磁性细菌分离仪的开发与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁小体是一种理想的新型磁性纳米材料,可以广泛应用在磁性材料、生物医学工程、环境保护等各领域。磁小体一般在趋磁细菌胞内排列成磁链,因此趋磁细菌得到了趋磁性,基于这种特性,可以使用磁分离方法分离纯化趋磁细菌。本课题组首次发现氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans)胞内可以合成磁性颗粒。但是类似氧化亚铁硫杆菌这种磁性细菌的趋磁性非常微弱,分离强磁性菌有一定的困难。本文对磁性细菌的磁分离进行了研究,设计开发了一种有效的磁性细菌分离仪,并应用分离仪分离得到磁敏感氧化亚铁硫杆菌,还探索了其培养条件和批量培养。
     本文在磁分离理论计算的基础上设计开发出一种磁性细菌分离仪,经过特殊设计的磁极头可以产生利于磁分离的梯度分布强磁场。利用氧化亚铁硫杆菌为样品进行了磁分离实验:分离得到的强磁菌平均每个细胞含有4颗磁性颗粒,84.21%的细胞含有磁性颗粒,多数细胞含有2-5颗,而弱磁菌平均每个细胞含有2颗磁性颗粒,65.79%的细胞含有磁性颗粒,多数细胞只含有1颗;在人工磁场中,强磁菌的趋磁性明显强于弱磁菌。结果表明磁分离仪可以有效地分离磁性细菌。磁分离仪的最优操作条件是:电磁铁通2A电流,以单位时间流量884mL/h,分离浓度108ml-1的细胞悬液。
     本文应用磁性细菌分离仪多次分离磁敏感氧化亚铁硫杆菌,得到了趋磁性比较强的菌株,然后对得到的菌株的生长影响因素进行了研究。通过正交实验得到磁敏感氧化亚铁硫杆菌的最佳培养条件为:温度T=35℃;250mL摇瓶培养时,摇床转速为150rpm;初始pH=2.5;9K培养基初始FeSO4浓度为44.7g/L。
     本文通过补加Fe2+的方式,实现了磁敏感氧化亚铁硫杆菌的实验室规模(2L)批量培养,初始培养体积为1L,终体积为2L,最佳条件为发酵40h时,一次补入浓度5%的补料,最终菌体浓度比不补料对照提高了60.69%;相同条件一次补入9K培养基全料,菌浓度相比只补入Fe2+提高了6.01%,比不补料提高了70.34%。原子力显微镜观察表明发酵得到的菌体有明显的磁信号,即胞内含有磁性颗粒。
The magnetosome is an ideal kind of bio-nano-magnetic material. Magnetotactic bacteria could migrate along the magnetic field lines, which was due to that they could synthesize intra-cellular magnetosomes. So the magnetotactic bacteria could be separated easily by magnetic separation. The research in this group discovered the fact that Acidithiobacillus ferrooxidans could synthesize intra-cellular magnetic particles. But the magnetotaxis of Acidithiobacillus ferrooxidans was so weak that strong magnetic cells could hardly be separated from cells suspension. In this paper we researched the magnetic separation of magnetic bacteria. Based on the magnetic separation theory we designed and developed a kind of magnetic bacteria separator. As the sample Acidithiobacillus ferrooxidans was separated by this magnetic separator, and the optimal operation condition was studied. A strain of strong magnetic Acidithiobacillus ferrooxidans was isolated by magnetic separation, and the culture condition of it was researched including the influence of magnetic field and optimal condition of maximum culture density. In addition, magnetic Acidithiobacillus ferrooxidans could be batch cultured in the laboratory first time by fed-batch fermentation.
