, has-miR-584, has-miR-141, has-miR-18a-star, has-miR-19a, has-miR-452, has-miR-622) and10low-expressed miRNAs (miR-215, miR-4298, mi-R-139-5p, has-miR-490-5p. miR-3201, miR-363. miR-187. miR-133a. miR-1825. miR-30). The further result of qRT-PCR(Real-Time quantitative fluorescence PCR) showed that the expression of miR-31. miR-105. miR-196b. miR-224, miR-483-5p and miR-767-5p in tumor has up-regulated compared with carcinoma side normal tissue(P<0.05). While miR-139-5p, miR-215. miR-490-5p and miR-4298are obviously down-regulated which consist with chip result(P<0.05).
     On that basis, including miR-31. miR-105and miR-196b. strongly up-regulated in CRC were selected to the further Real time PCR study with more samples of CRC. The samples are from53of CRC and15of adjacent tissue. And this study used qRT-PCR to comparatively analyse its differential expression and the judgement of clinical biology characteristics. Meanwhile, we analysed gene Ezrin-closely related to miR-31via Targets Scan search method. And we determined its expression in CRC tissue by immunohistochemistry and RT-PCR analysis. We found miR-31was correlated with histological type (P <0.01) and the clinical stage (P<0.05). And no statistically difference was found between miR-31expression and lymph node metastasis on differentiation (P>0.05); miR-105was positive correlated with histological type, clinical stage and lymph node metastasis (P<0.05); while miR-196-5p was only correlated with the histological type of CRC. Additionally, the over-expression of Ezrin protein and mRNA were indicated by western blotting and RT-PCR in CRC, respectively. Analysis of IHC result demonstrated Ezrin was correlated with the metastasis of CRC.
     Conclusion:Colorectal cancer exists obvious differences of miRNAs expression, miRNAs specifically expressed may become colorectal cancer potential diagnosis and treatment of molecular targets. miR-31, miR-105and miR-196-b high expression indicates poor outcome of colorectal cancer. miR-31related gene Ezrin gene mRNA and protein levels high expression predicts colorectal cancer adverse outcomes, namely the lymph node metastasis.
引文
[1]Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA,2008,105: 10513-10518.
    [2]Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum:a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res,2008,18 997-1006.
    [3]Brcsalier RS, Kim YS. Diet and colonic cancer:putting the puzzle together. N Engl J Med,1985,313:1413-1414.
    [4]Hung KE, Chung DC. New insights into the molecular pathogenesis of colorectal Cancer. Drug Discovery Today:Disease Mechanismsl Gastrointestina ldisorders, 2006,3:439.445.
    [5]Medina PP, Nolde M, Slack FJ, et al. OncomiR addiction in an in vivo model of microRNA-21 induced pre-B-cell lymphoma. Nature,2010,467(7311):86-90.
    [6]Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell,1993,75: 843-54.
    [7]Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic genelin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell,1993, 75:855-62.
    [8]Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature,2000,403:901-6.
    [9]Takamizawa J, Konishi H, Yanagisawa K, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res,2004,64(11):3753-6.
    [10]Berezikov E, Cuppen E, Plasterk RH. Approaches to microRNA discovery. Nat Genet,2006,38(Suppl):S2-7.
    [11]Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science,2001,294:853-58.
    [12]Aboobaker AA, Tomancak P, Patel N, et al. Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development. Proc. Natl. Acad. Sci. USA,2005,102:18017-22.
    [13]Ason B, Darnell DK, Wittbrodt B, et al. Differences in vertebrat microRNA expression. Proc. Natl. Acad. Sci. USA,2006,103:14385-89.
    [14]Kloosterman WP, Steiner FA, Berezikov E, et al. Cloning and expression of new microRNAs from zebrafish. Nucleic Acids Res,2006,34:2558-69.
    [15]He L, Thomson JM, Hemann MT, et al. A microRNA polycistron as a potential human oncogene. Nature,2005,435(7043):828-33.
    [16]Voorhoeve PM, le Sage C, Schrier M, et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell, 2006,124(6):1169-81.
    [17]Zhang B, Pan X, Cobb GP, et al. microRNAs as oncogenes and tumor suppressors. Dev Biol,2007,302(10):1-12.
    [18]Esquela-Kerscher A, Slack FJ. Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer,2006,6(4):259-69.
    [19]Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13ql4 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA,2002,99:15524-29.
    [20]Volinia S, Calin GA, Liu CG, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci. USA,2006,103: 2257-61.
    [21]Cummins JM, He Y, Leary RJ, Pagliarini R, et al. The colorectal microRNAome. Proc Natl Acad Sci USA,2006,103:3687-3692.
    [22]Monzo M, Navarro A, Bandres E, et al. Overlapping expression of microRNAs in human embryonic colon and colorectal cancer. Cell Res,2008,18:823-833.
    [23]Cimmino A, Calin GA, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA,2005,102(39):13944-9.
    [24]Chart JA, Kriehevsky AM, Kosik KS. MicroRNA-21 is air anti-apoptosis factor in human glioblastoma cells. Cancer Res,2005,65(14):6029-6033.
    [25]Sheherbata HR, Hatfield SD, ward EJ, et al. The MicroRNA pathway plays a regulatory role in stem cell division. Cell Cycle,2006,5(2):172-1725.
    [26]Hatfield SD, Sheherbata HR, Fischer KA, et al. Stem cell division is regulated by the microRNA pathway. Nature,2005,435(7044):974-978.
    [27]Yanaihara N, Caplen N, Bowman E, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell,2006,9(3):189-198.
    [28]Shi L, Chen J, Yang J, et al. miR-21 protected human glioblastoma U87MG cellsfrom chemotherapeutic drug lemozoolomide induced apoptosis by decreasing Bax/Bcl-2 ratio and caspase-3 activity. Nature,2010,1352(917): 255-264.
