黄骅坳陷孔南地区沙河街期层序地层的构造—沉积响应模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文是在中石油大港油田分公司项目“孔店构造带沙河街组沉积体系研究”的支撑下完成的。此次研究从研究区基础地质、构造特征的研究入手,以井震基准面旋回匹配、层序划分的小波变换以及等时地层格架控制下的测井属性分析方法为手段,开展了研究区层序地层划分与对比、沉积体系分析和构造-沉积关系研究,将黄骅坳陷孔南地区沙河街组划分为三个三级层序,分别对应于沙一段、沙二段和沙三段。通过研究区层序地层的主要控制因素分析,认为构造是研究区沙河街时期层序发育的主控因素。各层序发育时期在地层分布范围、层序地层格架、沉积相类型、沉积构型和火山活动等方面都存在明显的差异,表明控制这三个层序发育的构造方式明显不同。层序Ⅰ发育时期为伸展-走滑构造作用方式,层序Ⅱ发育时期主要为走滑构造作用方式,层序Ⅲ发育时期为伸展-走滑构造作用方式,但构造活动强度较层序Ⅰ时期有所减弱。因此认为各层序之间的层序界面是由于受构造活动方式的转换所形成的,而构造活动活动强度的转换形成了洪泛面或最大洪泛面(四级层序界面)。最后在建立各层序的构造-沉积响应模型的基础上,确定了研究区砂体分布规律,预测出油气的有利储集位置,对研究区的油气勘探具有重要的指导意义。
Kongnan area is located in the southern of Huanghua depression. In the east and west sides, Cangdong fault and Xuxi fault are as the boundary respectively, north to NanDi, and south to DengMingsi. It developed Kongdian Group (Ek) Shahejie Group and Dongying Group in Paleogene Eocene and Guantao Group in Mirocene from bottom to top. With the enhanced role of fault depression since Cenozoic it developed four main faults and a NEE tectonic transfer zone. The four faults are Cangdong, Xuxi, Kongdong and Kongxi fault. As the boundary controlling faults, Cangdong fault and Xuxi fault controlled the subsidence pattern of all Kongnan area. Kongdong and Kongxi fault controlled the development of Kongdian tectonic zone. Kongnan area is devided in two different regions of subsidence pattern with Shenvsi– Wangguantun tectonic transfer zone. The study area can be divided into four major tectonic units as the boundary of these fault zones, which are Nanpi depression, Cangdong depression, Changzhuang depression and Kongdian tectonic zone.
     Currently it has carried out a lot of researches about Shahejie Group in tectonic and sedimentary. These studies focused on the identification of sediment type, the distribution of sand bodies and tectonic characteristics. The division and correlation of sequence stratigraphy have been done in some local areas of important exploration region. Comprehensive study of the relationship between tectonic, sedimentary and sequence stratigraphy has not undertaken yet in the study area. A model has not been established to explain the evolution and the relationship between tectonic, sedimentary and sequence stratigraphy, which model can also forecast the distribution of sand and stratigraphic-lithologic reservoir. This largely restricted the knowledge of evolution of tectonic-sediment and seriously slowed down the exploration progress of Shahejie Group in Kongnan area. The key to solve this problem is to determine the main controlling factors of the sequence development of Shahejie Group, study the tectonic setting of each sequence development stages and controlling of sedimentary facies, sand bodies and sedimentary systems for tectonic movement, and establish the tectonic-sedimentary response model of sequence stratigraphy of Shahejie Period.
     In this study, we start from the unique geological conditions in Kongnan area, take stratigraphy - sedimentary evolution of sequence stratigraphy as the main line, and research from three dimensions:①Establish the division scheme of sequence stratigraphy which applies to the whole region through analyse stacking pattern of single well and combine other means of numerical analysis, such as the wavelet transform and logging attribute analysis. Then, research the borehole seismic base level cycle matching and establish isochronous stratigraphy correlation framework. At last study the relationship between tectonic and sequence stratigraphy through the character analyse of sequence boundary, the composition of systems tract and profile structure.②According to drill core, borehole logging, well logging and other datum, analyse the types of sedimentary facies and the distribution of sedimentary systems and sand bodies. At last establish the relationship between tectonic and deposition.③Through the study of the tectonic evolution and the major fault activity to identify the tectonic settings of every sequence periods. Establish the tectonic-sedimentary response model of sequence stratigraphy under the controlling of different tectonic settings through the research of relationship between sequence, deposition and tectonic. At the base of research above, the final results and knowledge obtained as follows:
     (1) Shahejie Group can be divided into three third-order sequences and nine system tracts. Shahejie Group can be divided into 7 fourth-order sequences, 14 half-cycles of mid-term datum plane. SequenceⅠequals to the Shasan formation, SequenceⅡequals to the Shaer formation and SequenceⅢequals to the Shayi formation. The division scheme has universal applicability in the study area.
