渤海湾西北岸大吴庄牡蛎礁礁泥转换与地质环境变迁
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以渤海湾西北岸发育的中全新世大吴庄埋藏牡蛎礁体为研究对象,运用年代学、沉积学、微体古生物学方法,对牡蛎礁及其上覆泥层进行了综合研究,探究埋藏牡蛎礁被泥层覆盖的原因及其所记录的地质环境变迁。通过对多种实验结果的综合分析,结果认为牡蛎礁被上覆泥层所覆盖是一个渐变的过程,其生长环境从潮间带的中下部逐渐过渡到潮间带的中上部。由于岸线的向海推移,固着生长的牡蛎礁体逐渐被掩埋,礁体结束生长、泥质沉积物不断堆积,从而形成了由礁体与上覆泥质沉积构成的二元相结构。
Oyster reefs with the overlying muddy sediments form the common binary phase structure on the northwestern coast of Bohai Bay. Such special geological phenomenon, ie. reef?mud transformation, showed 9 times on the Oyster Reef Plain. This paper chooses The Dawuzhuang buried oyster reef as the study object which located in the northwestern shore of Bohai Bay. Its thickness and area are both larger, and it has the higher study level by far in many reefs.
     The samples were taken for the chronology, sedimentology and micropaleontology analyses. The dating result of the tree branch on the top of oyster reef was 5520 cal BP. Comparing to the dating result of the oyster shell samplesD-12at the top of the oyster reef, 5652 cal BP, the two only has a difference of 130 years only.
     OSL dating show age inversion near the top of the reef. It probably because the sediment of samples around are not homogeneous, and some content of U, Th and K in the oyster reef disturbed the sediment result. The concentrated ages are probably because of the faster accumulation. Comparing to the AMS 14C results of the shell on the top of the reef, there may be a sedimentary break at the top of the reef.
     The LOI difference of the mud between within the reef body and above the reef is possibly because the oyster growth requires the maintenance of organic matter, as well as their decay can increase the organic matter content. The grain size had no significant difference no matter whether they contain shell debris layer. From the reef to the overlying soil layer, the parameters of the grain size are changed gradually. Changes in magnetic characteristics may have a great relationship with the sediment source. Oyster reef grows on the northwestern coast of the Bohai Bay, the substances supply is from Jiyun River and Luanhe River, but the Yellow River is the largest source of the sediment supply into the Bohai Sea. Its frequent diversion may also cause the obvious changes in the magnetic susceptibility.
     Diatom analysis shows that the entire section, from 0.45m at the top of oyster reef up, including the overlying soil layer, is divided into four belt, and the influence by sea water gradually weakened, the mud?reef transformation occurred gradually, no sudden environmental changes. Pollen result shows that when the gradient occurs , the theropenedrymion was growing , and the climate had frequent small fluctuations (presumably small changes in both temperature and humidity). Foraminifera analysis shows that sedimentary environment changed from the lower intertidal zone to the upper intertidal zone. There were 21 individuals died in the season from spring to hot summer, which selected from 27 reef shells at the top of the Dawuzhuang reef, indicating that oyster reefs may belong to normal death.
     Summary, from the construction of oyster reefs to die, the influence of the sea water gradually smaller. In the late Holocene, the relative sea fall and because the oyster live long stationary, the reef constructed in the vertical space, when the reef reach to the top position at sea level, that is middle intertidal zone, they were exposed to the air half of time one day, so the reefs stop constructing, oysters also stop to grow up. Meanwhile, after the mid-Holocene, the coastline continued to advance, as reefs relatively unchanged, so they get closer to the shoreline. As the coastline continued to advance, oyster reefs gradually stop growing, the environment is gradually inappropriate for the growth of oysters, oyster decreased. As time goes on, all the oysters gradually perish. Mud sediment accumulated rapidly, all the oyster reefs are covered by the mud eventually.
引文
[1]耿岩.渤海湾北部潮流沙脊的形态与粒度特征[D].吉林:吉林大学地球科学学院,2009.
    [2]崔美玲,罗运利,孙湘君.吉林哈尼湖钻孔5000年以来的古植被气候变化指示[J].第四纪研究,2006,26(5):117-122.