     We developed a kind of magnetic bacteria separator, which could create high gradient magnetic field. Acidithiobacillus ferrooxidans was investigated as an example. Strong magnetic and weak magnetic cells were separated and collected. On average, the number of the magnetic particles presented in the strong magnetic cells was more than that of the weak magnetic cells.84.21% of the strong magnetic cells contained 4-10 magnetic particles. By comparison only 65.79% of the weak magnetic cells contained 1-3 magnetic particles. Moreover, semisolid-plate magnetophoresis showed that the magnetotaxis of strong magnetic cells was stronger than the weak magnetic cells. These results suggest that the magnetic separator could be used to isolate the magnetic bacteria. When the magnetic flux density of outlet a and b reached 1220mT and 900mT and the suspension flow with the cells density of 108 ml-1 was controlled by a applying a rate of 884mL/h, the separation efficiency achieved maximum in the orthogonal experiments.
     We separated Acidithiobacillus ferrooxidans using the magnetic separator and optimized the culture conditions of Acidithiobacillus ferrooxidans by orthogonal experiments. We found that Acidithiobacillus ferrooxidans grew best at initial pH value of 2.0,35℃and 150rpm when added 44.7g/L FeSO4 into 200mL cultured medium.
     We batch cultured Acidithiobacillus ferrooxidans in the laboratory by fed-batch fermentation. In the shake-flask fermentation, the final volume of liquid was 2 L. After 40 h in the fermentation Fe2+(5%) was added in the fermentation liquid. The max cell density could reach 2.33×107 mL-1. Compared with control experiments it increased by 60.69%. At the same condition, the completion 9K culture medium was added in the fermentation liquid. The max cell density could reach 2.47×107 mL-1. Compared with control experiments it increased by 70.34%. And atom force microscopy and magnetic force microscopy showed that cells in the fermentation were magnetic.
引文
[1]冯定五,陈荩.磁选技术的进展[J].国外金属矿选矿,1996,33(4):9-12
    [2]薛博,徐艺华.磁性介质及其在生物技术中的应用[J].化工进展,2000,19(1):18-20
    [3]Watson J H P. Magnetic filtration[J]. Journal Applied Physics,1973,44:4209-4213
    [4]Pamme N. Manz A. On-Chip Free-Flow Magnetophoresis:Continuous Flow Separation of Magnetic Particles and Agglomerates[J]. Anal Chem,2004, 76:7250-7256
    [5]柳亚玲,贾丽,邢达.磁性微珠的制备及其在生物样品分离富集中的应用[J].分析化学,2007,35(8):1225-1232
    [6]Hartig R, Hausmann M, Luers G, et al. Continuous sorting of magnetizable particles by means of specific devition[J]. Rev Sci Instrum,1995,66(5):3289-3295
    [7]Kolm H, Oberteuffer J, Kelland D. High gradient magnetic separation [J]. Sci Am,1975,233(5):46-54
    [8]郑必胜,郭祀远,李琳,等.高梯度磁分离的特性及应用[J].华南理工大学学报(自然科学版),1999,27(3):41-45
    [9]胡晖.高梯度磁过滤技术及展望[J].过滤与分离,2000,10(2):26-28
    [10]郑必胜.高梯度磁分离器中填料的研究[J].华南理工大学学报,1998,26(10):34-39
    [11]Oberteuffer J A. Magnetic separation:A review of principles, device and applications[J]. IEEE Trans on Magn,1974, MAG-10(2)
    [12]Bolto B A, Spurling T H. Water purification with magnetic particles[J]. Environ Monit Assess,1911,19:139-143
    [13]Owen C S. High gradient magnetic separation of erythrocytes[J]. Biophysical Journal,1978,22:171-178
    [14]Liu Y A, Hamby R K, Colberg R D. Fundamental and practical development of magnetofluidized beds:a review[J]. Powder Technol,1991, (64):3-41
    [15]Siegell J H. High-temperature defluidization[J]. Powder Technology,1987, 52:139-148
    [16]吕秀菊,曲红波.磁场流化床在生化工程中的应用[J].化工进展,2001,(3):7-12
    [17]Rosensweig R E. Fluidization:Hydrodynamic stabilization with a magnetic dield[J]. Science,1979, (204):57-60.