     (2) We identified the tectonic setting where the study area located during three sequence evolution period. Through the study of the stratum distribution, the subsidence pattern of isochronous stratigraphy correlation framework, the distribution of sand bodies and sedimentary systems, source of provenance, basic volcanism and seismic data, we concluded that the tectonic regimes are distinguishing in the different developmental stages of the sequence: SequenceⅠand sequenceⅢare formed under the system of strike-slip - extensional tectonics, However, during the sequenceⅢ, strength of tectonic activity was significantly weaker than sequenceⅠ. SequenceⅡformed under the tectonic regime which is dominated by strike-slip.
     (3) We identified the relationship between the tectonic and the sequence stratigraphy. By the research of the borehole seismic base level cycle matching and the different tectonic setting of the sequence period, we defined the relationship between the change of tectonic activity forms and sequence stratigraphy; the changes of tectonic activity in intensity and sequence stratigraphy. We believed that the changes of tectonic activity forms during the developmental stages of each sequence formed sequence boundary between sequences (third-order sequence boundary), meanwhile, the changes of tectonic activity strength within the sequences formed a flood plane or maximum flooding surface (fourth-order sequence boundary). This knowledge has deepened the understanding of the relationship between the tectonic and the sequence stratigraphy evolution.
     (4) Three kinds of sedimentary facies, seven kinds of sedimentary subfacies and fourteen kinds of sedimentary microfacies are identified. From bottom to top, sequenceⅠdeveloped fan delta+delta+shallow lake-delta+deep lake, semi-deep lake-delta+shallow lake, semi-deep lake sedimentary sequence; SequenceⅡdeveloped delta+shallow lake-delta+shllow lake, semi-deep lake sedimentary sequence; SequentⅢdeveloped shallow lake-semi-deep lake-shallow lake+delta sedimentary sequence.
     (5) The concept of the tectonic-sedimentary response model of sequence stratigraphy and classification system is proposed. According to the sequence boundaries which are formed because of the change of tectonic activity strength and the change of the tectonic activity forms, called typeⅠa nd typeⅡ, we divided the tectonic-sedimentary response model of sequence stratigraph into 9 types.
     (6) We established the tectonic-sedimentary response model of sequence stratigraphy during each development stages of sequence, pointed out the sand distribution patterns and advantageous exploration position of stratigraphic-lithologic reservoir.
     The innovative points in this article as follows:
     ①We identified that the change of tectonic activity forms the tectonic sequence boundary and the change of tectonic activity strength forms the flooding plane or the maximum flooding plane. This conclusion has great significance for the theory of sequence stratigraphy, especially for development of the theory of tectonic-sequence stratigraphy in particular the construction of to the development of the theory.
     ②The concept of the tectonic-sedimentary response model of sequence stratigraphy and classification system are proposed and research the characters of sequence boundary (the positions and types of reflection termination phenomenon), filling model of sequence (source of provenance and the develop rules of sedimentary systems), developed rules of system tracts (the position and the stacking pattern of each system tracts).
     ③Propose the concept of borehole seismic base level cycle matching and improve the concept of borehole seismic matching. It plays an important role in the research of sequence stratigraphy and high-resolution sequence stratigraphy comprehensive utilization of drilling and seismic data and calibrate special reflection axis on seismic profiles with sequence stratigraphy meaning using the well information.
     ④We established the tectonic-sedimentary response model of sequence stratigraphy of Shahejie period in Kongnan area, summarize the forecasting means of distribions of sand bodies and the stratigraphic-lithologic reservoir which based on the model.
引文
[1] Anderson J. E., Drysdall S.J., Vivian N. Controls on turbidite sad deposition during gravity-driven extension of a passive margin: examples from Miocene sedimets in Block 4[J]. Marine and Petroleum Geology, 2000, 17(10): 1165-1203.
