无柄小叶榕发芽与生长对不同生态因子的响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无柄小叶榕(Ficus concinna var. subsessilis)是分布在南亚热带最北缘的高大乔木,作为气候特征的指示植物在生态系统中扮演着关键角色,同时也是造林绿化的优良乡土树种。温州地区有其丰富的古树资源,但存在更新难、病腐严重、资源不断减少等生态退化现象。本文以100a以上的无柄小叶榕古树在温州的资源调查入手,运用主成分分析和非线性典型相关分析等方法定性定量评价现存古榕的资源状况,探讨影响古榕退化的原因;通过研究其种子发芽、种苗生长对生态因子的响应,揭示其生态响应机制,从而为有效保护遗传资源提供理论依据。本研究的主要结果如下:
     1、古榕存在着更新不良、病腐严重、死亡率增大等严重的生长退化现象。通过主成分分析、单因素方差分析和非线性典型相关分析发现古榕分布的地理位置、古榕历史生长状况、土壤类型对温州古榕资源影响显著,土壤类型、土层厚度、立地条件和树龄等因子对现存古榕生长影响较大,生长在农村的古树生长势明显高于城市、生长在低山与水边的显著高于水泥封地的,300a以上树龄古榕生长状况较100a优。可见古榕退化主要原因是受环境和人为因素的影响。
     2、无柄小叶榕种子在适宜的温、湿度条件下,播种9d后就开始萌发生出胚根,17d后就可长出第一片真叶。采用25℃温水浸种、500mg/l的赤霉素处理种子、地温达到20℃、腐熟的木屑做播种基质等处理都能够促进无柄小叶榕种子萌发,而盐分胁迫会严重抑制无柄小叶榕种子的萌发。无柄小叶榕果实在自然条件下难以腐烂,种子长时间包裹在干缩的果皮中而失去活力,是无柄小叶榕自然更新差的原因所在。
     3、无柄小叶榕终年挂果,种子量大,进入结果期至少要达到20年树龄,不适宜的生境会影响榕果的结实率和发芽率,以生活在河边的榕树生长发育为好;土壤类型对其生长影响具有显著性,红壤不是最适宜土壤类型;幼苗生长需要850~1500μmolm-2s-1的光强,而榕树的树冠下光强一般在85~1951μmol m-2s-1之间,这造成古榕树下无更新小苗的重要因素。基质中N的含量与无柄小叶榕的生长存在线性相关性,而P、K的含量对无柄小叶榕的生长发育无明显作用。
     4、无柄小叶榕受低浓度NaCl胁迫净光合速率(Pn)下降主要是气孔因素引起的,而高浓度NaCl胁迫下,则是由气孔因素和非气孔因素共同起作用的;高浓度NaCl胁迫还通过降低PSⅡ反应中心激发能捕获效率(Fv′/Fm′)和PSⅡ反应中心开放程度从而降低电子传递速率和Pn,还使非光化学猝灭(NPQ)、MDA含量、SOD和POD活性显著上升。这就表明尽管高浓度NaCl胁迫诱导光能耗散机制,但仍不能及时地耗散过剩的激发能,诱导了膜脂过氧化的发生。
     5、不同苗龄无柄小叶榕抗寒性大小为四年生>三年生>二年生>一年生;受轻度的低温胁迫后,无柄小叶榕植株抗寒性有所提高。降温胁迫过程中,四种不同苗龄无柄小叶榕各项生理生化指标表现趋势基本一致,随着温度的降低,无柄小叶榕叶片细胞膜透性、相对电导率、MDA含量、游离脯氨酸浓度增加,SOD活性、可溶性糖含量和可溶性蛋白含量先增大后降低,POD活性先降低后增加,但不同苗龄无柄小叶榕的各项生理生化指标变化幅度存在差异性,三、四年生明显大于一、二年生植株。
Ficus concinna var. subsessilis is an arbor plant distributed in the northernmost south subtropic, which is a kind of excellent afforestation trees. This species is also an important indicator plant of climatic and play an important role in the ecosystem. In this study, we, firstly investigated the resources of the ancient ficus in Wenzhou, which were more than 100 years old. Then, the resource status and the main restricted factors of regeneration were evaluated In order to explore causes of ecological degradation, the effect of nutrition and environmental factors on seed germination and seedling growth were carried out..The present results will help us to conserve the wild germplasm and to enhance the population regeneration of Ficus concinna var.subsessilis. The main results and conclusions of this study were stated as follow:
     1. Resource investigation suggested that unsuccessful regeneration, rot disease and mortality rate might be the primary ecologically degraded factors to this ficus. Principal Component analysis (PCA),shows that locations, historic growth status and soil type have a great effect on the natural resources of the specie in Wenzhou.Correlation analysis shows that the soil type, soil thickness, locations and tree ages have a significant effect on the growth potential of the species. The growth potential of trees growing in the field was significantly higher than that of in the city, and that of trees growing in hillside or waterside was evidently higher than in cement areas. The main factor threatening to the survival of the ancient trees can be ascribed human activities and the destruction of the habitat..
