合成高分子对视黄醛膜蛋白功能的影响及相应功能材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光敏蛋白是一种将光能转换成化学能或生理信号的生物大分子,在光合成和视觉感触方面具有举足轻重的作用。而细菌视紫红质(bacteriorhodopsin, BR)便是这类光敏蛋白中的典型代表。这种蛋白质被发现后,其所具有的独特性质引起了许多科学工作者的兴趣,很多科学工作者对其技术应用进行了研究,甚至提出了利用BR制造“蛋白质计算机”的构想。鉴于活性蛋白质自身难以成为可直接投入使用的材料,为了将来能够实现器件化和产品化,通常将BR包埋于某种合适的聚合物基质中,制作含有BR的复合材料。然而,合成高分子对于此类活性蛋白质的影响远未得到充分研究,这限制了含有光敏蛋白的材料制备技术的提高;此外,研究合成高分子与生物大分子相互作用本身也是具有一定普遍意义的基础研究课题。
     本博士论文课题从生物和材料学科交叉的角度入手,研究合成高分子聚合物对这种具有跨膜定向质子传递功能和光化学循环特性的BR和另一相关蛋白质古紫质4(archaerhodposin, AR4)的影响。在此基础上,综合运用化学手段和基因工程手段对上述两种膜蛋白进行改性,并将其与具有良好加工性能和力学性能的聚合物材料相结合,为制备高性能的活性蛋白质介导的复合材料提供新思路。
     本论文的主要创造性工作为:
     (一)首次发现两亲性嵌段共聚物对于细菌视紫红质的功能具有超过两亲性小分子和普通高分子的十分显著的影响,并予以了解释。研究了两亲性嵌段共聚物聚氧乙烯-b-聚氧丙烯-b-聚氧乙烯(PEO-PPO-PEO,商业名称Pluronic)对膜蛋白BR功能的影响。发现经过Pluronic处理后,BR保留了其光驱质子泵行为,但其光激发后的质子提取的时间和M中间态的寿命得到约3个数量级的显著延长;而加入均聚物聚氧乙烯(PEO)和小分子去垢剂却未发现如此显著的效应;通过圆二色谱仪检测发现,经过Pluronic处理后的BR仍然是以三聚体结构存在;而且经过Pluronic处理后BR的中间态寿命几乎不受水含量的影响;通过比较有无BR膜蛋白存在两种情况下的P123的临界胶束浓度,发现这种延长效应与共聚物胶束的形成具有密切的关联;而两亲性嵌段共聚物和膜蛋白的自组装和其所导致的紫膜表面所形成一层聚合物涂层可能是这一非常显著的延长效应的原因。
     (二)进一步发现两亲性合成高分子对于光敏膜蛋白的影响程度与蛋白质或膜脂种类有关。研究了嵌段共聚物Pluronic对膜蛋白AR4功能的影响,并与小分子去垢剂对AR4功能的影响进行比较。发现经过Pluronic处理后,AR4的M中间态寿命延长仅约一个数量级,与同样受Pluronic处理后BR的M中间态寿命延长三个数量级相比较,相差甚多。通过分析比较大分子表面活性剂Pluronic和小分子去垢剂Triton X-100分别对BR和AR4的M中间态的影响,提出其原因可能是由于紫红膜中的玉红素保护了AR4蛋白质,使得AR4蛋白质分子具有相对较高的稳定性。
     (三)综合运用两亲性共聚物水凝胶包埋与BR基因工程突变技术,制备了迄今为止在高水含量条件下具有最长M中间态寿命的含细菌视紫红质的功能材料。我们合成了F127-DA大单体并将其首次用于包埋BR并采用紫外光交联技术制备了复合水凝胶材料。对Pluronic大分子进行末端基丙烯酸修饰并不影响其与膜蛋白之间的自组装作用。向突变体BR-D96N溶液中加入嵌段共聚物F127-DA进行改性,并通过光交联大单体制备复合水凝胶材料,并且将膜蛋白的M中间态与基态之间的光致变色效应延长到半个小时以上。据我们所知,这是在高含水体系中最长的记录。
     (四)制备了光敏蛋白与合成高分子的系列复合膜,并通过合作研究证实,复合膜具备信息存储和处理的功能。将膜蛋白包埋于具有良好光学透明性和加工性能的聚合物基质中制备了复合膜材料并进行了初步的光学性能检测。我们通过基因工程技术成功去除了由菌株xz515中所提取到的野生AR4膜蛋白周围脂环境中的玉红素,优化了AR4的光致变色性能;同时获得了突变体BR-D96V,提高了BR的光学性能。我们首次初步尝试制备单聚体分散的细菌视紫红质/聚合物复合膜,采用具有良好生物相容性的聚氧乙烯-二丙烯酸酯(PEG-DA)大单体作为分散膜蛋白的基质,通过交联聚合制备膜蛋白/聚合物的新型复合材料;同时尝试以PEG-DA大单体为基质,制备了单聚体BR/聚合物复合材料;单聚体的稳定性仍待提高。我们利用包埋于聚乙烯醇(PVA)中的膜蛋白复合膜实现了简单的可视化的图案记录,初步表明该活性蛋白质与聚合物的复合材料具有光信息存储功能;还通过合作者的光学研究证明,BR-D96V/PVA复合膜可在部分信息存储和光信号处理中作为一种独到的新型功能材料。
Photochromic proteins, which transform light energy into chemical or physiological signals, play a key role in photosynthesis and visual perception. A typical photochromic protein is bacteriorhodopsin (BR). Since its discovery, the unique properties of BR have attracted many scientific researchers. Various potential applications have been suggested including even the conceptual assumption of 'protein computer'. Since active proteins themselves are, due to poor processibility, hard to be applied straightforwardly as a "material", a strategy is preparation of polymer-based composite containing BR. However, the influence of synthetic polymers on retinal proteins is far away to be sufficiently explored, which limits the improvement of BR-related material techniques. On the other hand, the interactions between synthetic polymers and active biomacromolecules constitute a fundamental topic in the natural science, which deserves extensive investigation.