    [2] Bryan D, Jason J. Tectonostratigraphy of the Nieuwerkerk Formation (Delfland subgroup), West Netherlands Basin [J]. AAPG Bulletin, 2002, 86(10): 1679-1709.
    [3] C. Doglioni, N. Dagostino, G. Mariotti. Normal faulting vs regional subsidence and sedimentation rate[J]. Marine and Petroleum Geology, 1998, 15(8): 737-750.
    [4] Carroll A R, Bohacs K M. Stratigraphic classification of ancient lakes: Balancing tectonic and climatic controls [J]. Geology, 1999, 27: 99-102.
    [5] Cross T A. High-resolution stratigraphic correlation from the perspective of base-level cycles and sediment accommodation [A]. In: Proceedings of Northwestern European Sequence Stratigraphy Congress [C]. 1994, 105-123.
    [6] D. L. Scott, B. E. Bradshaw and C. Z. Tarlowski. The tectonostratigraphic history of the Proterozoic Northern Lawn Hill Platform, Australia: an integrated intracontinental basin analysis [J]. Tectonophysics, 1998, 300(1-4): 329-358.
    [7] D. L. Scott, B. E. Bradshaw, C. Z. Tarlowski. The tectonostratigraphic history of the Proterozoic Northern Lawn Hill Platform, Australia: an integrated intracontinental basin analysis [J]. Tectonophysics, 1998, 300: 329-358.
    [8] Gerald J. Smith, Robert D. Jacobi. Tectonic and eustatic signals in the sequence stratigraphy of the Upper Devonian Canadaway Group, New York state [J]. AAPG Bulletin, 2001, 85(2): 325-357.
    [9] Hans E, Mandana H, Woligang S. Tectonic and climatic control of Paleogene sedimentation in Rhenodanubian Flysch basin (Eastern Alps, Austria) [J]. Basin Research, 2002, 14(7): 247-262.
    [10] I.R. Cloke, S. J. Moss, J. Craig. Structural controls on the evolution of the Kutai Basin, East Kalimantan [J]. Journal of Asian Earth Sciences, 1999, 17: 137-156.
    [11] Jon Booler, Maurice E. Tucker. Distribution and geometry of facies and earl diagenesis: the key to accommodation space variation and sequence stratigraphy: Upper Cretaceous Congost Carbonate platform, Spanish Pyrenees [J]. Sedimentary Geology, 2002, 146: 225-247.
    [12] Lambias J J. A model of tectonic control of lacustrine stratigraphic sequences in continental rift basins [J]. AAPG Memoir, 1991, 50: 137-149.
    [13] Lirong Dou, Liang Chang. Fault linkage patterns and their control on the formation of the petroleum systems of the Erlian Basin, Eastern China [J]. Marine and Petroleum Geology, 2003, 20(10): 1213-1224.
    [14] N. Mancin, A. Di Giulio, M. Cobianchi. Tectonic vs. climate forcing in the Cenozoic sedimentary evolution of a foreland basin (Eastern Southalpine system, Italy) [J]. Basin Research, 2009, 21: 799-823.
    [15] Olsen P E. Tectonic, climatic, and biotic modulation of lacustrine ecosystems: Examples from Newark Supergroup of eastern North America [C]. AAPG Memoir, 1990, 50: 209-224.
    [16] Olusola A. Magbagbeola, Brian J. Willis. Sequence stratigraphy and syndepositional deformation of the Agbada Formation, Robertkiri field, Niger Delta, Nigeria [J]. AAPG Bulletin, 2007, 91(7): 945-958.
    [17] Pavelic D. Tectonostratigraphic model for the North Croation and North Bosnian sector of theMiocene Pannonian Basin System [J]. Basin Research, 2001, 13(3): 359-276.
    [18] Peter A. Ziegler, Sierd Cloetingh. Dynamic Processes controlling evolution of rifted basins [J]. Earth-Science Review, 2004, 64: 1-50.
    [19] Posamentier H W, Vail P R. Sea-level changes - An integrated approach [C]. Soc Econ Paleontol Mineral Spec Publ, 1988, 42: 125-154.
    [20] R. L. Gawthorpe, M. R. Leedert. Tectono-sedimentary evolution of active extensional basins [J]. Basin Research, 2000, 12: 195-218.