     2. Under the appropriate temperature and humidity, seeds taken 9 days to germinate and 17 days to the first leave come out. Soaking in the 25℃water, pretreating by 500 mg/l GA, or 20℃ground temperature, and muck and sawdust as substrates that evidently enhanced seed germination. However, the salt stress did the opposite way. Because rotting of fruits were difficulty under natural conditions, the ability of seed germination significantly declined with increase wrapping in the shrinkage pericarp. We suggest that this factor was the main factor limiting the regeneration rate in the field, although they are fruitful every month each year.
     3. The tree would take at least 20 years to produce fruits. They can produce numerous fruits and seeds every month each year. The poor conditions will reduce fruit productions and seed germination. Trees growing along the river or rivulet have high fruit productions and seed germination. The soil type had great effect on the tree growth. The soil moisture was the main factors affecting the growth of the species. The optimum light intensity of the seedling stage was from 850μmol m-2s-1 to 1500μmol m-2S-1 However, it was always between 85μmol m-2s-1 and 195μmol m-2s-1 under the canopy, which was another reason limiting regeneration. Nitrogen content in substrate plays an important role in the growth and development of seedlings. Whereas P, K content in substrate had no effect.
     4. The net photosynthetic rate (Pn) was significantly declined under both the low and high concentration of NaCl. The former condition may be caused by stomatal factors, and the latter one may co-dominate between stomatal factors and non-stomatal factors. In addition high NaCl stress may reduce the excitation energy capture efficiency (Fv'/Fm') of PSII reaction center, and may restrict the opening degree of PSII reaction center which will restrain the electron transfer rate and Pn and will evidently boost the photochemical quenching (NPQ), MDA content, SOD and POD activity
     5. The semilethal temperature test showed that the cold resistance of the species from strong to weak was four-year-old trees, three-year-old trees, biennial trees, and annual trees. After prechilling treatment, the cold resistance of the four different ages was improved.In the process of sudden cold resistance, the changes of physiological and biochemical indexes of the four different ages were consistent. Along with the temperature decline, the leaf membrane permeability, relative conductivity, MDA content and free proline increased; the SOD activity, soluble suger and protein content increased first, and decreased later; and the POD activity did the opposite way. Under cold stress, the physiological and biochemical indexes are different by ages. The activity of SOD and POD, soluble sugar and protein content, and free proline content of three or four-year-old seedlings were significantly higher than that of biennial or annual ones.
引文
1. 艾琳,张萍,胡成志.低温胁迫对葡萄根系膜系统和可溶性糖及脯氨酸含量的影响[J].新疆农业大学学报.2004,27(4):47-50.
    2. 鲍思伟.云锦杜鹃低温半致死温度对自然降温的适应[J].西南民族大学学报(自然科学版).2005,31(1):99-102.
    3. 鲍思伟.自然降温过程中云锦杜鹃抗寒适应性研究—水分、渗透调节物的动态变化与低温半致死温度的关系[J].福建林业科技,2005,32(2):13-16.
    4.陈春,宋启示,张光明,等.榕果挥发物对传粉榕小蜂的吸引作用[J].生态学报,2004,24(12):2794-2798.
    5. 陈恩波.生态退化及生态重建研究进展[J].中国农学通报,2007,23(4)335-338.