     This Ph.D thesis is focused upon examinations of effects of synthetic polymers on functions of active proteins. BR and its natural analog called archaerhodposin 4 (AR4) were employed as model proteins. Composite materials were obtained via combining polymeric technique and gene engineering technique, which shed light onto the functional polymeric materials including active biomacromolecules.
     The original work and results are summarized as follows:
     (1) It has been unexpectedly found that amphiphilic macromolecules influence the function of BR much more significantly than either normal polymers or small molecular amphiphiles, and an interpretation has been further put forward. Effects of a macromolecular amphiphile poly(ethylene oxide)-b-poly (propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO) on functions of BR were examined. After incubation of BR in Pluronic solutions, BR maintained its function of a light-driven proton pump; however, the rate of proton uptake and lifetime of the M intermediate of BR upon illumination were, under appropriate conditions, prolonged for about three orders of magnitude compared with that of native BR, even at neutral pH. Addition of homopolymer PEO or small molecular detergent Triton X-100 didn't result in so significant effects. BR molecules were still in a trimer state after treatment by the copolymers. And the functions of BR/P123 assemblies were not significantly influenced by water content. Determination of critical micelle concentration of P123 with and without BR reveals that this prolongation is closely related to formation of micelles. And formation of a local polymer coating due to self assembly of the copolymer and protein molecules might be responsible for this very significant prolongation effect, which is beneficial for some potential application of BR as information materials.
     (2) We further found that the effects of amphiphilic synthetic polymers on functions of retinal proteins were dependent upon kinds of proteins or surrounding lipids. Effects of Pluronic copolymers PEO-PPO-PEO on functions of AR4 were also examined. After treatment by Pluronic, lifetime of the M intermediate of AR4 was only one order of magnitude longer than that without Pluronic, and that is quite different with the results from BR treated by Pluronic. Comparison of effects of various detergents on AR4 and BR revealed that carotenoids existing in native claret membrane might protect AR4 from interacting with Pluronics.
     (3) The composite hydrogel with so far longest photochromic response of BR under high water content was achieved by combining addition of amphiphilic synthetic polymers and modification of proteins by gene engineering. Macromonomer F127-diacrylate was synthesized and first used for encapsulating BR to fabricate composite hydrogel (F127 is a Pluronic amphiphile.) The subtle end modification of Pluronic has little influence on assembly of copolymer and membrane proteins. After photopolymerization of the macromonomer in mixture of mutation BR-D96N and F127-diacrylate, a composite hydrogel material was formed and the photochromic response was prolonged to over half an hour, which is the longest record under high water conditions to the best of our knowledge.
     (4) A series of composite films of membrane proteins and synthetic polymers were fabricated, and the feasibility of information storage and processing of the resultant films was confirmed via collaboration with physicists. The carotenoid in the native lipid environment of H.sp.xz515 was successfully removed via gene engineering, and the contrast between M410 intermediate and ground state was greatly enhanced. A mutation BR-D96V with improved optical properties was also obtained. Polymeric composite encapsulating retinal protein monomers was first tried to be prepared. A new composite material was fabricated by employing macromonomer poly(ethylene oxide)-diacrylate (PEO-DA) with good biocompatibility as matrixes to encapsulate membrane proteins in either the trimer state or the monomer state, although the improvement of stability of monomers (non-aggregated proteins) is still called for. Composite films were also made by embedding the recombinant AR4 and mutation BR-D96V into poly(vinyl alcohol) (PVA). A simple pattern recording in the composite films was also realized, which demonstrates its ability for optical information storage. Investigation from our collaborator further confirmed that our BR-D96V/PVA film was available for information storage and processing.
引文
[1]D. Oesterhelt and W. Stoeckenius. Rhodopsin-like protein from the purple membrane of Halobacterium halobium[J]. Nature:New biology,1971,233, 149-152.