    [21] Richard G. Hoy, Kenneth D. Ridgway. Sedimentology and sequence stratigraphy of fan-delta and river-delta deposystems, Pennsylvanian Minturn Formation, Colorado [J]. AAPG Bulletin, 2003, 87(7): 1169-1191.
    [22] Robert A. Bridges, James W. Castle. Local and regional tectonic control on sedimentology and stratigraphy in a strike-slip basin: Miocene Temblor Formation of the Coalinga area, California, USA [J]. Sedimentary Geology, 2003, 158: 271-297.
    [23] Shanley K W, McCabe P J. Perspectives on the sequence stratigraphy of continental strata [J]. AAPG Bull, 1994, 78(4): 544-568.
    [24] Steven L. Goodbrd Jr., Steven A. Kuehl, Michael S. Steckler, Maminul H. Sarker. Controls on facies distribution and stratigraphic preservation in the Ganges–Brahmaputra delta sequence [J]. Sedimentary Geology, 2003, 155: 301-316.
    [25] Tiago M. Alves, Robert L. Gawthorpe, David W. Hunt. Cenozoic tectono-sedimentary evolution of the western Iberian margin [J]. Marine Geology, 2003, 195: 75-108.
    [26] Vail P R, Audemard F, Bowman S A, et al.Cycles and events in stratigraphy [C]. Springer-Verlag, 1991,617-659.
    [27] Van Wagoner J C. Sequence stratigraphy of foreland basin deposits: outcrop and subsurface examples from the Cretaceous of North America [C]. AAPG Memoir, 1995, 64: 137-223.
    [28] Wood L J. Chronostratigraphy and tectonostratigraphy of the Columbus Basin, eastern offshore Trinidad [J]. AAPG Bulletin, 2000, 84(14): 1905-1929.
    [29]操应长,姜在兴.断陷湖盆层序界面的成因类型及其与油气藏的关系[J].石油大学学报(自然科学版), 2004, 28(4): 1-6.
    [30]曹忠祥.营口-潍坊断裂带新生代走滑拉分-裂陷盆地伸展量、沉降量估算[J].地质科学, 2008, 43(1): 65-81.
    [31]陈大贤.沧东断裂的地质结构分析[J].石油学报, 1989, 10(1): 20-26.
    [32]陈发景,贾庆素,张洪年.传递带及其在砂体发育中的作用[J].石油与天然气地质, 2004, 25(2): 144-148.
    [33]陈发景,汪新文,陈昭年,等.伸展断陷盆地分析[M].北京:地质出版社, 2004.
    [34]陈钢花,余杰,张孝珍.基于小波时频分析的测井层序地层划分方法[J].新疆石油地质, 2007, 28(3): 355-358.
    [35]陈茂山.测井资料的两种深度于频谱分析方法及在层序地层学中的应用[J].石油地球物理勘探, 1999, 34(1): 58-63.
    [36]程日辉,林畅松,崔宝琛.沉积型式与构造控制研究进展[J].地质科技情报, 2000, 19(1): 11-15.
    [37]池英柳,张万选,张厚福,等.陆相断陷盆地层序成因初探[J].石油学报, 1996, 17(3): 19-25.
    [38]池英柳,赵文智.渤海湾盆地新生代走滑构造与油气聚集[J].石油学报, 2000, 21(2): 14-20.
    [39]戴俊生,陆克政,漆家福,等.渤海湾盆地早第三纪构造样式的演化[J].石油学报, 1998, 19(4): 16-20.
    [40]邓宏文,王洪亮.古地貌对陆相裂谷盆地层序充填特征的控制-以渤中凹陷西斜坡区下第三系为例[J].石油与天然气地质, 2001, 22(4): 293-296.
    [41]樊敬亮,黄志全,梵卫花.岐口凹陷新生代构造演化与油气[J].吉林大学学报(地球科学版), 2004, 34(4): 536-541.
    [42]范秋海,吕修祥,李伯华.走滑构造与油气成藏[J].西南石油大学学报(自然科学版), 2008, 30(6): 76-80.
    [43]冯有良,李思田,解习农.陆相断陷盆地层序形成动力学及层序地层模式[J].地学前缘, 2000, 7(3): 119-132.
    [44]冯有良,周海民,李思田,等.陆相断陷盆地层序类型与构造特征[J].地质论评, 2004, 50(1): 43-49.