    [3]范昌福,王宏,裴艳东,李延河.牡蛎壳体形态、生长速率与礁体环境[J].海洋通报,待刊.
    [4]范昌福,王宏,裴艳东,李延河.稳定同位素贝壳年轮指示的牡蛎礁体水平夹层成因.[J].第四纪研究,待刊.
    [5]范昌福,裴艳东,田立柱,王福,刘志广,王宏.渤海湾北部浅海区活牡蛎礁及其资源保护[J].地质通报,2010,29(5):待刊.
    [6]范昌福,王宏,裴艳东,K?niger Paul,李延河.牡蛎壳体的同位素贝壳年轮研究[J].地球科学进展,2010,25(2):163-173.
    [7]范昌福.渤海西岸全新世埋藏牡蛎礁古环境[D].南京:南京大学海洋地质专业,2008.
    [8]范昌福,王宏,裴艳东等,渤海湾西北岸滨海湖埋藏牡蛎礁古生态环境[J].海洋地质与第四纪地质,2008,28(1):33-39.
    [9]范昌福,裴艳东,王宏等..渤海湾西北岸埋藏牡蛎礁体中的壳体形态与沉积环境[J].第四纪研究,2007,27(5):806-813.
    [10]范昌福,高抒,王宏.渤海湾西北岸全新世埋藏牡蛎礁建造记录中的间断及其解释[J].海洋地质与第四纪地质,2006. 26(5):27-31.
    [11]范昌福,李建芬,王宏等.渤海湾西北岸大吴庄牡蛎礁测年与古环境变化[J].地质调查与研究,2005b, 28(2):124-129.
    [12]范昌福,王宏,李建芬等.渤海湾西北岸牡蛎礁对区域性构造活动与水动型海面变化的响应[J].第四纪研究,2005a, 25(2):235-244.
    [13]范昌福.渤海湾西北岸大吴庄牡蛎礁中全新世古环境[D].吉林:吉林大学地球科学学院,2005.
    [14]方晶,大吴庄牡蛎礁硅藻分析[R].2009.
    [15]李冬玲,范昌福,黄玥等.渤海湾西北岸中全新世埋藏牡蛎礁的硅藻记录及古环境意义[J].海洋通报,2009,28(3):22-28.
    [16]耿秀山,傅命佐,王宏,徐孝诗等.现代牡蛎礁发育与生态特征及古环境意义[J].中国科学(B辑), 1991, 8:867-875.
    [17]韩有松.牡蛎礁与新河古海岸线[C].海洋科学集刊,1980,16:59-65.
    [18]刘子亭,余俊清,张保华等.黄旗海岩芯灼失量分析与冰后期环境演变[J].盐湖研究,2008,16(4):1-5.
    [19]李凤林,王宏,阎玉忠等.渤海湾西岸滨海平原晚第四纪以来的沉积间断[J].地质调查与研究, 2004, 27(3):177-183.
    [20]李建芬,裴艳东,王福等.天津市潮滩活体和埋藏有孔虫群的分布及地质环境意义[J].海洋地质与第四纪地质,2009,29(3):9-20.
    [21]李建芬,王宏,李凤林等.渤海湾牡蛎礁平原中部兴坨剖面全新世地质环境变迁[J].地质通报,2004,23(2):169-176.
    [22]李世瑜.古代渤海湾西部海岸遗迹及地下文物的初步调查研究[J].考古, 1962,12:652-657.
    [23]李元芳,安凤桐.天津平原第四纪微古化石及其古地理意义[J].地理学报, 1985,40(2):155-168.
    [24]毛玉泽,周毅,杨红生等.长牡蛎( Crassostrea gigas)代谢率的季节变化及其与夏季死亡关系的探讨[J].海洋与湖沼,2005,36(5):445-451.
    [25]阙华勇,刘晓,王海艳等.中国近海牡蛎系统分类研究的现状和对策[J].动物学杂志,2003,38(4):110-113.
    [26]时连强,李九发,张卫国等.黄河三角洲飞雁滩HF孔沉积物的磁性特征及其环境意义[J].海洋学研究,2007,25(4):13-23.