    [29]Lu J. MicroRNA expression profiles classify human cancers. Nature,2005, 435(7043):834-838.
    [30]Fearorl ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell, 1990,61(5):759-763.
    [31]Narayan S, Roy D. Role of APC and DNA mismatch repair genes in the development of colorectal cancers. Mol Cancer,2003,2:41.
    [32]Douglas A. Marchuk, Sudha Srinivasan, et al. Vascular morphogenesis:tales of two syndromes. Human Mol Genetics,2003,12,1:R97-R112.
    [33]Algrain M, Turnen O, Vaheri A, et al. Ezrin contains cytoskeleton and membrane binding domains accounting for its proposed role as a membrane-cytoskeletal linker. J Cen Biol,1993,120(1):129-139.
    [34]Hunter KW. Ezrin, a key component in tumor metastasis. Trends in Molecular Medicine,2004,10(5):201-204.
    [35]Akisawa N, Nishimori I, Iwaura T, et al. High levels of ezrin expressed by human pancreatic adenocarcinoma cell lines with high metastatic potential. Biochem Biophys Res Commun,1999,258(2):395-400.
    [36]Yu Y, Khan J, Khanna C, et al. Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein Six-laskey metastatic regulators. Nat Med,2004,10(2):175-181.
    [37]Pujuguet P, Del Maestro L Gautreau A, et al. Ezrin regulate e-cadherin-dependent adherens junction assembly through racl activation. Mol Biol Cell,2003,14(5): 2181-2191.
    [38]Louvet-Vallee S. ERM proteins:from cellular architecture to cell signaling. Biol Cell,2000,92(5):305-316.
    [39]Hoover K B, Bryant P J. The genetics of the protein 4.1 family organize of the memberance and cytoskeleton. Curr Opin Cell Biol,2000.12(2):229-234.
    [40]Vahefi A, Carpen O, Heiska L, et al. The ezrin protein family. Membrane cytoskeleton interactions and disease associations. Curr Opin Cell Biol,1997,9(5): 659-66.
    [41]Lamb RF, Ozanne BW, Roy C, et al. Essential functions of ezrin in maintenance of cell shape and lamellipodial extension in normal and transformed fibroblasts. Cart Biol,1997,7(9):682-8.
    [42]Chun-Nan Yeh, See-Tong pang, Tsung-Wen Chen, et al. Expression of ezrin in associated with invasion and dedifferentiation of hepatitis Brelated hapatocellular carcinoma. BMC Cancer,2009,9:233.
    [43]Bandres E, Cubedo E, Agirre X, et al. MicroRNA expression and function in cancer. Trends Mol MED,2006,12:580-587.
    [44]Kuo WC, Yang KT, Hsieh SL, et al. Ezrin is a negative regulator of death receptor-induced apoptosis. Oncogene,2010,29:1374-1383.
    [45]Bendardaf R, Elzagheid A, Lamlum H, et al. E-cadherin, CD44s and CD44v6 correlate with tumour differentiation in colorectal cancer. Oncul Pep,2005,13(5): 831-835.
    [46]Liang Wang, Gui-Nan Lin, Xiang-Li Jiang, et al. Expression of ezrin correlates with poor prognosis of nasopharyngeal carcinoma. Tumour Biol,2011,32(4): 707-12.
    [47]Patara M, Santos EM, Coudry Rde A, et al. Ezrin Expression as a Prognostic Marker in Colorectal Adenocarcinoma. Pathol Oncol Res,2011,17(4):827-33.
    [48]Liu Y, Belkina V, Park C, et al. Constitutively active ezrin increases membrane tension, slows migration, and impedes endothelial transmigration of lymphocytes in vivo in mice. Blood,2012,119(2):445-53.
    [49]Levin B, Lieberman DA, McFarland B, et al. Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps,2008:a joint guideline from the American cancer society, the US Multi-Society Task Force on Colorectal Cancer, and the American Colletge of Radiology. CA Cancer J Clin, 2008,58:130-160.
    [50]黄彦钦,蔡善荣,张苏展,等.中国CRC人群筛查方案的应用价值初探.中国预防医学杂志.2011,45(7):601-604.
    [51]朱红,刘丽.2008年《NCCNCRC筛查指南》要点解读(一).中华健康管理学杂志,2008,2:201-202.
    [52]Luo X, Burwinkel B, Tao S, et al. MicroRNA signatures:novel biomarker for colorectal cancer? Cancer Epidemiol Biomarkers Prev,2011, Jul,20(7):1272-86.
    [53]Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes title frequently located at fragile sites and genomic regions involved in cancels. Proc Natl Acad Sci USA,2004,101(9):2999-3004.
    [54]Kameoka Y, Tagawa H, Tsuzuki S, et al. Contig array CGH at 3p14.2 points to the FRA3B/FHIT common fragile region as the target gene in diffuse large B-cell lymphoma. Oncogene,2004,23(56):9148-54.
    [55]Zhang W, Dahlberg JE, Tam W. MicroRNAs in tumorigenesis:a primer. Am J Pathol,2007,171:728-738.
    [56]Xi Y, Formentini A, Chien M, et al. Prognostic Values of microRNAs in Colorectal Cancer. Biomark Insights,2006,2:113-121.
    [57]Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature,2005,435:834-838.
    [58]Liu CG Calin GA, Meloon B, Gamliel N, et al. An oligonucleotide microchip for Genome-wide microRNA profiling in human and mousetissues. Proc Natl Acad Sci USA,2004,101(26):9740-4.
    [59]T-S. Wong, X.-B. et al. MaturemiR-184 as potential oncogenic microRNA of squamous cell carcinoma of tongue. Clin Cancer Res,2008,14(9):2588-2592.
    [60]Kozaki K, Imoto I, Moqi S, et al. Exploration of rumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res,2008,68(7): 2094-2105.
    [61]Xi Liu, Lorenzo F, Sempere, et al. MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors. Clin Invest,2010,120(4):1298-309.