    [45]高战武,徐杰,宋长青,等.华北沧东断裂的构造特征[J].地震地质, 2000, 22(4): 395-404.
    [46]郝诒纯.黄骅坳陷老第三纪生物群分布及其环境分析[R]. 1981.
    [47]侯贵廷,钱祥麟,蔡东升.渤海湾盆地中、新生代构造演化研究[J].北京大学学报(自然科学版), 2001, 37(6): 844-851.
    [48]侯贵廷,钱祥麟,蔡东升.渤海中、新生代盆地构造活动与沉积作用的时空关系[J].石油与天然气地质, 2000, 21(3): 201-206.
    [49]胡受权,郭文平,颜其彬,等.断陷湖盆陆相层序中体系域四分性探讨-泌阳断陷下第三系核桃园组为例[J].石油学报, 2000, 21(1): 23-28.
    [50]胡受权,郭文平,杨凤银,等.试论控制断陷湖盆陆相层序发育的影响因素[J].沉积学报, 2001, 19(2): 256-262.
    [51]胡受权.断陷湖盆陆相层序地层学研究[D].成都:成都理工学院, 1996.
    [52]胡受权.古气候变迁对泌阳断陷湖盆陆相层序发育的影响[J].江汉石油学院学报, 1998, 20(1): 1-6.
    [53]胡望水,王燮培.松辽盆地北部变换构造及其石油地质意义[J].石油与天然气地质, 1994, 15(2): 164-172.
    [54]胡宗全.层序地层研究的新思路-构造层序地层研究[J].现代地质, 2004, 18(4): 549-554.
    [55]姜华.南堡凹陷东营组构造层序地层分析及其油气地质意义[D].武汉:中国地质大学, 2009.
    [56]姜在兴,李华启.层序地层学原理及应用[M].北京:石油工业出版社, 1996.
    [57]焦养泉,李桢,周海民.沉积盆地物质来源综合研究[J].岩相古地理, 1998, 18(5): 16-20.
    [58]焦养泉,周海民,刘少峰,等.断陷盆地多层次幕式裂陷作用与沉积充填响应-以南堡老第三纪断陷盆地为例[J].地球科学, 1996, 21(6): 633-636.
    [59]雷克辉,朱广生,毛宁波,等.在小波时频域中研究沉积旋回[J].石油地球物理勘探, 1998, 33(增刊): 72-78.
    [60]李江涛,余继峰,李增学.基于测井数据小波变换的层序划分[J].煤田地质与勘探, 2004, 32(2): 48-50.
    [61]李明刚,漆家福,杨桥,等.渤海湾盆地黄骅坳陷新生代结构特征及构造动力学模式[J].地球学报, 2009, 30(2): 201-209.
    [62]李思田,王华,路凤香.盆地动力学-基本理论与若干研究方法[M].武汉:中国地质大学出版社, 1999.
    [63]李思田.沉积盆地分析基础与应用[M].北京:高等教育出版社, 2004.
    [64]李延平,林振宏,陈树民,等.闭流坳陷湖盆的气候层序[J].海洋地质与第四纪地质, 2007, 27(6): 91-96.
    [65]李勇,曾允孚,伊梅生.龙门山前陆盆地沉积及构造演化[M].成都:成都科技大学出版社, 1995.
    [66]李桢,焦养泉,刘春华,等.黄骅坳陷高柳地区重矿物物源分析[J].石油勘探与开发, 1998, 25(6): 5-9.
    [67]林畅松,张燕梅.盆地的形成和充填过程模拟-以拉伸盆地为例[J].地学前缘, 1999, 6(增刊): 139-145.
    [68]林畅松,郑和荣,任建业,等.渤海湾盆地东营、沾化凹陷早第三纪同沉积断裂作用对沉积充填的控制[J].地球科学(中国地质大学学报), 2000, 25(3): 260-266.
    [69]林畅松.沉积盆地的构造地层分析[J].现代地质, 2006, 20(2): 185-194.
    [70]刘德来,王伟,马莉.伸展盆地转换带分析-以松辽盆地北部为例[J].地质科技情报, 1994, 13(2): 5-9.
    [71]刘豪,王英民,王媛.坳陷湖盆坡折带特征及其对非构造圈闭的控制[J].石油学报, 2004, 25(2): 31-35.