    [18]Robinson P J, Dunnill P, Lilly M D. The properties of magnetic supports in relation to immobilized enzyme reactors[J]. Biotechnology and Bioengineering,1973, (15):603-606
    [19]Terranova B E, Burns M A. Continuous cell suspension processing using magnetically stabilized fluidized beds[J]. Biotechnology and bioengineering,1991, 37:110-120
    [20]Chetty A S, Burns M A. Continuous protein separations in a mannetically stabilized fluidized bed using nonmagnetic supports[J]. Biotechnology and bioengineering,1991,38:963-971
    [21]Chetty A S, Gabis D H, Burns M A. Overcoming support limitation in magnetically stabilized fluidized bed separators [J]. Powder technology,1991,64:165
    [22]Cocker T M, Fee C J, Evans R A. Preparation of magnetically susceptible polyacrylamide/magnetite beads for use in magnetically stabilized fluidized bed chromatography[J]. Biotechnology and bioengineering,1997,53:79-87
    [23]Denizli A, Tanyolac D, Salih B, et al. Cibacron blue F3GA-attached polyvinylbutyral microbeads as novel magnetic sorbents for removal of Cu(Ⅱ), Cd(Ⅱ) and Pd(Ⅱ) ions[J]. Journal of chromatography A,1998,793:47-56
    [24]Tanyolac D, Ozdural A. A new low cost magnetic material:magnetic polyvinylbutyral microbeads[J]. Reactive & Functional Polymers,2000,43:279-286
    [25]Burns M A, Graves D J. Application of magnetically stabilized fluidized beds to bioseparations[J]. Reactive Polymers,1987,6:45-50
    [26]Zhang Z R, O'Sullivan D A, Lyddiatt A. Magnetically stabilized fluidized bed adsorption:practical benefit of uncoupling bed expansion from fluid velocities in the purification of a recombinant protein from Escherichia coli[J]. Journal of Chemical Technology and Biotechnology,1999,74:270-274
    [27]Hartig R, Hausmann M, Schmitt J, et al. Preparative continuous separation of biological particles by means of free-flow magnetophoresis in a free-flow electrophoresis chamber[J]. Electrophoresis,1992,13(1):674-676
    [28]Tchikov V, Schuetze S, Kronke M J. Comparison between immunofluorescence and immununomagnetic techniques of cytometry[J]. Magn Magn Mater,1999, 194:242-247
    [29]Suwa M, Watarai H. Magnetophoretic velocimetry of manganese(Ⅱ) in a single emulsion droplet at the femtomole level[J]. Anal Chem,2001,73:5214-521
    [30]Zhang Y Z, Emerson D R, Reese J M. General theory for flow optimization of split-flow thin fractionation[J]. J Chromatogr A,2003,1010:87-94
    [31]Fuh C B, Tsai H Y, Lai J Z. Development of magnetic split-flow thin fractionation for continuous particle separation[J]. Anal Chim Acta,2003, 497:115-122
    [32]Fuh C B, Su Y S, Tai H Y. Magnetic susceptibility determination of various ion-labeled red blood cells by means of analytical magnetapheresis[J]. J Chromatogr A,2004,1027:289-296
    [33]刘新星,谢建平,刘文斌,等.磁泳分离细菌新方法的研究[J].中国生物工程杂志,2006,26(4):70-74
    [34]刘新星,刘文斌,闫颖,等.固体平板磁泳分离细菌新方法[J].中国生物工程杂志,2008,28(3):79-83
    [35]Zborowski M, Moore L R, Williams P S, et al. Separation based on magnetophoretic mobility[J]. Sep Sci Technol,2002,37:3611-3633
    [36]Moore L R, Rodriguez A R, Williams P S, et al. Progenitor cell isolation with a high-capacity quadrupole magnetic flow sorter[J]. J Magn Magn Mater,2001, 225:277-284