    [2]Q. G. Li, Q. G. Sun, W. Zhao, H. Wang and D. Q. Xu. Newly isolated archaerhodopsin from a strain of Chinese halobacteria and its proton pumping behavior[J]. Biochimica Et Biophysica Acta,2000,1466,260-266.
    [3]K. Ihara, T. Umemura, I. Katagiri, T. Kitajima-Ihara, Y. Sugiyama, Y. Kimura and Y. Mukohata. Evolution of the archaeal rhodopsins:Evolution rate changes by gene duplication and functional differentiation[J]. Journal of Molecular Biology,1999,285,163-174.
    [4]N. Hampp. Bacteriorhodopsin as a photochromic retinal protein for optical memories[J]. Chemical Reviews,2000,100,1755-1776.
    [5]J. L. Spudich and R. A. Bogomolni. Mechanism of colour discrimination by a bacterial sensory rhodopsin[J]. Nature,1984,312,509-513.
    [6]E. K. Wolff, R. A. Bogomolni, P. Scherrer, B. Hess and W. Stoeckenius. Color discrimination in halobacteria:spectroscopic characterization of a second sensory receptor covering the blue-green region of the spectrum [J]. Proceedings of the National Academy of Sciences of the United States of America,1986,83, 7272-7276.
    [7]M. Ming, M. Lu, S. P. Balashov, T. G. Ebrey, Q. G. Li and J. D. Ding. pH dependence of light-driven proton pumping by an archaerhodopsin from Tibet: Comparison with bacteriorhodopsin [J]. Biophysical Journal,2006,90, 3322-3332.
    [8]R. Henderson and P. N. Unwin. Three-dimensional model of purple membrane obtained by electron microscopy[J]. Nature,1975,257,28-32.
    [9]F. Oesterhelt, D. Oesterhelt, M. Pfeiffer, A. Engel, H. E. Gaub and D. J. Muller. Unfolding pathways of individual bacteriorhodopsins[J]. Science,2000,288, 143-146.
    [10]L. Tang, Q. A. Sun, Q. G. Li, Y. B. Huang, Q. Q. Wei, Y. Zhang, J. Hu, Z. H. Zhang, M. Q. Li and F. J. Yang. Imaging bacteriorhodopsin-like molecules of claret-membranes from Tibet halobacteria xz515 by atomic force microscope [J]. Chinese Science Bulletin,2001,46,1897-1900.
    [11]D. J. Muller and A. Engel. Atomic force microscopy and spectroscopy of native membrane proteins[J]. Nature Protocols,2007,2,2191-2197.
    [12]H. G. Khorana, G. E. Gerber, W. C. Herlihy, C. P. Gray, R. J. Anderegg, K. Nihei and K. Biemann. Amino acid sequence of bacteriorhodopsin[J]. Proc. Natl. Acad. Sci. USA.,1979,76,5046-5050.
    [13]N. Grigorieff, T. A. Ceska, K. H. Downing, J. M. Baldwin and R. Henderson. Electron-crystallographic refinement of the structure of bacteriorhodopsin[J]. Journal of Molecular Biology,1996,259,393-421.
    [14]Y. Kimura, D. G. Vassylyev, A. Miyazawa, A. Kidera, M. Matsushima, K. Mitsuoka, K. Murata, T. Hirai and Y. Fujiyoshi. Surface of bacteriorhodopsin revealed by high-resolution electron crystallography [J]. Nature,1997,389, 206-211.
    [15]H. Luecke, H. T. Richter and J. K. Lanyi. Proton transfer pathways in bacteriorhodopsin at 2.3 Angstrom resolution[J]. Science,1998,280,1934-1937.
    [16]H. Luecke, B. Schobert, H. T. Richter, J. P. Cartailler and J. K. Lanyi. Structure of bacteriorhodopsin at 1.55 angstrom resolution[J]. Journal of Molecular Biology,1999,291,899-911.
    [17]E. PebayPeyroula, G. Rummel, J. P. Rosenbusch and E. M. Landau. X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases[J]. Science,1997,277,1676-1681.
    [18]H. Belrhali, P. Nollert, A. Royant, C. Menzel, J. P. Rosenbusch, E. M. Landau and E. Pebay-Peyroula. Protein, lipid and water organization in bacteriorhodopsin crystals:a molecular view of the purple membrana at 1.9 angstrom resolution[J]. Structure,1999,7,909-917.
    [19]B. Schobert, J. Cupp-Vickery, V. Hornak, S. O. Smith and J. K. Lanyi. Crystallographic structure of the K intermediate of bacteriorhodopsin: Conservation of free energy after photoisomerization of the retinal[J]. Journal of Molecular Biology,2002,321,715-726.
    [20]W. Sperling, P. Carl, C. N. Rafferty and N. A. Dencher. Photochemistry and dark equilibrium of retinal isomers and bacteriorhodopsin isomers[J]. Biophysics of structure and mechanism,1977,3,79-94.