    [72]刘剑平,汪新文,周章保,等.伸展地区变换构造研究进展[J].地质科技情报, 2000, 19(3): 27-32.
    [73]刘景新,王云鹤.塔里木盆地志留-泥盆系克拉通盆地气候层序发育模式研究[J].石油天然气学报(江汉石油学院学报), 2009, 30(1): 180-183.
    [74]刘立,任德生,姚继峰.辽河盆地与伸展作用有关的构造运动学分析[J].成都理工学院学报, 1999, 26(2): 124-126.
    [75]刘延莉,邱春光,邓宏文,等.冀东南堡凹陷古近系东营组构造对扇三角洲的控制作用[J].石油与天然气地质, 2008, 29(1): 95-101.
    [76]刘占红,李思田.沉积记录中的古气候周期及其在高频层序形成中的意义[J].地质科技情报, 2007, 26(2): 30-34.
    [77]陆基孟.地震勘探原理[M].东营:中国石油大学出版社, 2006.
    [78]陆克政,漆家福,童亨茂,等.渤海湾新生代含油气盆地构造模式[M].北京:地质出版社, 1997.
    [79]陆永潮,任建业,李思田,等.伊通地堑的沉积充填序列及其对转换-伸展过程的响应[J].石油实验地质, 1999, 34(2): 196-203.
    [80]吕学菊.南堡凹陷东营组层序结构特征及其对构造活动性的响应[D].武汉:中国地质大学, 2008.
    [81]孟庆任,王战,王翔,等.新生代黄骅坳陷构造伸展、沉积作用和岩浆活动[J].地质论评, 1993, 39(6): 535-547.
    [82]能源,漆家福,李庭辉,等.黄骅坳陷孔南地区新生代断裂特征及其与油气关系[J].现代地质, 2009, 23(6): 1077-1084.
    [83]漆家福,陆克政,张一伟,等.黄骅盆地孔店凸起的形成与演化[J].石油学报, 1994, 15(增刊): 27-33.
    [84]漆家福,杨桥,童亨茂,等.构造因素对半地堑盆地的层序充填的影响[J].地球科学-中国地质大学学报, 1997, 22(6): 6-14.
    [85]漆家福,张一伟,陆克政,等.渤海湾新生代裂陷盆地的伸展模式及其动力学过程[J].石油实验地质, 1995, 17(4): 316-323.
    [86]漆家福.渤海湾新生代盆地的两种构造系统及其成因解释[J].中国地质, 2004, 31(1): 15-22.
    [87]渠芳,陈清华,连承波,等.黄骅坳陷南区油气分布规律及其成藏机制[J].石油勘探与开发, 2008, 35(3): 294-300.
    [88]渠芳,陈清华,连承波,等.黄骅坳陷新生代断裂构造系统研究[J].油气地质与采收率, 2006, 13(5): 7-10.
    [89]任建业,陆永潮,张青林.断陷盆地构造坡折带特征及其对层序发育样式的控制[J].地球科学-中国地质大学学报, 2004, 29(5): 596-602.
    [90]孙宝玲,李俊杰.影响地层层序形成的控制因素[J].中国科技信息, 2008, 5: 271-273.
    [91]孙云莲,刘敦敏.时频分析与小波变换及其应用[J].武汉大学学报(工学版), 2003, 36(2), 103-106.
    [92]唐华风,程日辉,王璞珺,等.走滑拉分盆地层序构成特征-以胶莱盆地莱阳群为例[J].沉积与特提斯地质, 2006, 26(3): 31-36.
    [93]唐晓初.小波分析及其应用[M].重庆:重庆大学出版社, 2006.
    [94]陶晓风,刘登忠,朱利东.陆相盆地沉积作用与构造作用的关系[J].沉积学报, 2001, 19(3): 410-414.
    [95]田克勤,于志海,冯明,等.渤海湾盆地下第三系深层油气地质与勘探[M].北京:石油工业出版社, 2000.
    [96]王东坡,刘立,薛林福等.大陆构造沉积学[J].地球科学进展, 1995, 10(6): 611-615.
    [97]王华,陆永潮,任建业,等.层序地层学基本原理、方法与应用[M].武汉:中国地质大学出版社, 2008.
    [98]王家豪,王华,肖敦清.伸展构造体系中传递带的控砂作用[J].石油与天然气地质, 2008, 29(1): 19-25.