    [37]Williams P S, Decker K, Nakamura M, et al. Splitter imperfections in annular split-flow thin separation channels:experimental study of nonspecific crossover[J]. Anal Chem,2003,75:6687-6695
    [38]Chalmers J J, Zhao Y, Nakamura M, et al. An instrument to determine the magnetophoretic mobility of labeled, biological cells and paramagnetic particles[J]. J Magn Magn Mater,1999,194:231-241
    [39]谭晖,冯定五,肖松文.趋磁性细菌载体磁分离技术[J].国外金属矿选矿,2000,2:2-5
    [40]Molday R S, Yen S P S, Rembaum A. Application of magnetic microspheres in labeling and separation of cells[J]. Nature,1977,268,437-438
    [41]T. Matasunaga. A kind of magnetotactic immunocyte by using bacterial magnetic particles[P]. J P patent, No.05322894 (1993)
    [42]T. Matasunaga et al. Trans Mater Res Soc Jap,1994,15A:449
    [43]Pourfarzaneh M, Kamel R S, Landon J, et al. The use of magnetizable particles in solid phase immunoassay[J]. Methods biochem analysis,1982,28,267-295
    [44]Ruxandra G, Yoshiharu M, et al. Biodegradable particles[P].1995, WO Patent 95/03357
    [45]宋慧平,李鑫钢,孙津生,等.生物磁分离新技术处理含铬废水最佳条件的研究[J].环境工程学报,2007,1(10):22-26
    [46]Blakemore R P. Magnetotactic bacteria[J]. Science,1975,190:377-379
    [47]Matsunaga T. Application of bacteria magnets[J]. Trends Biotech,1991,9:91-95
    [48]Blakemore R P, Frankel R B, Kalmijn A J. South-seeking magnetotactic bacteria in the southern hemisphere [J]. Nature,1980,236:384-385
    [49]Bazylinski D A, Frankel R B. Anaerobic magnetite production by a marine, magnetotactic bacterium [J]. Nature,1988,334:518-519
    [50]Frankel R B, Blakemore R P, Torres de Araujo F F, et al. Magnetotactic bacteria at the geomagnetic equator [J]. Science,1981,212:1269-1270
    [51]Matsunaga T, Sakaguchi T and Tadokoro F. Magnetite formation by a magnetic bacterium capable of growing aerobically[J]. Applied and Microbiology Biotechnology,1991,35:651-655
    [52]Sparks N H C, Lloyd J, Board R G. Saltmarsh ponds a preferred habitat for magnetotactic bacteria[J]. Letter in Applied Microbiology,1989,8:109-111
    [53]Sparks N H C, Courtaux L, Mann S, et al. Magnetotactic bacteria are widely distributed in sediments in the UK[J]. FEMS Microbiology Letters,1986,37:305-308
    [54]卫扬保,张洪霞,姜伟,等.武昌东湖水体中趋磁细菌WD-1的分离[J].武汉大学学报(自然科学版),1994,6:115-120
    [55]Kannapiran E, Purushothaman A, Kannan L, et al. Magneto bacteria from estuarine, mangrove and coral reef environs in Gulf of Mannar[J]. Indian Journal of Marine Sciences,1999,28 (3):332-334
    [56]Petermann H, Bleil U. Detection of live magnetotactic bacteria in South Atlantic deep-sea sediments[J]. Planetary Science Letters,1993,117:223-228
    [57]Farina M, Eesquivel D M S. Magnetic iron-sulphur crystals from a magnetotactic microorganism[J]. Nature,1990,343:256-258
    [58]Fassbinder J W E, Stanjek H, Vali H. Occurrence of magnetic bacteria in soil[J]. Nature,1990,343:161-163
    [59]彭先芝,贾蓉芬,等.黄土-古土壤序列中趋磁细菌分布和磁不体形成的古环境研究[J].科学通报,2000,45:2710-2715
    [60]Blakemore R P, Martaea D, Wolfe R S. Isolation and pure culture of fresh water magnetic spirillum in chemically defined medium[J]. J Bacteriol,1979,140:720-729
    [61]Bazylinski D A, Garratt-Reed A J and Frankel R B. Electron microscopic studies of magnetosomes in magnetotactic bacteria[J]. Microsc Res Tech,1994,27(5): 389-401
    [62]Spring S, Schleifer K H. Diversity of magnetotactic bacteria[J]. Systematic and Applied Microbiology,1995,18(2):147-153