    [21]K. Ohno, Y. Takeuchi and M. Yoshida. Effect of light-adaptation on the photoreaction of bacteriorhodopsin from Halobacterium halobium[J]. Biochimica Et Biophysica Acta,1977,462,575-582.
    [22]M. P. Heyn, B. Borucki and H. Otto. Chromophore reorientation during the photocycle of bacteriorhodopsin:experimental methods and functional significance[J]. Biochimica Et Biophysica Acta,2000,1460,60-74.
    [23]R. H. Lozier, R. A. Bogomolni and W. Stoeckenius. Bacteriorhodopsin:a light-driven proton pump in Halobacterium halobium[J].Biophysical Journal, 1975,15,955-963.
    [24]H. Luecke, B. Schobert, H. T. Richter, J. P. Cartailler and J. K. Lanyi. Structural changes in bacteriorhodopsin during ion transport at 2 Angstrom resolution[J]. Science,1999,286,255-260.
    [25]J. K. Lanyi. Molecular mechanism of ion transport in bacteriorhodopsin:Insights from crystallographic, spectroscopic, kinetic, and mutational studies[J]. Journal of Physical Chemistry B,2000,104,11441-11448.
    [26]J. Wu, D. W. Ma, Y. Z. Wang, M. Ming, S. P. Balashov and J. D. Ding. Efficient Approach to Determine the pK(a) of the Proton Release Complex in the Photocycle of Retinal Proteins[J]. Journal of Physical Chemistry B,2009,113, 4482-4491.
    [27]J. K. Lanyi. Bacteriorhodopsin[J]. Biochimica Et Biophysica Acta-Bioenergetics, 2000,1460,1-3.
    [28]U. Haupts, J. Tittor and D. Oesterhelt. Closing in on bacteriorhodopsin:Progress in understanding the molecule[J]. Annual Review of Biophysics and Biomolecular Structure,1999,28,367-399.
    [29]T. G. Ebrey, in Thermodynamics of Membrane Receptors and Channels[M], ed. M. B. Jackson, CRC Press, Boca Raton, FL,1993, pp.353-387.
    [30]J. K. Lanyi. Bacteriorhodopsin[J]. Annual Review of Physiology,2004,66, 665-688.
    [31]S. P. Balashov. Protonation reactions and their coupling in bacteriorhodopsin[J]. Biochimica Et Biophysica Acta,2000,1460,75-94.
    [32]S. P. Balashov, R. Govindjee, E. S. Imasheva, S. Misra, T. G. Ebrey, Y. Feng, R. K. Crouch and D. R. Menick. The two pK(a) of aspartate-85 and control of thermal-isomerization and proton release in the Arginine-82 to Lysine mutant of bacteriorhodopsin[J]. Biochemistry,1995,34,8820-8834.
    [33]H. J. Sass, G. Buldt, R. Gessenich, D. Hehn, D. Neff, R. Schlesinger, J. Berendzen and P. Ormos. Structural alterations for proton translocation in the M state of wild-type bacteriorhodopsin[J]. Nature,2000,406,649-653.
    [34]H. Luecke, B. Schobert, J. P. Cartailler, H. T. Richter, A. Rosengarth, R. Needleman and J. K. Lanyi. Coupling photoisomerization of retinal to directional transport in bacteriorhodopsin[J]. Journal of Molecular Biology,2000,300, 1237-1255.
    [35]L. S. Brown, J. Sasaki, H. Kandori, A. Maeda, R. Needleman and J. K. Lanyi. Glutamic-acid-204 is the terminal proton release group at the extracellular surface of bacteriorhodopsin[J]. Journal of Biological Chemistry,1995,270, 27122-27126.
    [36]S. P. Balashov, E. S. Imasheva, T. G. Ebrey, N. Chen, D. R. Menick and R. K. Crouch. Glutamate-194 to cysteine mutation inhibits fast light-induced proton release in bacteriorhodopsin[J]. Biochemistry,1997,36,8671-8676.
    [37]A. K. Dioumaev, H. T. Richter, L. S. Brown, M. Tanio, S. Tuzi, H. Saito, Y. Kimura, R. Needleman and J. K. Lanyi. Existence of a proton transfer chain in bacteriorhodopsin:Participation of Glu-194 in the release of protons to the extracellular surface[J]. Biochemistry,1998,37,2496-2506.
    [38]R. Rammelsberg, G. Huhn. M. Lubben and K. Gerwert. Bacteriorhodopsin's intramolecular proton-release pathway consists of a hydrogen-bonded network[J]. Biochemistry,1998,37,5001-5009.
    [39]F. Garczarek, L. S. Brown, J. K. Lanyi and K. Gerwert. Proton binding within a membrane protein by a protonated water cluster [J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102,3633-3638.
    [40]L. S. Brown, A. K. Dioumaev, R. Needleman and J. K. Lanyi. Local-access model for proton transfer in bacteriorhodopsin[J]. Biochemistry,1998,37, 3982-3993.