    6.陈和杰祝边疆,阮志平.榕树与榕小蜂共生体系维持机制的研究进展[J].武夷科学,2006,(22):227-231.
    7. 陈建星.营造榕树改造沿海防护林初探[J].福建水圭保持,2001,12(3):51-52
    8. 陈强,和绍禹.榕小蜂(AgaonidaeChalcidoidea)生物学特性综述[J].蜜蜂杂志,2008,28(1):31-33.
    9. 陈少裕.膜脂过氧化对植物细胞的伤害[J].植物生理学报,1991,27(2):84-90.
    10.陈文光.电导法测定观赏榕树耐寒性初探[J].福建热作科技,1989,40(2)21-22.
    11.陈勇.李宏庆.马炜梁.榕树传粉生物学的特性[J].杭州师范学院学报(自然科学版),2002,1(3):59-61.
    12.陈杰忠,徐春香,梁立峰.低温对香蕉叶片中蛋白质及脯氨酸的影响[J].华南农业大学学报1999,20(3):54-58.
    13.潘瑞炽.茉莉酸甲酯对水分胁迫下花生幼苗SOD活性和膜脂过氧化作用[J].植物生理学报,1995,(3):54-57.
    14.冯建灿,张玉洁,杨天柱.低温胁迫对喜树幼苗SOD活性、MDA和脯氨酸含量的影响[J].林业科学研究.2002,15(2):197-202.
    15.高俊凤.植物生理学实验指导[M].高等教育出版社,2006
    16.侯堂云,赵炎,彭艳琼,等.雌花期榕小蜂进入榕果的行为及其活动时间[J].昆虫知识,2009,46(2):280-283.
    17.胡文海,肖宜安,何平,等低夜温后光照对榕树与海桐叶片光合电子传递和吸收光能分配的影响[J].西南师范大学学报(自然科学版),2006,1(2):130-133.
    18.胡文海,肖宜安,喻景权,等.低夜温后不同光强对榕树叶片PSⅡ功能和光能分配的影响[J].植物研究,2005,25(2)159-162.
    19.金松恒,李雪芹,王俊刚.高温胁迫对无柄小叶榕光合作用的影响[J].中国农学通报,2009,25(3):83-87.
    20.金松恒,蒋德安,王品美,等.水稻孕穗期不同叶位叶片的气体交换与叶绿素荧光特性[J].中国水稻科学,2004,18(5):443-448.
    21.康俊梅.低温胁迫下野牛草生理生化响应及蛋白质组学研究:[博士学位论文].北京:中国农业科学院.2008,42.
    22.赖菡,余迪求.4种榕树总RNA提取方法的比较[J].云南大学学报(自然科学版),2008,30(6):636-640.
    23.李建设,耿广东,程智慧.低温胁迫对茄子幼苗抗寒性生理生化指标的影响[J].西北农林科技大学学报,2003,31(1):90-92.
    24.李合生.植物生理生化实验原理与技术[M].高等教育出版社.2000
    25.李宏庆,陈勇,马炜梁.论中国的榕树和相关动物的综合研究[J].生物多样性,2002,10:219-224.
    26.利容千,王建波.植物逆境细胞及生理学[M].武昌:武汉大学出版社,2002:164-165.
    27.梁莉,谈锋.四川大头茶低温半致死温度与对低温的适应性[J].西南师范大学学报(自然科学版),1997,22(4):463-465.
    28.林淑玲,赵南先,陈贻竹,等.榕树(Ficus)在中国的分布及其在协同进化研究上的意义[J].生态学报,2007,27(10):4278-4288
    29.林霞,陶正明,张庆良,等.无柄小叶榕种子育苗技术[J].浙江林学院学报,2003,20(3):325-327.
    30.林霞,郑坚,陈秋夏,等.无柄小叶榕容器育苗轻型基质配方筛选[J].浙江林学院学报,2008,25(3):401-404.
    31.林焰.榕树与榕树盆景[M].中国科学技术出版社,1996.
    32.刘慧英,朱祝军,吕国华.低温胁迫对嫁接西瓜耐冷性和活性氧清除系统的影响[J].应用生态学报,2004,15(4):659-662.