    [63]Flies C B, Peplies J, Schueler D. Combined approach for characterization of uncultivated magnetotactic bacteria from various aquatic environments[J]. Appl. EnViron. Microbiol,2005,71,2723-2731
    [64]Petermann H, Bleil U. Detection of live magnetotactic bacteria in South Atlantic deep-sea sediments[J]. Earth Planet Sci Lett,1993,117:223-228
    [65]Stolz J F, Chang S B R, Kirschvink J L. Magnetotactic bacteria and single-domain magnetite in hemipelagic sediments[J]. Nature,1986,321:849-851
    [66]Simmons S L, Edwards K J. In Magnetoreception and Magnetosomes in Bacteria[M]; Schuler D, Ed, Springer:Heidelberg,2007, Vol.3:p 77
    [67]Bazylinski D. Structure and function of the bacterial magnetosome[J]. ASM News,1995,61:337-343
    [68]Blackmore R P. Magnetotactic Bacteria[J]. Ann Rev Microbiol,1982, 36:217-238
    [69]Blakemore R P, Short K A, Bazylinski D A, et al. Microaerobic conditions are required for magnetite formation within aquaspirillum magnetotacticum[J]. Geomicrobiol J,1985,4:53-71
    [70]Bazylinski D A, Blakemore R P. Nitrogen-Fixation (Acetylene-Reduetion) in Aquaspirillum-Magnetotacticum[J]. Current Microbiology,1983,9:305-308
    [71]Schuler D, Spring S, Bazylinski D A. Improved technique for the isolation of magnetotactic spirilla from a freshwater sediment and their phylogenetic characterization[J]. Systematic and Applied Microbiology,1999,22:466-471
    [72]Matsunaga T, Tadokoro F, Nakamura N. Mass culture of magnetic bacteria and their application to flow type immunoassays[J]. Magnetics, IEEE Transaction on 1990, 26:1557-1559
    [73]Schleifer K H, Schuler D, Spring S, et al. The Genus Magnetospirillum Gen-Nov-Description of Magnetospirillum-Gryphiswaldense Sp-Nov and Transfer of Aquaspirillum-Mganetotacticum to Mangetospirillum-Mangetotacticum Comb-Nov[J]. Systematic and Applied Microbiology,1991,14:379-385
    [74]Meldrum F C, Mann S, Heywood B R, et al. Electron-microscopy study of magnetosomes in a cultured coccoid magnetotactic bacteria[J]. Proceedings of the Royal Society of London Series B-Biological Sciences,1993,251:231-236
    [75]Devouard B, Posfai M, Hua X, et al. Magnetite from magnetotactic bacteria:Size distributions and twinning[J]. American Mineralogist,1998,83:1387-1398
    [76]Cox B L, Popa R, Bazylinski D A, et al. Organization and elemental analysis of P-, S-, and Fe-rich inclusions in a population of freshwater magnetococci[J]. Geomicrobiology Journal,2002,19:387-406
    [77]Meldrum F C, Mann S, Heywood B R, et al. Electron-microscopy study of magnetosomes in 2 cultured vibrioid magnetotactic bacteria[J]. Proceedings of the Royal Society of London Series B-Biological Sciences,1993,251:237-242
    [78]Sakaguchi T, Burgess J G, Matsunaga T. Magnetite formation by a sulfate-reducing bacterium[J]. Nature,1993,365:47-49
    [79]范国昌,钱凯先,李荣森,等.磁杆菌HMB-1的磁小体特性及其合成条件的研究[J].生物学杂志,1998,15(5):11-14
    [80]姜伟,卫杨保.趋磁细菌WD-1的超微结构及批量培养方法[J].微生物学通报,2001,28(3):75-78
    [81]吴小铃,都有为.一种趋磁弧菌及其磁小体特性的研究[J].南京大学学报(自然科学版),1999,35(6):745-749
    [82]高梅影,戴顺英,刘艳丽,等.从武汉印染厂废水淤泥中分离出的趋磁细菌的生长与磁小体形成过程[J].应用与环境生物学报,2004,10(2):194-196
    [83]高峻,肖天,孙松,等.新型海洋趋磁细菌YSC-1的分离及其特异性磁性纳米材料磁小体的研究[J].高技术通讯,2004,5:44-47