    [41]L. S. Brown, A. K. Dioumaev, R. Needleman and J. K. Lanyi. Connectivity of the retinal Schiff base to Asp(85) and Asp(96) during the bacteriorhodopsin photocycle:The local-access model[J]. Biophysical Journal,1998,75, 1455-1465.
    [42]J. K. Lanyi. Crystallographic studies of the conformational changes that drive directional transmembrane ion movement in bacteriorhodopsin[J]. Biochimica Et Biophysica Acta-Bioenergetics,2000,1459,339-345.
    [43]S. Checover, E. Nachliel, N. A. Dencher and M. Gutman. Mechanism of proton entry into the cytoplasmic section of the proton-conducting channel of bacteriorhodopsin[J]. Biochemistry,1997,36,13919-13928.
    [44]B. Schobert, L. S. Brown and J. K. Lanyi. Crystallographic intermediates of structures of the M and N bacteriorhodopsin:Assembly of a hydrogen-bonded chain of water molecules between Asp-96 and the retinal Schiff base[J]. Journal of Molecular Biology,2003,330,553-570.
    [45]S. O. Smith, J. A. Pardoen, P. P. J. Mulder, B. Curry, J. Lugtenburg and R. Mathies. Chromophore structure in bacteriorhodopsin's O640 photointermediate[J]. Biochemistry,1983,22,6141-6148.
    [46]H. T. Richter, L. S. Brown, R. Needleman and J. K. Lanyi. A linkage of the pK(a)'s of asp-85 and glu-204 forms part of the reprotonation switch of bacteriorhodopsin [J]. Biochemistry,1996,35,4054-4062.
    [47]S. P. Balashov, M. Lu, E. S. Imasheva, R. Govindjee, T. G. Ebrey, B. Othersen, Y. M. Chen, R. K. Crouch and D. R. Menick. The proton release group of bacteriorhodopsin controls the rate of the final step of its photocycle at low pH[J]. Biochemistry,1999,38,2026-2039.
    [48]L. Zimanyi, G. Varo, M. Chang, B. F. Ni, R. Needleman and J. K. Lanyi. Pathways of proton release in the bacteriorhodopsin photocycle[J]. Biochemistry, 1992,31,8535-8543.
    [49]A. K. Dioumaev, L. S. Brown, R. Needleman and J. K. Lanyi. Coupling of the reisomerization of the retinal, proton uptake, and reprotonation of Asp-96 in the N photointermediate of bacteriorhodopsin [J]. Biochemistry,2001,40, 11308-11317.
    [50]Q. G. Li, H. Wang and D. J. Song. The isolation and purification of archaerhodopsin from H.Sp.xz515[J]. Acta Biochimica Et Biophysica Sinica, 1997,29,517-520.
    [51]M. Ming, Y. Z. Wang, J. Wu, D. W. Ma, Q. G. Li and J. D. Ding. Triton X-100 can alter the temporal sequence of the light-driven proton pump of archaerhodopsin 4[J]. Febs Letters,2006,580,6749-6753.
    [52]R. R. Birge. Protein-Based Computers[J]. Scientific American,1995,272,90-95.
    [53]H. J. Choi and C. D. Montemagno. Artificial organelle:ATP synthesis from cellular mimetic polymersomes[J]. Nano Letters,2005,5,2538-2542.
    [54]T. Miyasaka, K. Koyama and I. Itoh. Quantum Conversion and Image Detection by a Bacteriorhodopsin-Based Artificial Photoreceptor[J]. Science,1992,255, 342-344.
    [55]K. Fukuzawa. Motion-Sensitive Position Sensor Using Bacteriorhodopsin[J]. Applied Optics,1994,33,7489-7495.
    [56]A. Boyer, M. Dery, P. Selles, C. Arbour and F. Boucher. Color Discrimination By Forward And Reverse Photocurrents In Bacteriorhodopsin-Based Photosensor [J]. Biosensors & Bioelectronics,1995,10,415-422.
    [57]J. H. Min, H. G. Choi, B. K. Oh, W. H. Lee, S. H. Paek and J. W. Choi. Visual information processing using bacteriorhodopsin-based complex LB films [J]. Biosensors & Bioelectronics,2001,16,917-923.
    [58]R. R. Birge, N. B. Gillespie, E. W. Izaguirre, A. Kusnetzow, A. F. Lawrence, D. Singh, Q. W. Song, E. Schmidt, J. A. Stuart, S. Seetharaman and K. J. Wise. Biomolecular electronics:Protein-based associative processors and volumetric memories[J]. Journal of Physical Chemistry B,1999,103,10746-10766.
    [59]K. J. Wise, N. B. Gillespie, J. A. Stuart, M. P. Krebs and R. R. Birge. Optimization of bacteriorhodopsin for bioelectronic devices [J]. Trends in Biotechnology,2002,20,387-394.
    [60]T. Fischer and N. A. Hampp. Two-photon absorption of bacteriorhodopsin: Formation of a red-shifted thermally stable photoproduct F-620[J]. Biophysical Journal,2005,89,1175-1182.