    [99]王嗣敏,刘招君,董清水,等.陆相盆地层序地层形成机制分析-以松辽盆地为例[J].长春科技大学学报, 2000, 30(2): 139-144.
    [100]王英民,金武弟,刘书会,等.断陷湖盆多级坡折带的成因类型、展布及其勘探意义[J].石油与天然气地质, 2003, 24(3): 199-204.
    [101]王战,孟庆任,谢建民,等.黄骅坳陷地区地质构造演化与油气分布[M].北京:科学技术出版社, 1999.
    [102]邬光辉,漆家福.黄骅盆地一级构造变换带的特征与成因[J].石油与天然气地质, 1999, 20(2): 125-128.
    [103]吴涛,李志文.关于沧东断裂性质的分析[J].石油学报, 1994, 15(3): 19-25.
    [104]向东进.中国地质大学(武汉)研究生系列教材-实用多元统计分析[M].武汉:中国地质大学出版社, 2005.
    [105]解习农,程守田,陆永潮.陆相盆地幕式构造旋回与层序构成[J].地球科学-中国地质大学学报, 1996, 21(1): 27-33.
    [106]谢锐杰,漆家福,杨桥.东营凹陷北带构造特征及其对沉积作用的控制[J].江汉石油学院学报, 2004, 26(1): 17-19.
    [107]徐守亮,严科.渤海湾盆地构造体系与油气分布[J].地质力学学报, 2005, 11(3): 260-265.
    [108]徐翔军.伊通地堑古近系层序地层学分析及重点区岩性地层圈闭分布规律[D].长春:吉林大学, 2007.
    [109]闫青华.黄骅坳陷孔南地区沙河街组层序地层研究及湖盆结构恢复[D].长春:吉林大学, 2008.
    [110]严德天,王华,王清晨.中国东部第三系典型断陷盆地幕式构造旋回及层序地层特征[J].石油学报, 2008, 29(2): 185-190.
    [111]杨明慧,刘池阳.陆相伸展盆地的层序类型、结构和序列与充填模式-以冀中坳陷下第三系为例[J].沉积学报, 2002, 20(2): 222-228.
    [112]杨桥,漆家福,常德双,等.渤海湾盆地黄骅坳陷南部古近系孔店组沉积时期构造古地理演化[J].古地理学报, 2009, 11(3): 306- 313.
    [113]于志海,杨池银.黄骅坳陷天然气地质[M].北京:石油工业出版社, 1997.
    [114]余朝华.渤海湾盆地济阳坳陷东部走滑构造特征及其对油气成藏的影响研究[D].青岛:中国科学院海洋研究所, 2008.
    [115]余继峰,李增学.测井数据小波变换及其地质意义[J].中国矿业大学学报, 2003, 32(3): 336-339.
    [116]张俊霞.转换-伸展型盆地[J].地质科技情报, 1998, 17(3): 19-23.
    [117]张荣红,余素玉,邬金华.陆相湖盆中沉积物供给因素对层序地层分析的影响[J].地球科学, 1997, 22(2): 40-45.
    [118]张世奇,纪友亮.东营凹陷早第三纪古气候变化对层序发育的控制[J].石油大学学报(自然科学版), 1997, 22(6): 26-30.
    [119]张世奇,孙耀庭,刘金华,等.气候变化对可容空间及层序发育的影响[J].海洋地质动态, 2005, 21(2): 12-15.
    [120]张婷婷.黄骅坳陷孔南地区层序地层学研究[D].长春:吉林大学, 2009.
    [121]周海民,汪泽成,郭英海.南堡凹陷第三纪构造作用对层序地层的控制[J].中国矿业大学学报, 2000, 29(3): 326-330.
    [122]周建生,杨池银,陈发景,等.黄骅坳陷横向变换带的构造特征及成因[J].现代地质, 1997, 11(4): 425-433.
    [123]周立宏,李勇,王振升,等.陆相断陷盆地缓坡带沉积体系与成藏动力学-以黄骅坳陷为例[M].北京:科学出版社, 2009.
    [124]朱筱敏.层序地层学[M].北京:石油大学出版社, 2000.
    [125]宗国洪.济阳坳陷构造演化及其大地构造意义[J].高校地质学报, 1999, 5(3): 275-282.
    [126]邹才能,池英柳,李明,等.陆相层序地层学分析技术[M].北京:石油工业出版社, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700