    [62]Valastyan S, Benaich N, Chang A, et al. Colncomitant suppression of three target genes can explain the impact of a microRNA on metastasis. Genes Dev,2009,15, 23(22):2592-2597.
    [63]Zhang Y, Guo J, Li D, et al. Down-regulation of miR-31 expression in gastric cancer tissues and its clinical significance. Med Oncol.2010,27(3):685-9.
    [64]Guo J, Miao Y, Xiao B, et al. Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol,2009, 24(4):652-7.
    [65]Creighton CJ, Fountain MD, Yu Z, et al. Molecular profiling uncovers s carcinomas and other cancers. Cancer Res,2010,70(5):1906-1915.
    [66]Schaefer A, Jung M, Mollenkopf HJ, et al. Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer,2010, 126(5):1166-76.
    [67]Liao YL, Hu LY, Tsai KW,et al. Transcriptional regulation of miR-196b by ETS2 in gastric cancer cells. Carcinogenesis.2012,33(4):760-9.
    [68]Bhatia S, Kaul D, Varma N. Functional genomics of tumor suppressor miR-196b in T-cell acute lymphoblastic leukemia. Mol Cell Biochem,2011,346(1-2): 103-16.
    [69]Bhatia S, Kaul D, Varma N. Potential tumor suppressive function of miR-196b in B-cell lineage acute lymphoblastic leukemia.2010,340(1-2):97-106.
    [70]Li Y, Zhang M, Chen H, et al. Ratio of miR-196s to HOXC8 messenger RNA correlates with breast cancer cell migration and metastasis. Cancer Res,2010, 70(20):7894-904.
    [71]Li Z, Huang H, Chen P, et al. miR-196b directly targets both HOXA9/MEIS1 oncogenes and FAS tumour suppressor in MLL-rearranged leukaemia. Nat Commun,2012,2:688.
    [72]Benakanakere MR, Li Q, Eskan MA, et al. Kinane DF. Modulation of TLR2 protein expression by miR-105 in human oral keratinocytes. J Biol Chem,2009, 284(34):23107-15.
    [73]Karaayvaz M, Pal T, Song B, et al. Prognostic significance of miR-215 in colon cancer. Clin Colorectal Cancer,2011,10(4):340-7.
    [74]Michael MZ, Cormor Susan M. O', Pellekaan N G, et al. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res,2003,1:882-891
    [75]Asangani I, Rasheed S, Nikolova D, et al. MicroRNA-21(miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion,intravasation and metastasis in colorectal cancer. Oncogene,2008,27(15): 2128-2136.
    [76]Sarver AL, French AJ, Borralho PM, et al. Human colon cancer profiles Show differential microRNA expression depending on mismatch repair status and are characteristic ofundifferentiated proliferative states. BMC Cancer,2009,9: 401-406.
    [77]Motoyama K, Inoue H, Mimori K. Clinicopathological and prognostic significance of PDCD4 and microRNA-21 in human gastric cancer. Int J Oncol. 2010,36(5):1089-95.
    [78]Valastyan S, Reinhardt F, Benaich N, et al. A pleiotropically acting microRNA miR-31, inhibits breast cancer metastasis. Cell,2009,137(6):1032-46.
    [79]Gupta GP, Massague J. Cancer metastasis:building a framework. Cell,2006,127: 679-695.
    [80]Banders E, Cubedo E, Agirre X, et al. Identification by Real-time PCR ofl3 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer,2006,5:29-38.
    [81]Zheng S, Huang J, Zhou K, et al.17β-Estradiol enhances breast cancer cell motility and invasion via extra-nuclear activation of actin-binding protein ezrin. 2011,6(7):e22439.
    [82]Louvet-Vallee S. ERM proteins:from cellular architecture to cell signaling. Biol Cell,2000,92(5):305-316.
    [83]Hoover K B, Bryant P J. The genetics of the protein 4.1 family organize of the memberance and cytoskeleton. Curr Opin Cell Biol,2000,12(2):229-234.
    [84]Vahefi A, Carpen O, Heiska L, et al. The ezrin protein family. Membrane cytoskeleton interactions and disease associations. Curr Opin Cell Biol,1997,9(5): 659-66.
    [85]Chun-Nan Yeh, See-Tong pang, Tsung-Wen Chen, et al. Expression of ezrin in associated with invasion and dedifferentiation of hepatitis Brelated hapatocellular carcinoma. BMC Cancer,2009,9:233.
    [86]Ohtani K, Sakamoto H, Rutherford T, et al. Ezrin, amembrane-cytoskeletal linking protein, is highly expressed in atypical endometrial hyperplasia and uterine endometrioid adenocarcinoma. Cancer Lett,2002,179(1):79-86.
    [87]Strasser A, Jost PJ, Nagata S. The many roles of FAS receptor signaling in the immune system. Immunity,2009,30:180-192.
    [88]Kuo WC, Yang KT, Hsieh SL, et al. Ezrin is a negative regulator of death receptor-induced apoptosis. Oncogene,2010,29:1374-1383.
    [89]Liu Y, Belkina NV, Park C, et al. Loughhead. Constitutively active ezrin increases membrane tension, slows migration, and impedes endothelial transmigration of lymphocytes in vivo in mice. Blood,2012,119(2):445-53.
    [90]Xi Y, Formentini A, Chien M, et al. Prognostic Values of microRNAs in Colorectal Cancer. Biomark Insights,2006,2:113-121.
    [91]Laurila EM, Sandstrom S, Rantanen LM. Both inhibition and enhanced expression of miR-31 lead to reduced migration and invasion of pancreatic cancer. cells. Genes Chromosomes Cancer,2012,51(6):557-68.
    [92]Wang CJ, Stratmann J, Zhou ZG, et al. Suppression of microRNA-31 increases sensitivity to 5-FU at an early stage, and affects cell migration and invasion in HCT-116 colon cancer cells. BMC Cancer,2010,9(10):616.