    [61]B. L. Yao, M. Lei, L. Y. Ren, N. Menke, Y. L. Wang, T. Fischer and N. Hampp. Polarization multiplexed write-once-read-many optical data storage in bacteriorhodopsin films[J]. Optics Letters,2005,30,3060-3062.
    [1]G. M. Whitesides and B. Grzybowski. Self-assembly at all scales[J]. Science, 2002,295,2418-2421.
    [2]I. W. Hamley. Nanoshells and nanotubes from block copolymers[J]. Soft Matter, 2005,1,36-43.
    [3]B. Guan, M. Jiang, X. G. Yang, Q. Liang and Y. Y. Chen. Self-assembly of amphiphilic calix[6] crowns:from vesicles to nanotubes[J]. Soft Matter,2008,4, 1393-1395.
    [4]P. Sens, L. Johannes and P. Bassereau. Biophysical approaches to protein-induced membrane deformations in trafficking[J]. Current Opinion In Cell Biology,2008,20,476-482.
    [5]I. C. Reynhout, J. Cornelissen and R. J. M. Nolte. Synthesis of Polymer-Biohybrids:From Small to Giant Surfactants [J]. Accounts Of Chemical Research,2009,42,681-692.
    [6]M. le Maire, P. Champeil and J. V. Moller. Interaction of membrane proteins and lipids with solubilizing detergents [J]. Biochimica Et Biophysica Acta-Biomembranes,2000,1508,86-111.
    [7]Y. Gohon, T. Dahmane, R. W. H. Ruigrok, P. Schuck, D. Charvolin, F. Rappaport, P. Timmins, D. M. Engelman, C. Tribet, J. L. Popot and C. Ebel. Bacteriorhodopsin/amphipol complexes:Structural and functional properties [J]. Biophysical Journal,2008,94,3523-3537.
    [8]M. G. Santonicola, A. M. Lenhoff and E. W. Kaler. Binding of alkyl polyglucoside Surfactants to bacteriorhodopsin and its relation to protein stability[J]. Biophysical Journal,2008,94,3647-3658.
    [9]D. Oesterhelt and W. Stoeckenius. Rhodopsin-like protein from the purple membrane of Halobacterium halobium[J]. Nature:New biology,1971,233, 149-152.
    [10]J. K. Lanyi. Bacteriorhodopsin[J]. Annual Review of Physiology,2004,66, 665-688.
    [11]R. R. Birge. Photophysics and Molecular Electronic Applications of the Rhodopsins[J]. Annual Review of Physical Chemistry,1990,41,683-733.
    [12]O. Beja, E. N. Spudich, J. L. Spudich, M. Leclerc and E. F. DeLong. Proteorhodopsin phototrophy in the ocean[J]. Nature,2001,411,786-789.
    [13]S. P. Balashov, E. S. Imasheva, V. A. Boichenko, J. Anton, J. M. Wang and J. K. Lanyi. Xanthorhodopsin:A proton pump with a light-harvesting carotenoid antenna[J]. Science,2005,309,2061-2064.
    [14]E. S. Imasheva, K. Shimono, S. P. Balashov, J. M. Wang, U. Zadok, M. Sheves, N. Kamo and J. K. Lanyi. Formation of a long-lived photoproduct with a deprotonated Schiff base in proteorhodopsin, and its enhancement by mutation of Asp227[J]. Biochemistry,2005,44,10828-10838.
    [15]M. Ming, M. Lu, S. P. Balashov, T. G. Ebrey, Q. G. Li and J. D. Ding. pH dependence of light-driven proton pumping by an archaerhodopsin from Tibet: Comparison with bacteriorhodopsin[J]. Biophysical Journal,2006,90, 3322-3332.
    [16]M. Ming, Y. Z. Wang, J. Wu, D. W. Ma, Q. G. Li and J. D. Ding. Triton X-100 can alter the temporal sequence of the light-driven proton pump of archaerhodopsin 4[J]. Febs Letters,2006,580,6749-6753.
    [17]K. Yoshimura and T. Kouyama. Structural role of bacterioruberin in the trimeric structure of archaerhodopsin-2[J]. Journal of Molecular Biology,2008,375, 1267-1281.
    [18]B. Xi, W. C. Tetley, D. L. Marcy, C. Zhong, G. Whited, R. R. Birge and J. A. Stuartt. Evaluation of blue and green absorbing proteorhodopsins as holographic materials [J]. Journal of Physical Chemistry B,2008,112, 2524-2532.
    [19]J. Wu, D. W. Ma, Y. Z. Wang, M. Ming, S. P. Balashov and J. D. Ding. Efficient Approach to Determine the pK(a) of the Proton Release Complex in the Photocycle of Retinal Proteins[J]. Journal of Physical Chemistry B,2009,113, 4482-4491.
    [20]R. A. Mathies, S. W. Lin, J. B. Ames and W. T. Pollard. From femtoseconds to biology-mechanism of bacteriorhodopsins light-driven proton pump[J]. Annual Review of Biophysics and Biophysical Chemistry,1991,20,491-518.