    33.刘鸿先,曾韶平,李平.植物抗寒性与酶系统多态性的关系[J].植物生理学通讯.1981,(6):6-11.
    34.刘鸿先,曾韶西,王以柔,等.低温对不同耐寒力的黄瓜幼苗子叶各细胞器中超氧化物歧化酶(SOD)的影响[J].植物生理学报.1955,11(1):45-57.
    35.刘良友,Steponus,P.L.脯氨酸对原生质体膨胀势的影响[J].植物生理学报.1990,16(1):25-30.
    36.刘友全,刘加林,潘天玲.赤桉在湖南的抗寒与生长适应性[J].中南林学院学报.2000,20(3):86-89.
    37.刘祖祺,张石诚.植物抗性生理学[M].北京:中国农业出版社,1994,1-79.
    38.罗志军.高枝扦插快速繁殖榕树[J].北方园艺,2004,(6):50-51.
    39.马德华,卢育华,庞金安.低温对黄瓜幼苗膜脂过氧化的影响[J].园艺学报.1998,25(1):61-64.
    40.莫世琴,沙林华.榕树扦插繁殖技术研究[J].热带林业,2009,37(2):32-33.
    41.穆瑞霞,阮云飞,王吉庆,等.不同浓度水杨酸浸种对大葱种子萌发及生理[J].中国农学通报,2008,24(6):370-373.
    42.喷限新,陈志刚,蒋振晖.赤霉素处理对糙米发芽力及其主要成分变化的影响[J].南京农业大学学报,2008,26(1):74-77.
    43.沈德中.污染环境的生物修复[M].北京:化学工业出版社,1999.
    44.宋莉璐,张荃.植物中参与活性氧调空的基因网络.生命科学,2007,19(3):346-352
    45.汤章城.逆境条件下植物脯氨酸的积累及可能的意义[J].植物生理学报.1984,10(1):15-21.
    46.田婕.几种榕属(Ficus)植物标DNA提取及PCR扩增[J].云南大学学报(自然科学版),2006,28(S1):328-334.
    47.万茜,胡志辉.赤霉素对苦瓜种子活力影响[J].北方园艺,2001(1):15-16.
    48.王法格,李宇,柴芬友,等.无柄小叶榕扦插育苗试验[J].现代农业科技,2007,(10):10-11.
    49.王红星,古红梅,周琳等.不同生长时期叶片中可溶性糖含量与抗寒性关系[J].周口师范学院学报,2003,20(5):51-52.
    50.王燕,李雪萍,季作梁.芒果冷害对两个自由基清除剂的影响明.园艺学报,1995,22(3):235-239.
    51.王荣富.植物抗寒指标的种类及其应用.植物生理学通讯,1987(3):49-55.
    52.王孝宣,李树德,东惠茹等.番茄品种耐寒性与ABA和可溶性糖含量的关系[J].园艺学 报,1998,25(1):56-60.
    53.魏作东,杨大荣,彭艳琼,等.榕树在西双版纳热带雨林生态系统中的作用[J].生态学杂志,2005,24(3):233-237.
    54.谢晓金,郝日明,张纪林.常绿阔叶树种的耐低温特性及其生态学评价[J].生态学报.2004,24(11):2671-2677.
    55.徐磊,杨大荣,彭艳琼,等.西双版纳聚果榕隐头果内小蜂群落结构及种间关系[J].生态学报,2003,23(8):1554-1560.
    56.徐磊,杨大荣.榕树及其传粉榕小蜂的系统发育和协同进化研究现状及展望[J].生物多样性,2008,16(5):446-453.
    57.许再富.榕树—滇南热带雨林生态系统中的一类关键植物[J].生物多样性,1994,2(1):21-23.
    58.严寒静,谈锋.桅子对自然降温的适应性研究[J].植物研究.2006,26(2):238-241.
    59.杨成云,王瑞武,赵桂仿,等.非传粉小蜂的食性及其对榕树-传粉小蜂系统稳定性的影响[J].动物学研究,2005,26(4):379-385.
    60.杨大荣,彭艳琼,王秋艳,等.热带雨林三种榕树隐头果昆虫群落结构与功能群生态特性[J].生态学报,2003,23(9):1798-1806.