    [93]Pedrioli DM,Karpanen T, Dabouras V, et al. Detmar M.miR-31 functions as a negative regulator of lymphatic vascular lineage-specific differentiation in vitro and vascular development in vivo. Mol Cell Biol.2010,30(14):3620-34.
    [94]Cottonham CL, Kaneko S, Xu L. miR-21 and miR-31 converge on TIAM1 to regulate migration and invasion of colon carcinoma cells. J Biol Chem,2010, 285(46):35293-302.
    [95]Valastyan S, Chang A, Benaich N, et al. Concurrent suppression of integrin alpha5, radixin, and RhoA phenocopies the effects of miR-31 on metastasis. Cancer Res,2010,70(12):5147-54.
    [96]Hua D, Ding D, Han X, et al. Human miR-31 targets radixin and inhibits migration and invasion of glioma cells. Oncol Rep,2012,27(3):700-6.
    [1]Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-4. Cell,1993,75 (5):843-854.
    [2]Reinhart BJ, Slack FJ, Basson M, et al. The 21 nucletide let-7 RNA regulates develop mental timingin caenorhabd it is elegans. Nature,2000,403(6772):901-906.
    [3]Bartel DP. MicroRNAs:genomics, biogenesis, mechanism and function. [J]. Cell, 2004; 116(2):281-297.
    [4]Bentwich Ⅰ, Avniel A, Karvo Y, et al. Identification of hundreds of conserved and nonconserved human microRNA. Nat Genet,2005,37(7):766-770.
    [5]Chen CZ. Micro RNAs as Oncogenes and tumor suppressors [J]. N Eng J Med,2005, 27;353(17):1768-1771.
    [6]杜秋丽miRNA及其功能研究.生物学通报,2004;39:13-15.
    [7]Nelson JR, Zheng GX, Burge CB, et al. Dynamic regulation of miRNA expression in ordered stages of cellular development[J]. Genes Dev,2007,21(5):578-589.
    [8]Ason B, Darnell DK, Wittbrodt B, et al. Differences in of vertebrate microRNA expression [J]. Natl Acad Sci USA,2006,103(39):14385-14389.
    [9]Lee RC, ambros V. An extensive class of small RNAs in Caenorhabditis elegans [J]. Science,2001,294(5543):862-864.
    [10]Lai EC. MicroRNAs are complementary to 3'UTR sequence motifs that mediate negative post-transcriptional regulation. Nature Genet,2002,30(256):363-364.
    [11]John B, Enright AJ, Aravin A, et al. Human MicroRNA targets, PLoS Biol, 2004; 2(11):e363.
    [12]Calin GA, Croce CM. MicroRN A-cancer connection:the beginning of a new tale. Cancer Res,2006,66(15):953-960.
    [13]Lagos-Quintana M, Rauhut R, et al. Identification of novel genes coding for small expressed RNAs. Science,2001,294(5543):853-858.
    [14]Calin GA, Dumitru CD,Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia Proce Natl Acad Sci,2002,99(24):15524-15529.
    [15]Sempere LF, Dubrovsky EB, Dubrovskaya VA, et al. Expression profling of mammalian microRNAs uncovers roles in murine and humab neuronal differentiation. Genome Biol,2004,5(3):R13.
    [16]Valoczi A, Hornyik C, Varga N, et al. Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res.2004,32(22):e175.
    [17]Obernosterer G, Leuschner PJ, Alenius M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. RNA,2006,12(7):1161-1167.
    [18]Varallyay E, Burgyan J, Havelda Z. Detection of micro RNA by northern blot analyses using LNA probes. Methods,2007,43(2):140-145.
    [19]Varallyay E, Burgyan J, Havelda Z. Micro RNA detection by northern blotting using locked nucleic acid probes. Nat Protoc,2008,3(2):190-196.
    [20]Ouellet DL, Plante I, Landary, et al. Identification of functional microRNAS released through asymmetrical processing of HIV-1 TAR element. Nucleic Acids Res,2008,36(7):2353-2365.
    [21]Liu CG, Calin GA, Meloon B, et al. An oligonucleotide microchip for genome wide microRNA profiling in human and mouse tissues. Pro Natl Acad Sci USA,2004, 101(26):9740-9744.
    [22]Grundhoff A, Sullivan CS, Ganemd D. A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. RNA,2006,12(5):733-750.
    [23]Beuvink I, Kolb FA, Budach W, et al. A novel microarray approach reveals new tissue-specific signatures of known and predicted mammalian microRNAs. Nucleic Acids Res,2007,35(7):e52
    [24]Castoldi M, Schmidt S, Benes V, et al. miChip:an array-based method for microRNA expression profiling using locked nucleic acid capture probes, Nat Protoc,2008,3(2):321-329.
    [25]谢纳著,张亮译.生物芯片分析[M].北京:科学出版社,2004.
    [26]Thomson JM, Parker J, Perou CM, et al. A custom microarray platform for analysis of microRNA gene expression. Nat Methods.2004,1(1):47-53.
    [27]Lee I, Ajay SS, Chen H, et al. Discriminating single-base difference miRNA expressions using microarray Probe Design Guru (ProDeG). Nucleic Acids Res. 2008,36(5):e27.
    [28]Raymond CK, Roberts BS, Garrett-Engele P, et al. Simple quantitive primer-extention PCR assay for direct monitoring of microRNAs and short-interfering RNAs. RNA,2005,11(11):1737-1744.
    [29]Chen C, Ridzon DA, Broomer AJ, et al. Real-time quantification cf microRNAs by stem-loop RT-PCR. Nucleic Acids Res,2005,33(20):el97.
    [30]Shi R, Chiang VL. Facile mens for quantifying microRNA expression by real-time PCR. Biotechniques,2005,39(4):519-525.
    [31]Mishima Y, Abreu-Goodger C, Staton AA, et al. Zebrafish miR-1 and miR-133 shape muscle gene expression and regulate sarcomeric actin organization. Genes Dev.2009 Mar 1; 23(5):619-632.
    [32]Fire A, Xu SQ. Rolling replication of short DNA circles. Proc Natl Acad Sci USA. 1995,92(10):4641-4645.
    [33]Jonstrup SP, Koch J, Kjems J. A microRNA detection system based on padlock probes and rolling circle amplification. RNA.2006,12(9):1747-1752.
    [34]Gaylord BS, Heeger AJ, Bazan GC. DNA detection using water-soluble conjugated polymers and peptide nucleic acid probes. Proc Natl Acad Sci,2002,99(17): 10954-10957.
    [35]Wu W, Sun M, Zou GM, et al. MicroRNA and cancer:Current status and prospective, Int J Cancer,2007,120(5):953-960.
    [36]Johnson SM, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 microRNA family. Cell,2005,120(5):635-647.
    [37]Eder M, Scherr M, MicroRNA and lung cancer. N Engl J Med,2005,352(23): 2446-2448.
    [38]Takamizawa J, Konishi H, Yanagisawa K, et al. Reduced expression of the let-7 microRNAs in human lung cancer in association with shortened postoperative survival. Cancer Res,2004,64(11):3753-3756.
    [39]Lewis BP, Shih IH, Jones-Rhoades MW, et al. Prediction of mammalian microRNA targets. Cell,2003,115(7):787-798.
    [40]Calin GA, Liu CG, Sevignani C, et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemisa. Proc Natl Acad Sci USA,2004, 101(32):11755-11760.
    [41]SatioY, Tones PA. epigenetic activation of tumor suppressor microRNAs in human cancer cells[J]. Cell Cycle,2006,5(19):2220-2222.
    [42]Lehmann U, Hsaemeier B, Romermann D, et al. Epigenetic inactivation of microRNA genes in mammary carcinoma. Verh OtschGes Pathol,2007,91: 214-220.
    [43]Volina S, Calin GA, Liu CG, et al. A microRNA expression signiature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA,2006; 103(7): 2257-2261
    [44]Zhu S, Si ML, Wu H, et al. MicroRNA-21 targets the tumor suppressorgene tropomyosin 1(TPM1). J Biol Chem,2007; 282(19):14328-14336.
    [45]Johnson CD, Esquela-Keracher A, Stefani G, et al. The let-7 microRNA repress cell proliferation pathway in human cells. Cancer Res,2007; 67(16):7713-7722.
    [46]Cimmion A, Calin GA, Fabbri M, et al. miR-15and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA,2005; 102(39):13944-13949.
    [47]Hulvagner G, Zamor PD. A microRNA in a multiple turnover RNA:enzyme complex. Science,2000,297(5589):2056-2060.
    [48]Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics.2002. CA Cancer J Clin, 2005,55(2):74-108.
    [49]Zhou SL, Wang LD. Circulating microRNAs:novel biomarkers for esophageal cancer. World J Gastroenterol,2010.16(19):2348-2354.
    [50]Guo y, Chen Z, Zhang 1, et al. Distinctive microRNA profiles relating to patient survival in esophageal squamous cell carcinoma[J]. Cancer Res,2008,68(1): 26-33.
    [51]Kan T, Sato F, Ito T, et al. The miR-106b-25 polycisstron, activated by genomic amplification,function as an oncogene by suppressing p21 and Bim, Gastroenterology,2009,136(5):1689-1700.
    [52]Maru DM, Singh RR, Hannah C, et al. MicroRNA-196a is a potential marker of progression during Barrett's metaplasiadysplasia invasive adenocarcinoma sequence in esophagus. Am J Pathol,2009,174(5):1940-1948.
    [53]Yang H, Cu J, Wang KK, et al. MicroRNA expression signatures in Barrett'esophagus and esophageal adenocarcinoma. Clin Cancer Res,2009,15(18): 5744-5752.
    [54]Feber A, Xi L, LUketich JD, et al. MicroRNA expression profilies of esophageal cancer. J Thorac Cardiovasc Surg,2008,135(2):255-260.
    [55]Ye Y, Wang KK, Gu J. Genetic variations in microRNA-related genes are novel susceptibility loci for esophageal cancer risk. Cancer Prev Res (Philarious),2008, 1(6):460-469.
    [56]Ohta M, Mimori K, Fukuyoshi Y. Clinical significance of the reduced expression of G protein gamma 7(GNG7) in oesophageal cancer. Br J Cancer,2008,98(2): 410-417.
    [57]He L, He X, Lim LP, et al. A microRNA component of the p53 tumour suppressor network. Nature,2007,447(7148):1130-1134.
    [58]Ogawa R, Ishiguro H, Kuwabara Y, et al. Expression profiling of micro-RNAs in human esophageal squamous cell carcinoma using RT-PCR. Med Mol Morphol, 2009,42(2):102-109.
    [59]Wu BL, Xu LY, Du ZP. MiRNA profile in esophageal squamous cell carcinoma: down regulation of miR-143 and miR-145. Worls J Gastroenterol,2011,17(1): 79-88.
    [60]Mathe'EA, Ngugen GH, Bowman ED, et al. MicroRNA expression in squamous cell carcinoma and adenocarcinoma of the esophagus:association with survival. Clin Cancer Res,2009,15(19):6192-6100.
    [61]Smith CM, Watson DI, Michael MZ, et al. MicroRNAs development of Barrett's esophagus, and progression to esophageal adenocarcinoma. World J Gastroenterol, 2010,16(5):531-537.
    [62]Hong L, Han Y, Zhang H, et al. the prognostic and chemotherapeutic value of miR-296 in esophageal squamous cell carcinoma. Ann Surg,2010,251 (6): 1056-1063.