    [21]J. K. Lanyi. Mechanism of ion transport across membranes-Bacteriorhodopsin as a prototype for proton pumps[J]. Journal of Biological Chemistry,1997,272, 31209-31212.
    [22]M. D. E. Faris, D. Lacoste, J. Pecreaux, J. F. Joanny, J. Prost and P. Bassereau. Membrane Tension Lowering Induced by Protein Activity[J]. Physical Review Letters,2009,102,038102.
    [23]H. J. Choi and C. D. Montemagno. Artificial organelle:ATP synthesis from cellular mimetic polymersomes[J]. Nano Letters,2005,5,2538-2542.
    [24]L. Huang, M. Ming, J. Liu, J. Liu, Q. G. Li and J. D. Ding. Preparation of liposome containing bacteriorhodopsin with "natural" preferred orientation and detection of its transient photoresponse[J]. Acta Biochimica Et Biophysica Sinica,2003,35,391-395.
    [25]J. Wu, L. Huang, J. Liu, M. Ming, Q. G. Li and J. D. Ding. Directional self-assembly in archaerhodopsin-reconstituted phospholipid liposomes[J]. Chinese Journal Of Chemistry,2005,23,330-333.
    [26]A. Schonafinger, S. Muller, F. Noll and N. Hampp. Bioinspired nanoencapsulation of purple membranes[J]. Soft Matter,2008,4,1249-1254.
    [27]S. P. Balashov. Protonation reactions and their coupling in bacteriorhodopsin[J]. Biochimica Et Biophysica Acta-Bioenergetics,2000,1460,75-94.
    [28]R. H. Lozier, A. Xie, J. Hofrichter and G. M. Clore. Reversible Steps In The Bacteriorhodopsin Photocycle[J]. Proceedings of the National Academy of Sciences of the United States of America,1992,89,3610-3614.
    [29]T. Miyasaka and K. Koyama. Image Sensing And Processing By A Bacteriorhodopsin-Based Artificial Photoreceptor[J]. Applied Optics,1993,32, 6371-6379.
    [30]R. R. Birge, N. B. Gillespie, E. W. Izaguirre, A. Kusnetzow, A. F. Lawrence, D. Singh, Q. W. Song, E. Schmidt, J. A. Stuart, S. Seetharaman and K. J. Wise. Biomolecular electronics:Protein-based associative processors and volumetric memories[J]. Journal of Physical Chemistry B,1999,103,10746-10766.
    [31]N. Hampp. Bacteriorhodopsin as a photochromic retinal protein for optical memories[J]. Chemical Reviews,2000,100,1755-1776.
    [32]L. Wei, J. Luo, J. Zhu, M. Lu, Y. Y. Zhao, D. W. Ma and J. D. Ding. Nonlinear photoinduced anisotropy and modifiable optical image display in a bacteriorhodopsin/polymer composite film[J]. Applied Physics Letters,2007,90, 173902.
    [33]G Y. Chen, W. Q. Lu, X. X. Xu, J. G. Tian and C. P. Zhang. All-optical time-delay switch based on grating buildup time of two-wave mixing in a bacteriorhodopsin film[J]. Applied Optics,2009,48,5205-5211.
    [34]H. Otto, T. Marti, M. Holz, T. Mogi, M. Lindau, H. G. Khorana and M. P. Heyn. Aspartic acid-96 is the internal proton donor in the reprotonation of the Schiff base of bacteriorhodopsin[J]. Proceedings of the National Academy of Sciences of the United States of America,1989,86,9228-9232.
    [35]L. Zimanyi, Y. Cao, R. Needleman, M. Ottolenghi and J. K. Lanyi. Pathway Of Proton Uptake In The Bacteriorhodopsin Photocycle[J]. Biochemistry,1993,32, 7669-7678.
    [36]N. A. Dencher and M. P. Heyn. Formation and properties of bacteriorhodopsin monomers in the non-ionic detergents octyl-beta-D-glucoside and Triton X-100[J]. Febs Letters,1978,96,322-326.
    [37]K. Fukuda, A. Ikegami, A. Nasudakouyama and T. Kouyama. Effect Of Partial Delipidation Of Purple Membrane On The Photodynamics Of Bacteriorhodopsin [J]. Biochemistry,1990,29,1997-2002.
    [38]S. J. Milder, T. E. Thorgeirsson, L. J. W. Miercke, R. M. Stroud and D. S. Kliger. Effects of Detergent Environments on the Photocycle of Purified Monomeric Bacteriorhodopsin[J]. Biochemistry,1991,30,1751-1761.
    [39]E. H. L. Tan and R. R. Birge. Correlation between surfactant/micelle structure and the stability of bacteriorhodopsin in solution[J]. Biophysical Journal,1996, 70.2385-2395.
    [40]M. K. Joshi, S. Dracheva, A. K. Mukhopadhyay, S. Bose and R. W. Hendler. Importance of specific native lipids in controlling the photocycle of Bacteriorhodopsin[J].Biochemistry,1998,37,14463-14470.