    [27]唐丽玉,王绍鸿.深沪湾—福建海岸演化的信息库[J].福建地理,1999, 14(1):5-8.
    [28]天津地质矿产局编.天津市区域地质志[M].北京:地质出版社,1992. 189-220.
    [29]天津地质矿产研究所.渤海湾牡蛎平原牡蛎礁的形成与演化[R].2002.
    [30]王宏.渤海湾全新世贝壳堤和牡蛎礁的古环境[J].第四纪研究, 1996, (1):71-79.
    [31]王宏.渤海湾牡蛎礁与新构造活动:几个基本问题的讨论[C].见:卢演俦,高维明,陈国星等主编.新构造与环境.北京:地震出版社,2001. 171-184.
    [32]王宏,姜义,李建芬等.渤海湾老狼坨子海岸带14C、137Cs、210Pb测年与现代沉积速率的加速趋势[J].地质通报,2003,22(9):658-664.
    [33]王宏.渤海湾泥质海岸带近现代地质环境变化研究(I):意义、目标与方法.第四纪研究[J],2003,24(3):385-392.
    [34]王宏.渤海湾泥质海岸带近现代地质环境变化研究(II):成果与讨论.第四纪研究[J],2003,24(3):393-403.
    [35]王宏,李凤林,范昌福等.环渤海海岸带14C数据集(I)[J].第四纪研究, 2004,24(6):601-613.
    [36]王宏,范昌福.环渤海海岸带14C数据集(II) [J].第四纪研究,2005, 25(2):141-155.
    [37]王强,李秀文,张志良等.天津地区全新世牡蛎滩的古海洋学意义[J].海洋学报,1991,13 (3):371-380.
    [38]王一曼.渤海湾西北岸全新世海侵问题的初步探讨[J].地理研究,1982,1(2):59-69.
    [39]谢在团,邵合道,陈峰等.福建沿岸晚更新世以来海侵[J].中国海平面变化(一),1986,156-165.
    [40]徐起浩.福建深沪湾晚更新世古牡蛎滩的发育与留存古环境[J].海洋科学, 2002,26(4):58-62.
    [41]阎玉忠,李凤林.渤海湾西北岸沿海平原牡蛎礁的机械沉积与牡蛎消亡原因的探讨[C].见:前寒武纪第四纪地质文集.北京:地质出版社,2002,239-250.
    [42]姚庆元.福建金门岛东北海区牡蛎礁的发现及其古地理意义[J].台湾海峡,1985,4(1):108-109.
    [43]喻春霞,罗运利,孙湘君.吉林柳河哈尼湖13.1~4.5ka cal BP.古气候演化的高分辨率孢粉记录[J].第四纪研究,2008,28(5):929-938.
    [44]俞鸣同,黄向华.福建深沪湾潮间带沉积异质体及其成因初探[J].海洋科学, 2003,27(12):42-44.
    [45]张忍顺,王艳红,张正龙等,江苏小庙洪牡蛎礁的地貌特征及演化[J].海洋与湖沼,2007,38(3):259-265.
    [46]张忍顺.江苏小庙洪牡蛎礁的地貌?沉积特征[J].海洋与湖沼,2004,35(1):1-7.
    [47]张卫国,戴学荣,陈福瑞等.近7000年巢湖沉积物环境磁学特征及其指示的亚洲季风变化[J].第四纪研究,2007,27(6):1053-1062.
    [48]赵希涛,耿秀山,张景文.中国东部20,000年来的海平面变化[J].海洋学报, 1979,1(2):269-281.
    [49]赵希涛,杨达源等编.全球海面变化[J].北京:科学出版社,1992.1-55.
    [50]赵希涛,韩有松,李平日等.区域海岸演化与海面变化及其地质记录[M].见:施雅风总主编(赵希涛本卷主编).中国海面变化.山东科学技术出版社, 1996,52-70.
    [51]竺可桢.中国过去五千年气候波动的初步研究[J].中国科学,1973,16, 168-189.
    [52] Aitken M J. An Introduction to Optical Dating: The Dating of Quaternary Sediments by the use of Photon-Stimulated Luminescence: Oxford.[J]. Oxford University Press,1998,1-267.