    61.杨大荣,彭艳琼,张光明.西双版纳热带雨林榕树种群变化与环境的关系[J].环境科学,2002,5(23):29-35.
    62.杨大荣,徐磊,彭艳琼,等.云南省榕小蜂和榕树的物种组成及多样性[J].生物多样性,2004,12(6):611-617.
    63.尧金燕,赵南先,方位宽,等.榕树与其共生小蜂的利益冲突及资源分配[J].云南植物研究,2004,26(5):507-512.
    64.叶贻勋,沈清景,许朝辉.赤霉素破除马铃薯脱毒原原种休眠的研究[J].植物生理学通讯,2000,36(2):123-125.
    65.叶志敏.小叶榕扦插育苗试验[J].广西林业科学,1999,28(2):89-91.
    66.曾韶西,王以柔,李美茹.不同胁迫预处理提高水稻幼苗抗冷性期间膜保护系统的变化比较[J].植物学报,1997,39:308-314.
    67.张德舜,刘红权,陈玉梅.八种常绿阔叶树种抗寒性的研究[J].园艺学报,1994,21(3):283-287.
    68.张建达,梁建萍.Ca2+和水杨酸对华北落叶松种子萌发的影响[J].现代农业科学,2009(3):40-41.
    69.张亚杰,冯玉龙.不同光强下生长的两种榕树叶片光合能力与比叶重、氮含量及分配的关系[J].植物生理与分子生物学学报,2004a,30(3):269-276.
    70.张亚杰,冯玉龙.喜光榕树和耐荫榕树光适应机制的差异[J].植物生理与分子生物学学报,2004b,30(3):297-304.
    71.赵平,孙谷畴,曾小平,等.两种生态型榕树的叶绿素含量、荧光特性和叶片气体交换日变化的比较研究[J].应用生态学报,2000,11(3):327-332.
    72.赵永华,刘惠卿,刘铁城,等.外源赤霉素对西洋参种子内源激素变化动态的影响[J].中药材,2000,23(10):591-593.
    73.郑坚,陈秋夏,黄建,等.无柄小叶榕容器苗苗木分级研究[J].农业科技通讯,2009,(8)70-73.
    74.周功友.浅谈利用压条繁殖法栽植榕树[J].黔东南民族师范高等专科学校学报,2002(20),186
    75.周俊彦,张宗勤.Thidiazuron对榕树离体繁殖的影响[J].植物学报,1992,34(11):889-892.
    76.周蕴薇.翠南报春抗寒生理生态学研究:[博士学位论文].哈尔滨:东北林业大学.2001,14.
    77.朱根海,刘祖棋,朱培仁.应用logistic方程确定植物组织低温半致死温度的研究[J].南京农业大学学报.1985(3):11-16.
    78.朱霞,王晓丽,陈诗.水杨酸对云南松种子萌发及幼苗生长的影响[J].山东林业科技,2009,39(4):15-17.
    79. Agastian P, Kingsley SJ, Vivekanandan M.2000. Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes. Photosynthetica 38:287-290.
    80. Amo-Marco J B del, Picazo I. Effect of growth regulators on in vitro propagation of Ficus benjamina cv. Exotica [J]. Biologia Plantarum 1994,36(2):167-173.
    81. Baraket G, Saddoud O, Chatti K, et al. Sequence analysis of the internal transcribed spacers (ITSs) region of the nuclear ribosomal DNA (nrDNA) in fig cultivars(Ficus carica L.) [J]. Scientia Horticulturae 2009,120:34-40.
    82. Berg C C. Classification and distribution of Ficus [J]. Experientia 1989,45:605-611.
    83. Braber J M.1980. Catalase and peroxidase in primary bean leaves during development and senescence. Z Pflanzenphysiology,97:135-144.
    84. Brugnoli E, Bjorkman O.1992. Growth of cotton under continuous salinity stress:influence on allocation pattern, stomatal and nonstomatal components of photosynthesis and dissipation of excess light energy. Planta 187:335-347.
    85. Chen C, Song Q S. Responses of the pollinating wasp ceratosolen solmsi marchali to odor variation between two floral stages of Ficus hispida [J]. J Chem. Ecol.2008,34:1536-1544.
    86. Corlett R T. Figs(Ficus, Moraceae) in urban Hong Kong, South China [J]. Biotropica 2006, 38(1):116-121.
    87. Danthu P, Soloviev P, Gaye A, et al. Vegetative propagation of some West African Ficus species by cuttings [J]. Agroforestry Systems 2002,55:57-63.
    88. Demmig-Adams B, Adams W W, Barker D H, et al. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation to of excess excitation [J]. Physiol. Plant, 1996,98:253-264.
    89. Deshpande S R, Josekutty P C, Prathapasenan G. Plant regeneration from axillary buds of a mature tree of Ficus religiosa [J]. Plant Cell Reports 1998,17:571-573.
    90. Dexter ST, Tottingham WE, Graber LF. Prelmi inary results inmeasuring the hardiness of plants [J].Plant Physio,1930,5(2):215-223.
    91. Devaraj K B, Gowda L R, Prakash. V An unusual thermostable aspartic protease from the latex of Ficus racemosa (L.) [J]. Phytochemistry 2008,69:647-655.
    92. Fraguas C B, Pasqual M, Dutra L F, et al. Micropropagation of fig(Ficus carica L.)'Roxo de Valinhos'plants [J]. In Vitro Cell. Dev. Biol.-Plant 2004,40:471-474.
    93. Giannopolitis C N, Ries S K.1977. Superoxide dismutases:I. occurrence in higher plants. Plant Physiology,59:309-314.
    94. Golombek S D, Ludders P. Effects of short-term salinity on leaf gas exchange of the fig(Ficus carica L.) [J]. Plant and Soil 1993,148:21-27.
    95. Greeff J M, vanNoort S, Rasplus J Y, et al. Dispersal and fighting in male pollinating fig wasps [J]. C. R. Biologies 2003,326:121-130.
    96. Hepaksoy S, Aksoy U. Propagation of Ficus carica L. clones by in vitro culture [J]. Biologia Plantarum 2006,50 (3):433-436.
    97. Herre E A, Machado C A, Bermingham E, et al. Molecular phylogenies of figs and their pollinator wasps [J]. J Biogeography 1996,23:521-530.
    98. Hu H Y, Jiang Z F, Niu L M, et al. Different stimuli reduce attraction to pollinators in male and female figs in the dioecious fig Ficus hispida [J]. Biotropica 2009,41(6):717-720.
    99. Huang ZA, Jiang DA, Yang Y, et al.2004. Effects of nitrogen deficiency on gas exchange, chlorophyll fluorescence and antioxidant enzymes in leaves of rice plants. Photosynthetica,42: 357-364.
    100. Ikegami H, Nogata H, Hirashima K, et al. Analysis of genetic diversity among European and Asian fig varieties (Ficus carica L.) using ISSR, RAPD, and SSR markers [J]. Genet. Resour. Crop Evol.2009,56:201-209.
    101. Iyengar ERR, Reddy MP.1996. Photosynthesis in highly salttolerant plants. In:Pesserkali,.M. (Ed.), Handbook of photosynthesis.Marshal Dekar, Baten Rose, USA, Plant Physiology 897-909.
    102. Jackson,A.E.and Seppelt,R.D.The accumulation of proline in Prasiola crispa during winter in Antarctica Physioligia plantarum.1995,94:25-30.
    103. Jaiswal V S, Narayan P. Regeneration of plantlets from the callus of stem segments of adult plants of Ficus religiosa L [J]..Plant Cell Reports 1985,4:256-258.
    104. Janzen D H. How to be a fig [J]. Ann. Rev. Ecol. Syst. 1979,10:13-51.
    105. Jin S H, Li X Q, Hu J Y, et al. Cyclic electron flow around photosystem I is required for adaptation to high temperature in a subtropical forest tree, Ficus concinna [J]. J Zhejiang Univ. Sci. B 2009,10(10):784-790.
    106. Jousselin E, Rasplus J Y, Kjellberg F. Convergence and coevolution in a mutualism:evidence from a molecular phylogeny of Ficus [J]. Evolution 2003,57:1255-1269.