    [41]C. D. Heyes and M. A. El-Sayed. Proton transfer reactions in native and delonized bacteriorhodopsin upon delipidation and monomerization[J]. Biophysical Journal,2003,85,426-434.
    [42]L. K. Chu and M. A. El-Sayed. Kinetics of the M-Intermediate in the Photocycle of Bacteriorhodopsin upon Chemical Modification with Surfactants[J]. Photochemistry and Photobiology,2010,86,316-323.
    [43]L. K. Chu and M. A. El-Sayed. Bacteriorhodopsin O-state Photocycle Kinetics: A Surfactant Study [J]. Photochemistry and Photobiology,2010,86,70-76.
    [44]P. J. Flory, Principles of Polymer Chemistry[M],15th edn., Cornell University, New York,1953.
    [45]A. Helenius and K. Simons. Solubilization Of Membranes By Detergents [J]. Biochimica Et Biophysica Acta,1975,415,29-79.
    [46]G. Wanka, H. Hoffmann and W. Ulbricht. Phase-Diagrams And Aggregation Behavior Of Poly(Oxyethylene)-Poly(Oxypropylene)-Poly(Oxyethylene) Triblock Copolymers In Aqueous-Solutions[J]. Macromolecules,1994,27, 4145-4159.
    [47]P. Alexandridis and T. A. Hatton. Poly(Ethylene Oxide)-Poly(Propylene Oxide)-Poly(Ethylene Oxide) Block-Copolymer Surfactants in Aqueous-Solutions and at Interfaces-Thermodynamics, Structure, Dynamics, and Modeling[J]. Colloids And Surfaces A-Physicochemical And Engineering Aspects,1995,96,1-46.
    [48]R. Govindjee, T. G. Ebrey and A. R Crofts. The quantum efficiency of proton pumping by the purple membrane of Halobacterium halobium[J]. Biophysical Journal,1980,30,231-242.
    [49]P. Alexandridis, J. F. Holzwarth and T. A. Hatton. Micellization of Poly(Ethylene Oxide)-Poly(Propylene Oxide)-Poly(Ethylene Oxide) Triblock Copolymers in Aqueous-Solutions-Thermodynamics of Copolymer Association[J]. Macromolecules,1994,27,2414-2425.
    [50]L. Yu, H. Zhang and J. D. Ding. A subtle end-group effect on macroscopic physical gelation of triblock copolymer aqueous solutions[J]. Angewandte Chemie-International Edition,2006,45,2232-2235.
    [51]G. T. Chang, L. Yu, Z. G. Yang and J. D. Ding. A delicate ionizable-group effect on self-assembly and thermogelling of amphiphilic block copolymers in water[J]. Polymer,2009,50,6111-6120.
    [52]L. Yu, Z. Zhang, H. Zhang and J. D. Ding. Mixing a Sol and a Precipitate of Block Copolymers with Different Block Ratios Leads to an Injectable Hydrogel[J].Biomacromolecules,2009,10,1547-1553.
    [53]N. A. Dencher and M. P. Heyn. Preparation And Properties Of Monomeric Bacteriorhodopsin[J]. Methods In Enzymology,1982,88,5-10.
    [54]M. Tsuda, R. Govindjee and T. G. Ebrey. Effects Of Pressure And Temperature On The M412 Intermediate Of The Bacteriorhodopsin Photocycle Implications For The Phase-Transition Of The Purple Membrane [J]. Biophysical Journal,1983,44,249-254.
    [55]S. L. Nolan, R. J. Phillips, P. M. Cotts and S. R. Dungan. Light scattering study on the effect of polymer composition on the structural properties of PEO-PPO-PEO micelles[J]. Journal of Colloid and Interface Science,1997, 191,291-302.
    [56]J. N. Umbreit and J. L. Strominger. Relation Of Detergent Hlb Number To Solubilization And Stabilization Of D-Alanine Carboxypeptidase From Bacillus-Subtilis Membranes[J]. Proceedings of the National Academy of Sciences of the United States of America,1973,70,2997-3001.
    [57]R. Korenstein and B. Hess. Hydration Effects On Photocycle Of Bacteriorhodopsin In Thin-Layers Of Purple Membrane[J]. Nature,1977,270, 184-186.
    [58]B. Liang, B. F. Li and L. Jiang. Study on the long lifetime of the M state in chemically modified bacteriorhodopsin film[J]. Chemistry Of Materials,2001, 13,2746-2748.
    [59]B. Liang, B. F. Li, J. P. Zhang and L. Jiang. Prolonged lifetime of the M intermediate in D96N-mutant bacteriorhodopsin films enhanced by diaza-15-crown-5[J]. New Journal Of Chemistry,2002,26,1049-1053.
    [60]J. Liu, M. Ming, J. Liu, L. Huang, Q. G. Li and J. D. Ding. Preparation and study of bacteriorhodopsin/poly (vinyl alcohol) composite film[J]. