口腔粘膜下纤维性变相关miRNA表达谱的建立及其功能的初步探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Establishment of MiRNA Expression Proming of Oral Submucous Fibrosis and Preliminary Investigation of Its Function
  • 作者:刘斌杰
  • 论文级别:博士
  • 学科专业名称:外科学
  • 学位年度:2012
  • 导师:翦新春
  • 学科代码:100210
  • 学位授予单位:中南大学
  • 论文提交日期:2012-04-01
摘要
研究背景及目的:
     口腔粘膜下纤维性变(oral submucous fibrosis, OSF)是一种慢性、隐匿性、具有癌变倾向的口腔粘膜病,癌变率高达7.6%。最近的流行病学调查表明,OSF的发病地区、发病率和癌变率均有上升趋势。目前认为OSF与咀嚼槟榔、胶原代谢紊乱、免疫、遗传、微循环及血液流变学等因素有关,本课题组前期研究发现,丹参联合小剂量泼尼松龙治疗具有明显的临床效果,但口腔粘膜下纤维性变的确切发病机制及治疗显效获得的机制仍不清楚。
     miRNA是近年来发现的转录后调节基因表达的内源性非编码单链小RNA分子,参与了机体生长发育,器官形成,造血,细胞增殖、分化及凋亡等众多生理活动和病理过程。近年来miRNA在心肌纤维化、肾脏纤维化和肝纤维化等方面已有许多报道,至于miRNA在OSF发病中的功能及机制研究报道较少。本研究旨在探讨miRNA在OSF发病及临床治疗转归中的功能及作用机制,为阐明OSF的发病机理及临床治疗提供新的线索。
     研究方法:
     (1)选取1例临床上具有典型病理特征的中期OSF组织及其配对正常组织,以正常组织为对照,部分病变组织行Affymetrix miRNA芯片实验,建立OSF相关miRNA表达谱。原配对组织及选取的初诊OSF配对中、晚期各10例组织经niRNA专用抽提试剂盒抽提miRNA后,经专用miRNA逆转录试剂盒逆转录后,用实时定量PCR验证miRNA芯片结果。
     (2)针对感兴趣的miRNA,根据下列三个国际公认的、拥有不同计算方法的数据库:www.targetscan.org、pictar.mdc-berlin.de/cgi-bin/PicTar_vertebrate.cgi、www.mirbase.org进行miRNA靶标的初步预测,寻找三个数据库都预测为靶的基因。
     (3)从正常口腔粘膜组织获得原代成纤维细胞,以槟榔碱(50μg/m1)诱导,于72h后检测差异miRNA的表达。原代培养OSF-Fb细胞,经丹参(90mg/ml)联合小剂量泼尼松龙作用,于72h后检测差异miRNA的表达。
     (4)通过生物信息学软件对miR-203可能调控的靶基因进行预测,结合其生物学功能,筛选出miR-203可能的靶基因COL4A4。Western blot检测上述收集的配对标本组织、槟榔碱诱导前后的正常口腔粘膜成纤维细胞及丹参联合小剂量泼尼松龙处理前后的OSF-Fb细胞中COL4A4的表达。
     (5)将COL4A4基因3'UTR包括miR-203结合位点、上下游部分侧翼序列以及酶切位点在内的共60bp片段分别克隆入pMIR-REPORT荧光素酶报告基因载体,将其分别与β-gal表达质粒及miR-203表达载体共转染293T细胞24h后检测报告基因活性。结果:
     (1)所选病变组织属于OSF病变中期,miRNA芯片显示差异1.5倍以上的miRNA共有18个,其中OSF病变组织中上调12个,下调6个,miRNA特异性实时定量PCR验证结果与芯片结果一致;(2)临床中、晚期OSF组织中差异miRNA的变化趋势与芯片结果基本一致;(3)生物信息学分析结果显示其中的miR-203、 miR-23b及miR-200c等可能参与了OSF病变过程及其后的癌变;(4)槟榔碱能诱导正常口腔粘膜成纤维细胞中miRNA的表达改变,丹参联合小剂量泼尼松龙能逆转OSF成纤维细胞中相关miRNA的表达;(5)生物信息预测显示COL4A4基因3'UTR与miR-203之间有一物种间保守作用位点(site1),3个非保守作用位点(site2, site3, site4);(6)OSF组织中,COL4A4的蛋白表达量明显高于配对正常组织,槟榔碱能诱导上调正常口腔粘膜成纤维细胞中COL4A4的表达,而丹参联合小剂量泼尼松龙能下调OSF成纤维细胞中COL4A4的表达;(7)miR-203能明显抑制site1介导的报告基因活性,能部分抑制site2与site4介导的报告基因活性,而对site3介导的报告基因活性无明显影响。
     结论:
     (1)首次构建了OSF相关的miRNA表达谱;(2)临床组织验证提示差异miRNA在OSF的发生发展中发挥作用;(3)槟榔碱体外能诱导正常口腔粘膜成纤维细胞中miRNA的表达改变,而丹参联合泼尼松龙能逆转OSF成纤维细胞中相关miRNA的表达;(4)miR-203与COL4A4的蛋白表达呈负相关,miR-203能直接靶向抑制COL4A4的蛋白表达。
Background and Objective:
     Oral submucous fibrosis (OSF) is a chronic pre-cancerous disease of insidious onset characterized by the deposition of fibrous tissues in the oral submucosa, with about7.6%malignant transformation rate. Recent epidemiological studies show an increase in the high incidence area, incidence rate and malignant transformation of OSF. many factors such as chewing betel nut, disorders of collagen metabolism, immune, genetic, microcirculation and hemorheology play important roles in the pathogenesis of OSF. We have previous found that Salvia in combination with low-dose prednisolone was effective in the treatment of OSF. However, the exact pathogenesis of OSF is not yet known, as well as the treatment.
     MicroRNAs (miRNAs) are a recently discovered class of small non-coding RNAs that post-transcriptionally regulate gene expression, involved in regulation of various physiological and pathological processes such as growth and development, organogenesis, hematopoiesis, cell proliferation, differentiation and apoptosis. Many recent reports have demonstrated the role of miRNAs in myocardial fibrosis, kidney fibrosis and liver fibrosis. However, the relationship between miRNA and OSF is not clearly. To provide new clues to the pathogenesis and treatment of OSF, our study investigates the function and mechanism of miRNA in the OSF.
     Methods:
     (1) select three case with typical clinical pathological features of OSF and its paired normal tissue (internal control). The miRNA expression profiles between the OSF and its paired control were compared by using the Affymetrix analysis. After extraction miRNA from the mid-late OSF tissue specimens and the control normal tissue, some of the differentially expressed miRNAs were validated by real-time quantitative PCR.
     (2) Choose the computational prediction of miRNA targets from the TargetScan sites (www.targetscan.org、pictar.mdc-berlin.de/cgi-bin/PicTar vertebrate.cg、www.mirbase.org).
     (3) Treatment the primary normal oral mucoses cells by Arecoline, we detected the interesting miRNA expression at72h. Following, the primary cells OSF-Fb were treated with a combination of Salvia and low-dose prednisolone, then detection the different miRNAs at72h.
     (4) Using a variety of bioinformatics software tools, it realved that COL4A4was the putative target of miR-203. Examine the expreesion of COL4A4in the indcated cells by Western blot analysis.
     (5) we integrated a fragment of the COL4A43'UTR containing the target sequence into the pMIR-REPORT luciferase vector. Then, the COL4A43'UTR-luciferase construct and miR-203were contransfected into293T cells. Beta-gal was used as a control to monitor transfection efficiency.24h after transfection, cells were harvested and luciferase activity was measured.
     Results:
     (1) The miRNA microarray chip analysis identified19miRNAs differentially expressed with1.5-fold or greater change. Of these,13microRNAs were upregulated and6were downregulated. The results of expression data obtained by microarray analysis were in good agreement with those obtained by real-time quantitative PCR analyses.
     (2) The expression of miRNAs from the samples of middle-and late-stage OSF were consistent with the miRNA expression profiles observed from the microarray data.
     (3) Microarray-Bioinformatics analysis revealed that the miR-203, miR-23b, miR-200c of Oral Submucous Fibrosis play important roles in the development of OSF and subsequently malignant transformation.
     (4) Arecoline exposure induced changes in the expression of miRNAs in normal mucosal cells. Salvia in combination with low doses of prednisolone could reverse the miRNA expression.
     (5)Bioinformatics analysis revealed that the COL4A43'UTR has a conserved site (site1) and3non-conserved sites (site2, site3, site4) complementary to the miR-203.
     (6) The expression of COL4A4in OSF was significantly higher than normal control. Arecoline induced the expression of COL4A4in normal mucosal cells. Salvia in combination with low-dose prednisolone downregulated the expression of COL4A4in OSF cells.
     (7) miR-203could significantly inhibit site1-luciferase reporter activity, partially inhibited site3-and site4-luciferase reporter activity, while no significant effect on site3-luciferase reporter activity.
     Conclusion:
     (1) construction of miRNA expression profiling of the OSF.
     (2) The clinical evidences proved that miRNAs play essential role in the OSF.
     (3) In vitro, Arecoline changed the expression of miRNAs in normal oral mucosal cells, while the Salvia in combination with prednisolone could reversed it.
     (4) miR-203was negatively correlated with the expression of COL4A4protein in OSF. Moreover, miR-203can directly repress COL4A4mRNA.
引文
[1]Pindborg JJ, Sirsat SM, oral submucous fibrosis [J]. Oral Surg Oral Med Oral Pathol.1966,22:764-779.
    [2]Gupta PC, Ray CS. Epidemiology of betel quid usage [J]. Ann Acad Med Singapore,2004,33:31-36.
    [3]Tilakaratne W M, Klinikowski M F, Saku T, et al. Oral submucous fibrosis: Review on aetiology and pathogenesis. Oral Oncol,2005:561-568
    [4]Utsunomiya H, Tilakaratne W M, Oshiro K, et al. Extracellular matrix remodeling in oral submucous fibrosis:its stage-specific modes revealed by immunohistochemistry and in situ hybridization. J Oral Pathol Med,2005, 34:498-507
    [5]Tsai C H, Chou M Y, Chang Y C. The up-regulation of cyclooxygenase-2 expression in human buccal mucosal fibroblasts by arecoline:a possible role in the pathogenesis of oral submucous fibrosis. J Oral Pathol Med,2003, 32:146-153
    [6]Shieh D H, Chiang L C, Shieh T Y. Augmented mRNA expression of tissue inhibitor of metalloproteinase-1 in buccal mucosal fibroblasts by arecoline and safrole as a possible pathogenesis for oral submucous fibrosis. Oral Oncol, 2003,39:728-735
    [7]李霞.细胞因子与口腔粘膜下纤维性变.国外医学.口腔医学分册,2002,2:25-27
    [8]Tilakaratne WM, Klinikowski MF, Saku T, et al. Oral submucous fibrosis: review on aetiology and pathogenesis. Oral Oncol,2006,42(6):561-568.
    [9]Rajalalitha P, Vali S. Molecular pathogesis of oral submucous fibrosis-a collagen metabolic disorder. J Oral Pathol Med,2005,34(6):321-328.
    [10]Nephew KP, Huang TH. Epigenetic gene silencing in cancer initiation and progression. Cancer Lett 2003,190(2):125-133.
    [11]Gregory RI, Shlekhattar R. MicroRNA biogenesis and cancer. Cancer Res,2005, 65(9):3509-3512.
    [12]Ambros V. MicroRNA pathways in flies and worms:growth,death,fat,stress,and Timing. Cell,2003,113(6):673-676.
    [13]Bartel DP.MicroRNAs:genomies, biogenesis, mechanism, and function.Cell, 2004,116(2):281-297.
    [14]Novina CD, Sharp PA.The RNAi revolution.Nature,2004,430(6996):161-164.
    [15]Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell, 2004,116(2):281-297.
    [16]Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets Cell,2005,120(1):15-20.Bartel DP. MieroRNAs:genomics, biogenesis, mechanism, and function. Cell。2004,116(2):281-297.
    [17]van Sosij E. Sutherland LB, Liu N, et al. A signature pattern of stress responsive microRNAs that cell evoke cardiac hypertrophy and heart failure. Proc Natl Aead Sci USA,2006,103(48):18255-18260.
    [18]da Costa Martins PA, Bourajjaj M. Conditional Dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling. Circulation, 2008,118(15):1567-1576.
    [19]van Sosij E. Sutherland LB. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Aead Sci USA, 2008,105(35):13027-13032.
    [20]Herias V, van Lecuwen RE, Schellings MW, et al. miR-133 and miR-30 regulate connective tissue growth factor implication for a role of microRNA in myocardial matrix remodeling plasticity. Cire Res,2009,104(2):170-178.
    [21]Kato M, Zhang J, Wang M, et al. MicroRNA-192 in diabetic kidney glomemli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci USA,2007,104(9):3432-3437.
    [22]Wang Q, Wang Y, Minto AW, et al. MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy [J]. FASEB J, 2008,22:4126-4135.
    [23]Kato M, Putts S, Wang M, et al. TGF-βactivates Akt kinase through a microRNA dependent amplifying circuit targeting PTEN. Nat Cell Biol, 2009,11(7):1881-889.
    [24]Jia JL, Zhang JS, Huang GC, et al. Over-expressed microRNA-27a and 27b inuencc fat accumulation and cell proliferation during rat hepatic stellate cell activation. FEBS Letters,2009,583(4):759-766.
    [25]Mehrotra D, Pradhan R, Gupta S. Retrospective comparison of surgical treatment modalities in 100 patients with oral submucous fibrosis. Oral Surg Oral Med Oral Pahtol Oral Radiol Endod,2009,107(3):e1-10.
    [26]Ko EC, Shen YH, Yang CF, et al. Artificial dermis as the substitute for splitthichness skin graft in the treatment of oral submucous fibrosis. J raniofac Surg,2009,20(2):443-445.
    [27]刘蜀藩,沈子华,唐瞻贵,等。雷公藤多甙为主治疗口腔粘膜下纤维性变的临床观察[J]。北京口腔医学,1999,7(4):167-169
    [28]侯杰,蔡后荣,戴令娟。川芎和丹参联合泼尼松治疗特发性肺纤维化疗效观察[J]。实用老年医学,2001,15 (2):99-101
    [29]孙家英,屠文震,陆群。系统性硬皮病妇女骨密度测定的探讨[J]。中化风湿病学杂志,2003,7(1):34-36
    [30]Klumper DI, Murray JC, Anscher M. Keloids treatment with excision followed by radiation therapy. JAM Aead Dermatol,1994,31:225-231.
    [31]崔燎,邹丽宜,刘钰瑜,等。丹参水提物和丹参素促进骨细胞活性和防治泼尼松所致大鼠骨质疏松。中国药理学通报,2004,20(3):286-291
    [32]Kimura H, Kawasaki H, Taira K. Mouse microRNA-23b regulates expression of Hesl gene in P19 cells. Nucleic Acids Symp Ser (Oxf).2004, (48):213-4.
    [33]Salvi A, Sabelli C, Moncini S, et al. MicroRNA-23b mediates urokinase and c-met downmodulation and a decreased migration of human hepatocellular carcinoma cells. FEBS J.2009,276(11):2966-82.
    [34]Yeung CL, Tsang TY, Yau PL, et al. Human papillomavirus type 16 E6 induces cervical cancer cell migration through the p53/microRNA-23b/urokinase-type plasminogen activator pathway. Oncogene.2011,30(21):2401-2410.
    [35]Yuan B, Dong R, Shi D, et al. Down-regulation of miR-23b may contribute to activation of the TGF-β1/Smad3 signalling pathway during the termination stage of liver regeneration. FEBS Lett.2011,585(6):927-34.
    [36]Rajalalitha P, Vali s. Molecular pathogenesis of oral submucos fibrosis-a collagen metabolic disorder. J Oral Pathol Med,2005,34(6):321-328.
    [37]Wang B, Koh P, Winbanks C, et al. miR-200a Prevents renal fibrogenesis through repression of TGF-β2 expression. Diabetes.2011,60(1):280-287.
    [38]Park JR, Jung JW, Lee YS,et al. The roles of Wnt antagonists Dkkl and sFRP4 during adipogenesis of human adipose tissue-derived mesenchymal stem cells. Cell Prolif.2008,41(6):859-74.
    [39]Maganga R, Giles N, Adcroft K, et al. Secreted Frizzled related protein-4 (sFRP4) promotes epidermal differentiation and apoptosis. Biochem Biophys Res Commun.2008,377(2):606-11.
    [40]Huang D, Yu B, Deng Y, et al. SFRP4 was overexpressed in colorectal carcinoma [J]. J Cancer Res Clin Oncol.2010,136(3):395-401.
    [41]Guha S, Rey O, Rozengurt E. Neurotensin induces protein kinase C-dependent protein kinase D activation and DNA synthesis in human pancreatic carcinoma cell line PANC-1. Cancer Res.2002,62(6):1632-40.
    [42]Somai S, Gompel A, Rostene W, et al. Neurotensin counteracts apoptosis in breast cancer cells. Biochem Biophys Res Commun.2002,295(2):482-8.
    [43]Wang Q, Zhou Y, Evers BM. Neurotensin phosphorylates GSK-3alpha/beta through the activation of PKC in human colon cancer cells. Neoplasia.2006, 8(9):781-7.
    [44]Alifano M, Souaze F, Dupouy S, et al. Neurotensin receptor 1 determines the outcome of non-small cell lung cancer. Clin Cancer Res.2010,16(17):4401-10.
    [45]Viticchie G, Lena AM, Latina A, et al. MiR-203 controls proliferation, migration and invasive potential of prostate cancer cell lines. Cell Cycle.2011, 10(7):1121-31.
    [46]Li J, Chen Y, Zhao J, et al. miR-203 reverses chemoresistance in p53-mutated colon cancer cells through downregulation of Akt2 expression. Cancer Lett. 2011,304(l):52-59.
    [47]Saini S, Majid S, Yamamura S, et al. Regulatory role of miR-203 in prostate cancer progression and metastasis [J]. Clin Cancer Res.2010, doi: 10.1158/1078-0432
    [48]Furuta M, Kozaki KI, Tanaka S, et al. miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma. Carcinogenesis.2010,31(5):766-76.
    [49]Bueno MJ, Perez de Castro I, Gomez de Cedron M, et al. Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell.2008,13(6):496-506.
    [50]Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol.2008,10(5):593-601.
    [51]Korpal M, Lee ES, Hu Q et al. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E- cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem.2008, 283(22):14910-4.
    [52]Kong D, Li Y, Wang Z, et al. miR-200 regulates PDGF-D-mediated epithelial-mesenchymal transition, adhesion, and invasion of prostate cancer cells. Stem Cells.2009,27(8):1712-21.
    [53]芷晴.槟榔被认定为一级致癌物.先锋队,2004,5:45
    [54]Yang YH, Lee HY, Tung S, et al. Epidermilogical survey of oral submucous fibrosis and leukoplakia in aborigines of Taiwan. J Oral Pathol Med,2001, 30(4):213-219.
    [55]Pindorg JJ:Oral submucous fibrosis:a review, Annals of the Academy of Medicine Singapore,1989,18(5):603-607.
    [56]Ranganathan K, Devi MU, Joshua E, et al. Oral submucous fibrosis:a case-control study in Chennai, South India. J Oral Pathol Med,2004, 33(5):274-7.
    [57]Cox SC, Walker DM. Oral submucous fibrosis:A review. Aust Dent J,1996, 41(5):294-299.
    [58]翦新春.口腔黏膜下纤维性变的临床调查.中华口腔医学杂志,1989,24(5):299-302.
    [59]Tang JQ, Jian XF, Gao ML, et al. Epidemiological survey of oral submucous fibrosis in Xiangtan City, Hunan Province, China. Community Dent Oral Epidemiol,1997,25(2):177-180.
    [60]高义军,凌天牖,尹晓敏,等.口腔黏膜下纤维性变癌变的回顾性研究.临床口腔医学杂志,2005,21(2):119-120.
    [61]Tilakaratne WM, Klinikowski MF, Saku T, et al. Oral submucous fibrosis: review on aetiology and pathogenesis. Oral Oncol,2006,42(6):561-568.
    [62]南京药物学院药材教研组.药材学[M].北京:人民卫生出版社,1994.1041-1045.
    [63]International A gency fo r Research on Cancer. Betel2quid and areca nut chew ing and some areca nut derived nitro soam ines [M]. L yon:IARC,2004.85, 23-129.
    [64]蔺琳,凌天牖.槟榔碱在口腔黏膜纤维性变及癌变发病机制中的作用[J].临床口腔医学杂志,2006,22(2):124-126.
    [65]Harvey W, Scutt A, M egh ji S, et al. Stimulation of human buccalmuco sa fibroblasts in vitro by betel nut alkalo ids. Arch Oral Biol.,1986,31 (1):45-49.
    [66]N ieschultz V, Schmersah 1 P. Zur Phamako logie derW irk stoffe des Betels Umwenlung des areco lin in arecadin. A rzneim ittel2Fo rsch,1968,18:222-225.
    [67]T sai C C, M a R H, Sh ieh T Y. Deficiency in llagen and fibronectin phago-cyto sis by human buccalmuco sa fibroblasts in vitro as a po ssible mechanism fo r o ral submucous fibro sis. J. O ral Patho 1M ed,1999,28 (2):59-63.
    [68]Chang Y C, Yang S F, Tai KW, et al. Increased tissue inh ibito r of metallop ro teinase21 exp ression and inh ibition of gelatinase A activity in buccalmuco sal fibroblasts by arecoline as possible mechanism s for oral submucous fibrosis. Oral Oncol.,2002,38 (2):195-200.
    [69]Shieh D H, Chiang L C, Shieh T Y. A ugmented mRNA expression of tissue inhibitor of metallop roteinasel in buccalmucosal fibroblasts by arecoline and safrole as a possible pathogenesis for oral submucous fibrosis. Oral Oncol., 2003,39 (7):728-735.
    [70]T sai C H, ChouM Y, Chang Y C. The up-regulation of cyclooxygenase-2 expression in human buccalmucosal fibroblasts by arecoline:a possible role of pathogenesis in oral submucous fibrosis. J. Oral PatholMed,2003,32 (3):146-153.
    [71]Lin S C, Lu S Y, Lee S Y, et al. Areca (betel) nut extract activates mitogen-activated protein kinases and NF-kappa B in oral keratinocytes. Int. J. Can., 2005,116 (4):526-535.
    [72]Ling L J, Ho F C, Chen Y T, et al. Areca nut extracts modulated expression of alkaline phosphatase and receptor activator of nuclear factor kB ligand in osteoblasts. J. Cli. Per.,2005,32 (4):353-359.
    [73]HaqueM F, Meghji S, Khitab U, et al. Oral submucous fibrosis patients have altered levels of cytokine production. J. Oral Pathol Med,2000,29(3):123-128.
    [74]冯云枝,凌天牖.口腔粘膜下纤维性变患者角朊细胞分泌细胞因子水平变化.华西口腔医学杂志,2000,18(1):23-25.
    [75]Tsai C H, Yang S F, Chen Y J, et al. The upregulation of insulin-like growth factor-1 in oral submucous fibrosis. Oral Oncol.,2005,41 (9):940-946.
    [76]Tsai C H, Yang S F, Chen Y J, et al. Raised keratinocyte growth factor-1 expression in oral submucous fibrosis in vivo and upregulated by arecoline in human buccalmucosal fibroblasts in vitro. J. Oral Pathol Med,2005,34(2):100-105.
    [77]Momota R, Sugimoto M, Oohashi T, Kigasawa K, Yoshioka H, Ninomiya Y. Two genes, COL4A3 and COL4A4 coding for the human alpha3(Ⅳ) and alpha4(Ⅳ) collagen chains are arranged head-to-head on chromosome 2q36. FEBS Lett.1998 Mar 6;424(1-2):11-6.
    [78]Mariyama M, Zheng K, Yang-Feng TL, Reeders ST (Aug 1992). "Colocalization of the genes for the alpha 3(Ⅳ) and alpha 4(Ⅳ) chains of type Ⅳ collagen to chromosome 2 bands q35-q37". Genomics 13 (3):809-13.
    [79]Jefferson JA, Lemmink HH, Hughes AE, Hill CM, Smeets HJ, Doherty CC, Maxwell AP. Autosomal dominant Alport syndrome linked to the type Ⅳ collage alpha 3 and alpha 4 genes (COL4A3 and COL4A4). Nephrol Dial Transplant.1997 Aug; 12(8):1595-9.
    [80]Boye E, Mollet G, Forestier L, Cohen-Solal L, Heidet L, Cochat P, Grunfeld JP, Palcoux JB, Gubler MC, Antignac C. Determination of the genomic structure of the COL4A4 gene and of novel mutations causing autosomal recessive Alport syndrome. Am J Hum Genet.1998 Nov;63(5):1329-40.
    [81]Buzza M, Wang YY, Dagher H, Babon JJ, Cotton RG, Powell H, Dowling J, Savige J. COL4A4 mutation in thin basement membrane disease previously described in Alport syndrome. Kidney Int.2001 Aug;60(2):480-3.
    [82]Ozen S, Ertoy D, Heidet L, Cohen-Solal L, Ozen H, Besbas N, Bakkaoglu A, Antignac C. Benign familial hematuria associated with a novel COL4A4 mutation. Pediatr Nephrol.2001 Nov;16(11):874-7.
    [83]Longo I, Porcedda P, Mari F, Giachino D, Meloni I, Deplano C, Brusco A, Bosio M, Massella L, Lavoratti G, Roccatello D, Frasca Q Mazzucco G, Muda AO, Conti M, Fasciolo F, Arrondel C, Heidet L, Renieri A, De Marchi M. COL4A3/COL4A4 mutations:from familial hematuria to autosomal-dominant or recessive Alport syndrome. Kidney Int.2002 Jun;61(6):1947-56.
    [84]Dagher H, Yan Wang Y, Fassett R, Savige J. Three novel COL4A4 mutations resulting in stop codons and their clinical effects in autosomal recessive Alport syndrome. Hum Mutat.2002 Oct;20(4):321-2.
    [85]Lu W, Phillips CL, Killen PD, Hlaing T, Harrison WR, Elder FF, Miner JH, Overbeek PA, Meisler MH. Insertional mutation of the collagen genes Col4a3 and Col4a4 in a mouse model of Alport syndrome. Genomics.1999 Oct 15;61(2):113-24.
    [86]Rana K, Tonna S, Wang YY, Sin L, Lin T, Shaw E, Mookerjee I, Savige J. Nine novel COL4A3 and COL4A4 mutations and polymorphisms identified in inherited membrane diseases. Pediatr Nephrol.2007 May;22(5):652-7.
    [87]Slajpah M, Gorinsek B, Berginc G, Vizjak A, Ferluga D, Hvala A, Meglic A, Jaksa I, Furlan P, Gregoric A, Kaplan-Pavlovcic S, Ravnik-Glavac M, Glavac D. Sixteen novel mutations identified in COL4A3, COL4A4, and COL4A5 genes in Slovenian families with Alport syndrome and benign familial hematuria. Kidney Int.2007 Jun;71(12):1287-95.
    [88]Chiang Y, Song Y, Wang Z, Chen Y, Yue Z, Xu H, Xing C, Liu Z. Aberrant expression of miR-203 and its clinical significance in gastric and colorectal cancers. J Gastrointest Surg.2011 Jan;15(1):63-70.
    [89]Saini S, Majid S, Yamamura S, Tabatabai L, Suh SO, Shahryari V, Chen Y, Deng G, Tanaka Y, Dahiya R. Regulatory Role of mir-203 in Prostate Cancer Progression and Metastasis. Clin Cancer Res.2011 Aug 15;17(16):5287-98.