    [53] Boudry. P., Collet. B., McCombie. H. et al., Individual growth variation and its relationship with survival in juvenile Pacific oysters, Crassostrea gigas (Thunberg) [J]. Aquaculture International, 2003, 11, 429-448.
    [54] Carbotte S M, Bell R E, Ryan W B F et al. Environmentla change and oyster colonization within the Hudson River estuary linked to Holocene climate[J]. Geo-Mar Lett. 2004, 24: 212-224.
    [55] Carriker M R, Palmer R E. A new mineralized layer in the hinge of the oyster[J]. Science, 1979, 206(9): 691-693.
    [56] Cornu S, P?tzold J, Bard E et al.Paleotemperature of the last interglacial period based onδ18O of Strombus bubonius from the western Mediterranean Sea. Palaeogeography, Palaeoclimatology[J]. Palaeoecology, 1993, 103: 1-20.
    [57] Geng Xiushan, Fu Mingzuo, Xu Xiaoshi. The evolution of modern oyster bioherms and their relation with estuarine dynamical state and sea level changes[R]. In: Qin Yunshan and Zhao Songling eds. Quaternary Coastaline Changes in China. Beijing: China Ocean Press, 1991,41-61.
    [58] Glassow M A, Kennett D J, Kennett J et al. Confirmation of Middle Holocene ocean cooling inferred from stable isotopic analysis of prehistorical shells from Santa Cruz Island, California[R]. In: Halvorson W L, Maender G J ed. The Fourth California Islands Symposium: Update on the Status of Resources. Santa Barbara: Santa Barbara Museum of Natural History, 1994, 223-232.
    [59] Hoang N K. The Quaternary geology of the Mekong Lower Plain and Islands in southern Vietnam[M]. In: Thiramongkol N ed. Proceedings of the Workshop on Correlation of Quaternary Succession in South, East and Southeast Asia. 1988.
    [60] Ingram B L and Sloan P. Strontium isotopic composition of estuarine sediments as paleosalinity-paleoclimate indicator[J]. Science, 1992, 255:68-72.
    [61] Ingram B L and Depaolo D J. A 4300 yr strontium isotope record of estuarine palesalinity in San Francisco Bay, California[J]. Earth Planet Science letter, 1993, 119:103-119.
    [62] Kirby M X. Differences in growth rate between Tertiary and Quaternary Crassostrea oysters[J]. Paleobiology, 2001, 27(1):84-103.
    [63] Lambeck K, Chappell J. Sea-level change through the Last Glacial Cycle[J]. Science, 2002, 292:679-686.
    [64] Menzel R W, Hulings N C, Hathaway R R. Oyster abundance in Apalachicola Bay, Florida, in realtion to biotic associations influenced by salinity and other facotrs[R]. Gulf Res. Rep. 1996, 2:73-96.
    [65] Nakada M and Lambeck K. The melting history of the Late Pleistocene Antarctic ice sheet[J]. Nature, 1988, 333(5):36-40.
    [66] Sato H, Okuno J, Katoh S et al. Holocene crustal movement along the coast of western Kobe and the 1995 Kobe Earthquake, Japan[J]. Quaternary Science Reviews, 2003, 22: 891-897.
    [67] Wang Hong. Palaeoenvironment of Holocene Chenier and Oyster Reefs in the Bohai Bay (China) [D]. PhD Dissertation, Vrije Universiteit Brussel. 1994. 1-245.
    [68] Wang H, Keppens E, Nielsen P et al. Oxygen and carbon isotope study of the Holocene oyster reefs and paleoenvironmental reconstruction on the Northwest Coast of Bohai Bay, China[J].Marine Geology,1995,124: 289-302.
    [69] Wang Hong, Van Strydonck M. Chronology of Holocene cheniers and oyster reefs on the coast of Bohai Bay, China[J]. Quaternary Research, 1997, 47:192-205.
    [70] Zoppi U, Albani A, Ammerman A.J. et al., Preliminary estimate of the reservoir age in the lagoon of Venice, Radiocarbon[J].2001,43,489-494.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700