    [84]Matsunaga T, Tsujimura N, Kamiya S. Enhancement of magnetic particle production by nitrate and succinate fed-batch culture of Magnetospirillum sp. AMB-1[J]. Biotechnol Tech,1996,10:495-500
    [85]Yang C D, Takeyama H, Tanaka T, et al. Effectsof growth medium composition, iron source and atmospheric oxygen concentration on production of luciferase-bacterial magnetic particle complex by a recombinant Magnetospirillum magneticum AMB-1[J]. Enzyme Microb Technol,2001,29:13-19
    [86]Heyen U, Schuler D. Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor[J]. Appl Microbiol Biotechnol,2003,61:536-544
    [87]Sun J B, Zhao F, Tang T, et al. High-yield growth and magnetosome formation by Magnetospirillum gryphiswaldense MSR-1 in an oxygen-controlled fermentor supplied solely with air[J]. Appl Microbiol Biotechnol,2008,79:389-397
    [88]姜伟,赵德华,李颖,等.固氮条件下Greifswald磁螺菌的深层培养及其固 氮活性的调节[J].科学通报,2002,47(22):1722-1725
    [89]Moskowitz B M, Frankel R B, Flanders P J, et al. Magnetic properties of magnetotactic bacteria[J]. Magn. Magn. Mater,1988,73,273-288
    [90]Rosenblatt C, Torres de Araujo F F, Frankel R B. Lightscttering determination of magnetic moments of magnetotactic bacteria[J]. J Appl Phys,1982,53:2727
    [91]高峻,宋涛,潘红苗,等.新型海洋趋磁细菌YSC-1的磁性能分析[J].高技术通讯,2005,15(8):107-110
    [92]Zhao L, Wu D, Wu L F, et al. A simple and accurate method for quantification of magnetosomes in magnetotactic bacteria by common spectrophotometer[J]. J Biochem Biophys Methods,2007,70:377-383
    [93]Albrecht M, Janke V, Sievers S, et al. Scanning force microspy study of biogenic nanoparticles for medical applications[J]. J Magnet Magnet Mater,2005,290-291: 269-271
    [94]Schuler D, Frankel B. Bacterial magnetosomes:microbiology, biomineralization and biotechnological applications[J]. Appl Microbiol Biotechnol,1999,52:464-473
    [95]Christine B F, Henk M J, Dirk D B, et al. Diversity and vertical distribution of magnetotactic bacteria along chemical gradients in freshwater microcosms[J]. FEMS Microbiology ecology,2005,52:185-195
    [96]Gorby Y A, Beveridge T J, Blakemore R P. Characterization of the bacteria magnetosome membrane[J]. J Bacteriol,1988,170:834-841
    [97]Gao J, Xie J P, Ding J N, et al. Extraction and purification of magnetic nanoparticles from strain of Leptospirillum ferriphilum[J]. Trans Nonferrous Met Soc China,2006,16:1417-1420
    [98]Bahaj A S, Croudace I W, James P A B, et al. Continuous radionuclide recovery from wastewater using magnetotactic bacteria[J]. J Magn Magn Mater,1998, 184:241-244
    [99]Frankel RB, Bazylinski DA. Biologically Induced mineralization by bacteria[J]. Rev Mineral Geochem,2003,54:95-114
    [100]Bazylinski D A, Frankel R B. Biologically controlled mineralization in prokaryotes[J]. Rev Mineral Geochem,2003,54:217-247
    [101]Leathen W W, Kinsel N A, Braley S A. Ferrobacillus ferrooxidans:A chemosynthetic autotrophic bacterium[J]. Bacterial,1956,72:700-704
    [102]Amaro A M, Chamorro D, Seeger M, et al. Effect of external Ph perturbations on in vivo protein-synthesis by the acidophilic bacterium Thiobacillus-Ferrooxidans[J]. Journal of Bacteriology,1991,173:910-915
    [103]Lovley D R, Philips E J. Rapid assay for microbially reducible ferric iron in aquatic sediments[J]. Appl Environ Microbiol,1987,53(7):1536-1540

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700