    107. Kendall E J.,Mckersie B D.Free Radical and Freezing Injury to Cell Membrances of WinterWheat[J].Physiol Plant.1989,76:86-94.
    108. Khadari B, Grout C, Santoni S, et al. Contrasted genetic diversity and differentiation among Mediterranean populations of Ficus carica L.:A study using mtDNA RFLP [J]. Genetic Resources and Crop Evolution 2005,52:97-109.
    109. Khadari B, Hochu I, Santoni S, et al. Identification and characterization of microsatellite loci in the common fig (Ficus carica L.) and representative species of the genus Ficus [J]. Molecular Ecology Notes 2001:191-193.
    110. Khavarinejad RA, Chaparzadeh N. The effects of NaCl and CaCl2 on photosynthesis and growth of alfalfa plants. Photosynthetica 1998,35:461-466.
    111. Kol'chugina I B, Markarova E N. Preparation of protoplasts in tissues of Ficus elastica callus cultures differing in the endogenous cyrokinin activity. The role of cytokinins in formation of protoplasts [J]. Moscow University Biological Sciences Bulletin 2007,62(3):103-106.
    112. Kumar V, Radha A, Kumar Chitta S. In vitro plant regeneration of fig (Ficus carica L. cv. gular) using apical buds from mature trees [J]. Plant Cell Reports 1998,17:717-720.
    113. Lin R C, Yeung C K-L, Li S H. Drastic post-LGM expansion and lack of historical genetic structure of a subtropical fig-pollinating wasp (Ceratosolen sp.1) of Ficus septica in Taiwan [J]. Molecular Ecology 2008,17:5008-5022.
    114. Sadder M T, Ateyyeh A F. Molecular assessment of polymorphism among local Jordanian genotypes of the common fig (Ficus carica L.) [J]. Scientia Horticulturae 2006,107:347-351.
    115. Ma W J, Yang D R, Peng Y Q. Disturbance effects on community structure of Ficus tinctoria fig wasps in Xishuangbanna, China:Implications for the fig/fig wasp mutualism [J]. Insect Science 2009,16:417-424.
    116. Malan C.,Greyling M M.,Gressel J.Correlation between Cu/Zn Superoxida Dismutase andGlutathione Reductase,and Environmental and Xenobiotic Stress to Lerance in Maize in Breeds[J].Plant Science.1990,69:157-166.
    117. Markwell J, Osterman J C, Mitchell J L. Calibration of the Minolta SPAD-502 leaf chlorophyll meter. Photosynth Res,1995,46:467-472.
    118. Mavlonov G T, Ubaidullaeva Kh A, Rakhmanov M I, et al. Chitin-binding antifungal protein from Ficus carica latex [J]. Chemistry of Natural Compounds 2008,44(2):216-219.
    119. Maxwell K, Johnson GN.2000. Chlorophyll fluorescence:a practical guide. Journal of Experimental Botany 51:659-668.
    120. Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci,2002,7(9): 405-410.
    121. Parida AK, Das AB, Mittra B.2004. Effects of salt on growthion accumulation photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. Trees Structure and Function 18:167-174.
    122. Rajashekar C, Gusta LV, Burke MJ. Membrane structural transition:probable relation to frostdamage in hardyherbaceous species [A]//Lysons JM, Graham D, Raison JK. Low temperature stress in crop plantsthe role of membrane [M]. New York:Academic Press,1979:255-274.
    123. Rao R B, Murugesan T, Pal M, et al. Antitussive potential of methanol extract of stem bark of Ficus racemosa Linn [J]. Phytother. Res.2003,17:1117-1118.
    124. Renoult J P, Kjellberg F, Grout C, et al. Cyto-nuclear discordance in the phylogeny of Ficus section Galoglychia and host shifts in plant-pollinator associations [J]. BMC Evolutionary Biology 2009,9:248 doi:10.1186/1471-2148-9-248.
    125. Righini N, Serio-Silva J C, Rico-Gray V, et al. Effect of different primate species on germination of Ficus (Urostigma) seeds[J]. Zoo Biology 2004,23:273-278.
    126. Ronsted N, Weiblen G D,Cook J M, et al.60 million years of co-divergence in the fig-wasp symbiosis [J]. Proc. R. Soc. B 2005,272:2593-2599.
    127. R(?)nsted N, Salvo G, Savolainen V. Biogeographical and phylogenetic origins of African fig species (Ficus section Galoglychia) [J]. Molecular Phylogenetics and Evolution 2007,43:190-201.
    128. Sadder M T, Ateyyeh A F. Molecular assessment of polymorphism among local Jordanian genotypes of the common fig (Ficus carica L.) [J]. Scientia Horticulturae 2006,107:347-351.
    129. Santarius K A.The Protective effect of sugars on chloroplast membranes during temperature and water stress and its relationship to frost desiecation and heat resistanee[J].Planta,1973,113:105-114.
    130. Singh NK, Kuhn D. Molecular cloning of osmotin.and regulation of its expression by ABA and adaptation to low water potential. Plant Physiology,1989,90:1096-1101
    131. Singh R K, Mehta S, Jaiswal D, et al. Antidiabetic effect of Ficus bengalensis aerial roots in experimental animals [J]. Journal of Ethnopharmacology 2009,123:110-114.
    132. Sonibare M A, Jayeola A A, Egunyomi A. Chemotaxonomic significance of leaf alkanes in species of Ficus (Moraceae) [J]. Biochemical Systematics and Ecology 2005,33:79-86.
    133. Srinath J, Bagyaraj D J, Satyanarayana B N. Enhanced growth and nutrition of micropropagated Ficus benjamina to Glomus mosseae co-inoculated with Trichoderma harzianum and Bacillus coagulans [J]. World Journal of Microbiology & Biotechnology 2003,19:69-72.
    134. Stepien P, Klobus G. 2006. Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress. Biologia Plantarum 50:610-616.
    135. Takahashi S, Tamashiro A, Sakihama Y, et al. High-susceptibility of photosynthesis to photoinhibition in th tropical plant Ficus microcarpa L. f. cv. golden leaves [J]. BMC Plant Biology 2002,2:2
    136. Veneklaas E J, Santos Silva M P R M, den Ouden F. Determinants of growth rate in Ficus bebjamina L. compared to related faster-growing woody and berbaceous species [J]. Scientia Horticulturae 2002,93:75-84.
    137. Vignes H, Hossaert-Mckey M, Beaune D, et al. Development and characterization of microsatellite markers for a monoecious Ficus species, Ficus insipida, and cross-species amplification among different sections of Ficus [J]. Molecular Ecology Notes 2006,6:792-795.
    138. Volkmar KM, Hu Y, Steppuhn H. Physiological responses of plants to salinity:a review. Canadian Journal of Plant Science,1998,78:19-27.
    139. Wang R, Ai B, Gao B Q, et al. Spatial genetic structure and.restricted gene flow in a functionally dioecious fig, Ficus pumila L. var. pumila (Moraceae) [J]. Popul. Ecol.2009,51:307-315.
    140. Wang R W, Yang C Y, Zhao G F, et al. Fragmentation effects on diversity of wasp community and its impac on fig/fig wasp interaction in Ficus racemosa L [J]. Journal of Integrative Plant Biology 2005,47(1):20-26.
    141. Wang Y R, Zeng S X, Liu H X.Effect of cold hardening on SOD and glutanthlone reductase activities and on the contents of the reduced form of glutathione acorbic acid and cucumber[J].Acta. Botanica Sinica.l995,37(10):776-780.
    142. Weiblen G D. Phylogentic relationships of functionally dioecious Ficus (Moraceae) based on ribosomal DNA sequences and morphology [J]. Am. J Bot.2000,87:1342-1357
    143. Yancheva S D, Golubowicz S, Yablowicz Z, et al. Efficient agrobacterium-mediated transformation and recovery of transgenic fig (Ficus carica L.) plants [J]. Plant Science 2005, 168:1433-1441.
    144. Zhang X P, Zeng B, Zhong Z C. Differential responsiveness in stem height and diameter growth of two Ficus tree species in the Three Gorges reservoir region of China as affected by branch removal [J]. Can. J. For. Res.2007,37:1748-1754.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700