    [90]Viticchie G, Lena AM, Latina A, Formosa A, Gregersen LH, Lund AH, Bernardini S, Mauriello A, Miano R, Spagnoli LG, Knight RA, Candi E, Melino G. MiR-203 controls proliferation, migration and invasive potential of prostate cancer cell lines. Cell Cycle.2011 Apr 1;10(7):1121-31.
    [91]Chim CS, Wong KY, Leung CY, Chung LP, Hui PK, Chan SY, Yu L. Epigenetic inactivation of the hsa-miR-203 in haematological malignancies. J Cell Mol Med.2011 Dec;15(12):2760-7.
    [92]Li J, Chen Y, Zhao J, Kong F, Zhang Y miR-203 reverses chemoresistance in p53-mutated colon cancer cells through downregulation of Akt2 expression. Cancer Lett.2011 May 1;304(1):52-9.
    [93]Lena AM, Shalom-Feuerstein R, Rivetti di Val Cervo P, Aberdam D, Knight RA, Melino G, Candi E. miR-203 represses 'sternness' by repressing DeltaNp63. Cell Death Differ.2008 Jul;15(7):1187-95.
    [94]Sonkoly E, Wei T, Pavez Lorie E, Suzuki H, Kato M, Torma H, Stahle M, Pivarcsi A. Protein kinase C-dependent upregulation of miR-203 induces the differentiation of human keratinocytes. J Invest Dermatol.2010 Jan; 130(1):124-34.
    [95]Nissan X, Denis JA, Saidani M, Lemaitre G, Peschanski M, Baldeschi C. miR-203 modulates epithelial differentiation of human embryonic stem cells towards epidermal stratification. Dev Biol.2011 Aug 15;356(2):506-15.
    [96]Chen HY, Han ZB, Fan JW, Xia J, Wu JY, Qiu GQ, Tang HM, Peng ZH. miR-203 expression predicts outcome after liver transplantation for hepatocellular carcinoma in cirrhotic liver. Med Oncol.2011 Jul 24.
    [1]Lee RC, Feinbaum RL, Ambros V. The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.Cell,1993,75: 843-854.
    [2]Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature,2000,403:901-906.
    [3]Ambros V. microRNAs:tiny regulators with great potential. Cell,2001,107: 823-826.
    [4]Carthew RW. Gene regulation by microRNAs. Curr Op in GenetDev,2006,16 (2):203-208.
    [5]Iorio MV, Croce, CM. MicroRNAs in cancer:small molecules with a huge impact. Clin Oncol,2009,27:5848-5856.
    [6]Vandenboom li Ⅱ TG, Li Y, Philip PA, et al. MicroRNA and cancer:tiny molecules with major implications. Curr Genomics 2008,9:97-109.
    [7]Zheng T, Wang J, Chen X, et al. Role of microRNA in anticancer drug resistance. Cancer,2010,126:2-10.
    [8]Peter ME, Regulating cancer stem cells the miR way. Cell Stem Cell,2010,6: 4-6
    [9]Shimono Y, Zabala M, Cho RW, et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell,2009,138:592-603.
    [10]Wellner U, Schubert J, Burk UC, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness inhibiting microRNAs. Nat Cell Biol, 2009,11:1487-1495.
    [11]Adam L, Zhong M, Choi W, et al. miR-200 expression regulates epithelial-to-mesenchymal transition in bladder cancer cells andreverses resistance to epidermal growth factor receptor therapy. Clin Cancer Res,2009, 15:5060-5072.
    [12]Li Y, VandenBoom TG, Kong D, et al. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res,2009,69:6704-6712.
    [13]Lee Y, Kim M, Han J, et al. MicmRNA genes file transcribed by RNA polymerase Ⅱ. Embo J,2004,23(20):4051-4060.
    [14]Rodriguez A, Griffiths-Jones S, Ashurst JL, et al. Identification of mammalian microRNA host genes and transcriptionunits. Genome Res,2004,14(10A): 1902-1910.
    [15]Denli AM, Tops BB, Plasterk RH, et at Processing of primary mieroRNAs by the Microprocessor complex. Nature,2004,432(7014):231-235.
    [16]Lund E, Gtittinger S, Calado A, et al. Nuclear export of microRNA precursors. Science,2004,303(5654):95-98.
    [17]Bohnsack MT, Czaplinski K, Godich D. Exportin 5 is a RanGTP·-dependent dsRNA--binding protein that mediates nuclear export of pre—miRNAs. RNA, 2004,10(2):185-191.
    [18]Lee Y, Jeon K, lee JT, et al. MicroRNA maturation:step—wise processing and subcellular localization. Embo J,2002,21(17):4663_4670.
    [19]Gregory RI, Chendrimada ri p, Cooch N, et al. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell,2005, 123(4):631-640.
    [20]Diederichs S, Haber DA. Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell,2007,131(6): 1097-1108.
    [21]Pillai RS, Anus CG, Filipowicz W. Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. RNA,2004, 10(10):1518-1525.
    [22]Bartel DP. MieroRNAs:genomics, biogenesis, mechanism, and function. Cell. 2004,116(2):281-297.
    [23]Bartel DP. MicroRNAs:Target recognition and regulatory function. Cell,2009, 136(1):215-233.
    [24]Jing Q, Huang S, Guth S, et al. Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell,2005,120(5):623-634.
    [25]Si ML, Zhu S, Wu H, et al. miR-21-mediated tumor growth. Oncogene,2007, 26:2799-2803
    [26]Seike M, Goto A, Okano T, et al. MiR-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in neversmokers. Proc Natl Acad Sci U.S.A.2009,106: 12085-12090.
    [27]He L, Thomson JM, Hemann MT, et al. A microRNA polycistron as a potential human oncogene. Nature,2005,435(7043):828-833
    [28]Hayashita Y, Osada H, Tatematsu Y, et al. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res,2005,65(21):9628-32.
    [29]Kluiver J, Poppema S, de Jong D, et al. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol, 2005,207(2):243-249.
    [30]Habbe N, Koorstra JB, Mendell JT, et al. MicroRNA miR-155 is a biomarker of early pancreatic neoplasia. Cancer Biol Ther,2009,8:340-346.
    [31]Johnson CD, Esquela-Kerscher A, Stefani G, et al. The let-7 microRNA represses cell proliferation pathways in human cells.Cancer Res.2007, 67:7713-7722.
    [32]Cimmino A, Calin GA, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA,2005,102(39):13944-13949.
    [33]Chang TC, Wentzel EA, Kent OA, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 2007,26, 745-752.
    [34]Yu F, Yao H, Zhu P. 1et-7 regulates self renewal and tumorigenicity of breast cancer cell, Cell,2007,131(6):1109-1123.
    [35]Ji Q, Hao X, Meng Y, et al. Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres. BMC Cancer,2008,8:266.
    [36]Ji Q, Hao X, Zhang M, et al. MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One,2009,4:e6816.
    [37]Yu F, Deng H, Yao H, et al. Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene,2010, doi:10.1038/onc.2010.167.
    [38]Wong P, Iwasaki M, Somervaille TC, et al. The miR-17-92 microRNA polycistron regulates MLL leukemia stem cell potential by modulating p21 expression. Cancer Res,2010,70:3833-3842.
    [39]Ji J, Yamashita T, Budhu A, et al. Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells. Hepatology,2009,50:472-480.
    [40]Shi L, Zhang J, Pan T, et al. MiR-125b is critical for the suppression of human U251 glioma stem cell proliferation. Brain Res.2010,1312:120-126.
    [41]Korpal M, Lee ES, Hu G, et al. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. Biol Chem,2008,283: 14910-14914.
    [42]Park SM, Gaur AB, Lengyel E, et al. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev,2008,22:894-907.
    [43]Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol,2008,10:593-601.
    [44]Li Y, VandenBoom TG, Kong D, et al. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res,2009,69:6704-6712.
    [45]Kong D, Li Y, Wang Z, et al. miR-200 regulates PDGF-D-mediated epithelial-mesenchymal transition, adhesion, and invasion of prostate cancer cells. Stem Cells,2009,27:1712-1721.
    [46]Adam L, Zhong M, Choi W, et al. miR-200 expression regulates epithelial-to-mesenchymal transition in bladder cancer cells andreverses resistance to epidermal growth factor receptor therapy. Clin Cancer Res,2009, 15:5060-5072.
    [47]Vetter G, Saumet A, Moes M, et al. miR-661 expression in SNAI1-induced epithelial to mesenchymal transition contributes to breast cancer cell invasion by targeting Nectin-1 and StarD10 messengers. Oncogene, 2010;29(31):4436-48..
    [48]Hoang-Vu C, Dralle H, Huttelmaier S, Downregulation of microRNAs directs the EMT and invasive potential of anaplastic thyroid carcinomas. Oncogene, 2010;29(29):4237-44.
    [49]Rui W, Bing F, Hai-Zhu S, et al. Identification of microRNA profiles in docetaxel-resistant human non-small cell lung carcinoma cells (SPC-A1).Cell Mol Med,2010,14:206-214.
    [50]Eitan R, Kushnir M, Lithwick-Yanai G, et al. Tumor microRNA expression patterns associated with resistance to platinum based chemotherapy and survival in ovarian cancer patients. Gynecol Oncol,2009,114:253-259.
    [51]Chen GQ, Zhao ZW, Zhou HY, et al. Systematic analysis of microRNA involved in resistance of the MCF-7 human breast cancer cell to doxorubicin. Med Oncol,2010;27(2):406-15..
    [52]Meng F, Henson R, Lang M. Involvement of human microRNA in growth and response to chemotherapy in human cholangiocar-cinoma cell lines. Gastroenterology,2006(7):2113-2129
    [53]Si ML, Zhu S, Wu H. miR-21-mediated tumor growth, oncogene,2007(19): 2799-2803.
    [54]Bourguignon LY, Spevak CC, Wong G, et al. Hyaluronan-CD44 interaction with protein kinase C(epsilon) promotes oncogenic signaling by the stem cell marker Nanog and the production of microRNA-21, leading to down-regulation of the tumor suppressor protein PDCD4, anti-apoptosis, and chemotherapy resistance in breast tumor cells. Biol Chem,2009,284:26533-26546.
    [55]Li Y, Li W, Yang Y, et al. MicroRNA-21 targets LRRFIP1 and contributes to VM-26 resistance in glioblastoma multiforme. Brain Res,2009,1286:13-18.
    [56]Li Y, Zhu X, Gu J, et al. Anti-miR-21 oligonucleotide enhances chemosensitivity of leukemic HL60 cells to arabinosylcytosine by inducing apoptosis. Hematology (Amsterdam, Netherlands) 2010,15(4):215-221.
    [57]Xin F, Li M, Balch C, et al. Computational analysis of microRNA profiles and their target genes suggests significant involvement in breast cancer antiestrogen resistance. Bioinformatics,2009,25:430-434.
    [58]Zhao JJ, Lin J, Yang H, et al. MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. Biol Chem.2008,283:31079-31086.
    [59]Miller TE, Ghoshal K, Ramaswamy B, et al. MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. Biol Chem,2008, 283:29897-29903.
    [60]Garofalo M, Quintavalle C, Di LG, et al. MicroRNA signatures of TRAIL resistance inhuman non-small cell lung cancer. Oncogene,2008,27:3845-3855.
    [61]Kotani A, Ha D, Hsieh J, et al. miR-128b is a potent glucocorticoid sensitizer in MLL-AF4 acute lymphocytic leukemia cells and exerts cooperative effects with miR-221. Blood,2009,114:4169-4178.
    [62]Yang N, Kaur S, Volinia S, et al. MicroRNA microarray identifies Let-7i as a novel biomarker and therapeutic target in human epithelial ovarian cancer. Cancer Res,2008,68:10307-10314.
    [63]Blower PE, Chung JH, Verducci JS, et al. MicroRNAs modulate the chemosensitivity of tumor cells. Mol Cancer Ther,2008,7:1-9.
    [64]Tsang WP, Kwok TT. Let-7a microRNA suppresses therapeutics-induced cancer cell death by targeting caspase-3. Apoptosis,2008,13:1215-1222
    [65]Fujita Y, Kojima K, Hamada N, et al. Effects of miR-34a on cell growth and chemoresistance in prostatecancer PC3 cells. Biochem Biophys Res,2008,377: 114-119.
    [66]Iorio MV, Casalini P, Piovan C, et al. microRNA-205 regulates HER3 in human breast cancer. Cancer Res,2009,69:2195-2200.
    [67]Pan YZ, Morris ME, Yu AM. MicroRNA-328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells. Mol Pharmacol,2009,75:1374-1379.
    [68]Xia L, Zhang D, Du R, et al. miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Cancer 2008,123: 372-379.
    [69]Kovalchuk O, Filkowski J, Meservy J, et al. Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther,2008,7:2152-72159.
    [70]Cochrane D R, Spoelstra NS, Howe EN, et al. MicroRNA-200c mitigates invasiveness and restores sensitivity to microtubuletargeting chemotherapeutic agents. Mol Cancer Ther,2009,8:1055.
    [71]Yang H, Kong W, He L, et al. MicroRNA expression profiling in human ovarian cancer:miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res,2008,68:425-433.
    [72]Galluzzi L, Morselli E, Vitale I, et al. miR-181a and miR-630 regulate cisplatin-induced cancer cell death.Cancer Res,2010 Mar 1;70(5):1793-803.
    [73]Orom UA, Kauppinen S, Lund AH. LNA-modified oligonucleotides mediate specific inhibition of microRNA function. Gene,2006,372:137-141.
    [74]Krutzfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature,2005,438:685-689.
    [75]Johnson CD, Esquela-Kerscher A, Stefani G, et al. The let-7 microRNA represses cell proliferation pathways in human cells.Cancer Res,2007,67: 7713-7722.
    [76]Tsang WP, Kwok TT. Epigallocatechin gallate up-regulation of miR-16 and induction of apoptosis in human cancer cells. Nutr Biochem,2009,21:140-146.
    [77]Melkamu T, Zhang X, Tan J, et al. Alteration of microRNA expression in vinyl-carbamate-induced mouse lung tumors and modulation by the chemopreventive agent indole-3-carbinol.Carcinogenesis,2009,31:252-258.
    [78]Sun M, Estrov Z, Ji Y, et al. Curcumin(diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol Cancer Ther, 2008,7:464-473.
    [79]Wynn TA. Cellular and molecular mechanisms of fibrosis. J PatIlol.2008.214: 199-210.
    [80]Van Sosij E. Sutherland LB, Liu N, et al. A signature pat tern of stress responsive mieroRNAs that call evoke cardiachypertrophy and heart failure. Proc Nad Aead Sci U S A,2006.103(48):18255-18260.
    [81]da Costa Martins PA. Bourajjaj M. Conditional Dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling. Circulation, 2008,118(15):1567-1576.
    [82]van Rooij E, Sutherland LB. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiacfibrosis. Prec Natl Aead SCi U S A,2008,105(35):13027-13032.
    [83]Herias V, van Lecuwen RE, Schellings MW, et al. miR-133 and miR-30 Regulate Connective Tissue Growth Factor implieations for a Role of MicroRNAs in myocardial matrix remodeling plasticity. Cire Res,2009, 104(2):170-178.
    [84]Chen JF。Mandel EM, Thomson JM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet, 2006,38(2):228-233.
    [85]Hu N, Bezprozvannaya S, Williams AH, et al. microRNA-133a regulates eardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev,2008.22:3242-3254.
    [86]Hum T, Gross C, Fiedler J, et al. MicroRNA-21 contributesto myocardial disease by stimulating MAP kinase signaling in fibroblasts. Nature,2008。456: 980-984.
    [87]Vail Rooij E, Sutherland LB. Control of stress-dependent cardiac growth and gene expression by a MicroRNA. Science,2007,3 16:575-579.
    [88]Kato M, Zhang J, Wang M, et al. MicroRNA-192 in diabetickidney glomemli and its function in TGF.. beta.-induced collagen expression via inhibition of E--box repressors. Proc Nail Acad Sci U S A,2007,104(9):3432-3437.
    [89]Wang Q, Wang Y, Minto AW, et at MicroRNA-377 is upregulated and can lead to increased fibronectin production indiabetic nephropathy. FASEB J。2008, 22:4126-4135.
    [90]Kato M, Putts S, Wang M, et at TGF—B activates Akt kinase through a microRNA dependent arnplilying circuit targering PTEN. Nat Cell Biol,2009, 11(7)1881-889.
    [91]Jia JL, Zhang JS, Huang GC, et al. Over-expressed mieroRNA-27a and 27b inuence fat accumulation and cell proliferation during rat hepatic steUate cell activation. FEBS Letters,2009,583(4):759-766.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700