    [63]Guo H, Wang K, Xiong C, et al. A functional variant in microRNA-146a is associated with risk of esophageal squamous cell carcinoma in Chinese Han. Fam Cancer,2010,9(4):599-603.
    [64]Wang K, Guo H, Hu H M, et al. A functional variation in pre-microRNA-189a is associated with susceptibility of esophageal squamous cell carcinoma in Chinese Han. Biomarkers,2010,15(7):614-618.
    [65]Takasima N, Ishiguro H, Kuwabara Y, et al. Expression and prognostic roles of PABPC1 in esophageal cancer;correlation with tumor progression and postoperative survival. Oncol Rep,2006,15(3):667-671.
    [66]吴梧桐.生物技术要学[M].北京:高等教育出版社,2006; 288-289.
    [67]Hiyoshi Y, Kamohara H, Karashima R, et al. MicroRNA-21 regulates the proliferation and invasion in esophageal squamous cell carcinoma. Clin Cancer Res, 2009,15(6):1915-1922.
    [68]曹秀峰,李苏卿.微小RNA在食管癌诊断预后及治疗中的作用.中华肿瘤杂志,2011,33(3):161-164.
    [69]Ryan JL, Morgan DR, Dominguez RL, et al. High levels of Epstein-Barr virus DNA in latently infected gastric adenocarcinoma. Lab Inves,2009,89(1):80-90.
    [70]Lai KW, Koh KX, Loh M, et al. MicroRNA-130b regulates the tumour suppressor RUNX3 in gastric cancer. Eur J Cancer,2010; 46(8):1456-1463.
    [71]Zhang Z, Li Z, Gao C, et al. MiR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab Invest,2008,88(12):1358-1366.
    [72]Chan SH, Wu CW, Li AF, et al. MiR-21 microRNA expression in human gastric carcinomas and its clinical association. Anticancer Res.2008,28(2A):907-911.
    [73]Tig J, Pan Y, Zhao L, et al. MiR-218 inhibits invasion and metastasis of gastric cancer by targeting the Robol receptor.Plos Genet 2010; 6(3):e1000879
    [74]Guo XB, Jing CQ, Li LP, et al. Down-regulation of miR-622 in gastric cancer promotes cellular invasion and tumor metastasis by targeting ING1 gene. World J Gastroenterol,2011;17(14):1895-1902
    [75]Feng RH,Chen XH, Yu YY, et al. MiR-126 functions as a tumour suppressor in human gastric cancer. CancerLett.2010,298(1):50-63.
    [76]Zhang X, Zhu w, Zhang J, et al. MicroRNA-650 targets ING4to promote gastric cancer tumorienicity. Biochem Biophys Res Commun,2010;395(2):275-280
    [77]F Petrocca, R Visone-MR Onelli, et al. E2F1-Regulated MicroRNAs Impair TGFB-Dependent Cell-Cycle Arrest and Apoptosis in Gastric Cancer. Cancer,2008, 11(3):272-286.
    [78]Katada T, Ishiguro H, Kuwabara Y, et al. MicroRNA expression profile in undifferentiated gastric cancer. Int J Oncol,2009,34(2):537-542.
    [79]Liu T, Tang H, Lang Y, et al. MicroRNA-27 a functiongs as an oncogene in gastric adenocarcinoma by targeting prohibition. Cancer Lett,2009,273(2):233-242.
    [80]Motoyama K, Inoue H, Nakamura Y, et al. Clinical significance of high mobility group A2 in human gastric cancer and its relationship to let-7 microRNA family. Clin Cancer Res,2008,14(8):2334-2440.
    [81]Zhu S, Wu H, Wu F, et al. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res,2008,18(3):350-359.
    [82]Xiao B, Guo J, Miao Y, et al. Detection of miR-106a in gastric carcinoma and its clinicl significance. Clin Chim Acta,2009,400(8):2334-2340.
    [83]Cai SR, Wang Z, Chen CQ, et al. Role of silencing phosphatatase of regenerating liver-3 expression by microRNA interference in the growth of gastric cancer. Chin Med J(Engl),2008,121(24):2534-2538.
    [84]彭亮,潘健,胡海,等.MicroRNA-10a对胃癌细胞系BGC823迁移和浸润能力的影响.Chin J Cancer Biother,2008,15(5):417-421.
    [85]Wang Z, He YL, Cai SR, et al. Expression and prognostic impact of PRL-3 in lymph node metstssis of gastric cancer:Its molecular mechanism was investigated using artificial microRNA interference. Int J Cancer,2008,123(6):1439-1447.
    [86]Slack FJ, Weidhaas JB. MicroRNA in Cancer Prognosis. N Engl J Med,2008, 359(25):2720-2722.
    [87]Bandres E, Bitarte N, Arias F, et al. MicroRNA-451 regulates macrophage migration inhibitory factor production and proliferation of gastrointestinal cancer cells. Clin Cancer Res,2009,15(7):2281-2290.
    [88]Chun-Zhi Z, Lei H, An-Ling Z, et al. MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN. BMC Cancer.2010,10:367.
    [89]Xia L, Zhang D, Du R, et al. MiR-15b and miR-16 inodulate multidrug resistance by targeting BCL2 in human gast ric cancer cells. Int J Cancer,2008,123(2): 372-379.
    [90]Li Z, Zhang W, Wang Z, et al. Inhibition of PRL-3 gene expression in gastric cancer cell line SGC7901 via microRNA suppressed reduces peritoneal metastasis. Biochem Biophys Res Commun,2006,348(1):29-237.
    [91]Cao SQ, Ren CS. MicroRNA-mediated NBS1 Gene Silence and Its Effects on Telomerase Activation in Hela Cells. Clin J Cancer Res,2008,20(3):159-163.
    [92]Khan SA, Taylor-Robinson SD, Toledano MB, et al. Changing international trends in mortality rates for liver, biliary and pancreatic tumours. J Hepatol,2002,37(6): 806-813.
    [93]Meng F, Henson R, Lang M, et al. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology,2006,130(7):2113-2129
    [94]Selaru FM, Olaru AV, Kan T, et al. MicroRNA-21 is overexpressed in human cholangiocarcinoma and regulates progremmed cell death 4 and tissue inhibitor of metalloproteinase 3.Hepatology,2009,49(5):1595-1601
    [95]Meng F, Wehbe-Janek H, Henson R, et al. Epigenetic regulation of microRNA-370 by interleukin-6 malignant human cholangiocytes. Oncogene,2007,27(3):378-386.
    [96]Meng F, Henson R, Wehbe-Janek H, et al. The MicroRNA let-7a modulates inerleukin-6-dependent SAT-3 survival signaling in malignant human cholangiocytes. J Biol Chem,2007,282(11):8256-8264.
    [97]Mott JL, Kobayashi S, Bronk SF, et al. MiR-29 regulates Mcl-1 protein expression and apoptosis. Oncogene,2007,26(42):6133-6140.
    [98]Wehbe H, Henson R, Meng F, et al. Interleukin-6 contributes to growth in cholangiocarcinoma cells by aberrant promoter methylation and gene expression. Cancer Res,2006,66(21):10517-10524.
    [99]Ryu JK, Hong SM, Karikari CA, et al. Aberrant MicroRNA-155 expression is an early event in the multistep progression of pancreatic adenocarcinoma. Pancreatology,2010,10(1):66-73.
    [100]A E Szafranska, M Doleshal, H S Edmunds, et al. Analysis of microRNAs in pancreatic fine needle aspirates can classify benign and malignant tissues. Clin.Chem.2008,54(10):1716-1724.
    [101]Wang J, Chen J, Chang P, et al. MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer Prev Rea (Phila Pa),2009,2(9):807-813.
    [102]C.Roldo, E.Missiagliar J, P.Hagan, et al. MicroRNA expression abnormalities in pancreatic endocrine and clinical behavior. J Clin Oncol,2006,24(29):4677-4684.
    [103]F U Weiss, I J Marques, J M Woltering, et al. Retinoic acid receptor (RAR) antagonists inhibit miR-10A expression and block metastatic behavior of pancreatic cancer. Gastroenterology,2009,137(6):2136-2145.
    [104]M Dillhoff, J Liu, W Frankel, et al. MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. J Gastrointest Surg,2008,12(12): 2171-2176.
    [105]Q Ji, X Hao, M Zhang, et al. MicroRNA miR-34 inhibits human pancreatic cancer tumor initiating cells. PLos.One 4,2009,28(4):e6816.
    [106]Li Y, Vandenboom TG, Kong D, et al. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res,2009,69(16): 6704-6712.
    [107]Murkami Y, Yasuda T, Saigo K, et al. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene,2006,25(17):2537-2545.
    [108]Qu KZ, Zhang K, Li H, et al. Circulating microRNAs as biomarkers for hepatocellular carcinoma. J Clin Gastroenterol,2011,45(4):355-360.
    [109]Yamamoto Y, Kosaka N, Tanaka M, et al. MicroRNA-500 as a potential diagnostic marker for hepatocellular carcinoma. Biomarkers,2009,14(7): 529-538.
    [110]Grammantieri L, Ferracin M, Fornari F, et al. Cyclin Gl is a target of miR-122a, amicroRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res,2007,67(13):6092-6099.
    [111]Tsai WC, Hsu PW, Lai TC, et al. MicroRNA-122,a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatatocellular carcinoma. Hepatology, 2009,49(5):1571-1582.
    [112]Coulouarn C, Factor VM, Andersen JB, et al. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene.2009,28(40):3526-3536.
    [113]Meng F, Henson R, Wehbe-Janek H, et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology,2007,133(2):647-658.
    [114]Budhu A, Jia HL, Forgues M, et al. Identifieation of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology,2008,47(3):897-907.
    [115]Garofalo M, Di Leva G, Romano G, et al. miR-221&222 regulate TRAIL resistance and enhance tumorrigenicity through PTEN and TIMP3 downregulation. Cancer Cell,2009,16(6):498-509.
    [116]Ji J, Zhao L, Budhu A, et al. Let-7g targets collagen type Ⅰ alpha2 and inhibits cell migration in hepatocellular carcinoma. J Hepatol,2010,52(2):690-697.
    [117]Li J, Wang Y, Yu W, et al. Expression of serum miR-221 in human hepatocellular carcinoma and its prognositic significance. Biochem Biophys Res Commun,2011, 406(1):70-73.
    [118]Zhang J, Yang Y, Yang T, et al. microRNA-22, downregulated in hepatocellular carcinoma and correlated with prognosis, suppresses cell proliferation and tumourigenicity. Br J Cancer,2010,103(8):1215-1220.
    [119]Wang C, Song B, Song W, et al. Underexpressed microRNA-196b-5p targets Hypoxia-Inducible Fator-la in hepatocellular carcinoma and predicts prognosis of hepatocellular carcinoma patients. J Gastroenterol Hepatol,2011,26(11): 1630-1637.
    [120]Ji J, Yamashita T, Budhu A, et al. Identification of micro-RNA-181 by genome-wide screening as acritical player in EpCAM-positive hepatic cancer stem cells. Hepatology,2009,50(2):472-480.
    [121]Sun BS, Dong QZ, Te QH, et al. Lentiviral-mediated miRNA against osteopontin suppresses tumor growth and metastasis of human hepatocellular carcinoma. Hepatology,2008,48(6):1834-1842.
    [122]Kota J, Chivukula RR, O'Donnell KA, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell,2009,137(6): 1005-1017.
    [123]Bandres E, Cubedo E, Agirre X, et al. Identification by Real-time PCR of 13 mature microRNAs differentially expressed incolorectal cancer and non-tumoral tissues. Mol Cancer,2006,5:29.
    [124]Wang CJ, Zhou ZG, Wang L, et al. Clinicopathological significance of microRNA-31,-143and-145 expression in colorectalcancer. Dis Markers,2009, 26(1):27-34.
    [125]Huang Z, Huang D, Ni S, et al. Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer,2010,127(1): 118-126.
    [126]Ng EK, Chong WW, Jin H, et al. Differential expression of microRNAs in plasma of patients with colorectal cancer:a potential marker for colorectal cancer screening. Gut,2009,58(10):1375-1381.
    [127]Link A, Balaguer F, Shen Y, et al. Faceal microRNAs as novel biomarkers for colon cancer screening. Cancer Epidemiol Biomarkers Prev,2010,19(7): 1766-1774.
    [128]Michael MZ, O'Connor SM, vanHolst Pellekaan NG, et al. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res,2003,1(12): 882-891.
    [129]Akao Y, Nakagawa Y, Naoc T. MicroRNAs-143 and 145 in colon cancer. DNA Cell Biol,2007,26(5):311-320.
    [130]Slaby O, Svoboda M, Fabian P, et al. Altered expression of miR-21, miR-31, miR-143and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology,2007,72(5-6):397-420.
    [131]Takayama T, Miyanishi K, Hayashi T, et al. Colorectal cnacer:genetics of development and metastasis. J Gastroenterol,2006,41(3):185-192.
    [132]Gabriely G, Wurdinger T, Kesari S, et al. MicroRNA-21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol,2008; 28(17):5369-5380.
    [133]Asangani I A, Rasheed SA, Nikolova DA, et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion intravasation and metastasis in colorectal cancer. Oncogene,2008,27(15): 2128-2136.
    [134]Biscaglia G, Panza A, Gentile AM, et al. Role microRNA in the pathogenesis of colorectal cancer:possible involvement of miRNA-143 and miRNA-21. Dig Liver Dis,2009,41S1:S28.
    [135]Monzo M, Navarro A, Bandres E, et al. Overlapping expression of microRNAs in human embryonic colon and colorectal cancer. Cell Res,2008,18(8):823-833.
    [136]Schimanski CC, Frerichs K, Rahman F, et al. High miR-196a levels promote the oncogeneic phenotype of colorectal cancer cells.World J Gastroenterol,2009, 15(17):2089-2096.
    [137]Natalwala A, Spychal R, Tsepis C. Epithelial-mesenchymal transition mediated tumourigenesis in the gastrointestinal tract. World J Gastroenterol,2008,14(24): 3792-3797.
    [138]Spaderna S, Schmalhofer O, Hlubek F, et al. EMT-linked loss basement membranes indicates matastasis and poor survival in colorectal cancer. Gastroenterology,2006,131(3):830-840.
    [139]Burk U, Schubert J, Wellaer U, et al. A receiprocal repression between ZEB1 and members of the miR-200family promotes EMT and invasion in cancer cells. Embo Rep,2008,9(6):582-589.
    [140]杨建军,马延磊,秦环龙.microRNAs调控网络在大肠癌发病机制中的研究 进展.世界华人消化杂志,2010,18(14):1478-1484.
    [141]He L, He X, Lowe SW, et al. microRNAs join p53 netwirk-another piece in the tumoursuppression puzzle. Nat Rev Cancer,2007,7(11):819-822.
    [142]Tazawa H, Tsuchiya N, Izumiy M, et al. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA,2007;104(39):15472-15477.
    [143]Toyota M, Suzuki H, Sasaki Y, et al. Epigenetic silencing of mocroRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation.in colorectal cancer. Cancer Res,2008,68(11):4123-4132
    [144]Schepeler T, Reiner JT, Ostenfeld MS, et al. Diagnostic and prognostic micro RNAs in stage Ⅱ colon cancer. Cancer Res,2008,68(15):5878-5887.
    [145]Xi Y, Formentini A, Chien M, et al. Prognostic Values of microRNAs in Colorectal Cancer. Biomark Insights,2006,2:113-121.
    [146]Schetter AJ, Nguyen GH, Bowman ED, et al. Association of inflammation-related and microRNA gene expression with cancer-specific mortality of colon adenocarcinoma. Clin Cancer Res,2009,15(18):5878-5887.
    [147]Lee HC, Kim JG, Chae YS, et al. Prognostic inpact of microRNA-related gene polymorphisms on survival of patients with colorectal cancer. J Cancer Res Clin Oncol,2010,136(7):1073-1078.
    [148]Diaz R, Silva J, Garcia JM, et al. Deregulated expression of miR-106a predicts survival in human colon cancer patients. Genes Chromosomes Cancer,2008, 47(9):794-802.
    [149]Svoboda M, Izakovicova Holla, Sefr R, et al. Micro-RNAs miR-125b and miR-137 are frequently upregulated in response to capecitabine chemoradiotherapy of rectal cancer. Int J Oncol,2008,33(3):541-547.
    [150]Li XM, Wang AM, Zhang J, et al.Down-regulation of miR-126 expression in colorectal cancer and its clinical significance. Med Oncol.2011,28(4): 1054-1057.
    [151]Rossi L, Bonmassar E, Faraoni I. Modification of miR gene expression pattern in human colon cancer cells following exposure to 5-fluorouracil in vitro. Pharmacol Res.2007,56(3):248-253.
    [152]Nakajima G, Hayashi K, Xi Y, et al. Non-coding MicroRNAs hsa-let-7g and hsa-miR-181b areassociated with chemoresponse to S-1 in colon cancer. Cancer Genomics Proteomics,2006,3(5):317-324.
    [153]Chintharlapalli S, Papineni S, Abdelrahim M, et al. Oncogenic microRNA-27a is a target for anticancer agent methyl 2-cyano-3,11-dioxo-18beta-olean-1, 12-dien-30-oate in colon cancer cells. Int J Cancer,2009,125(8):1965-1974.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700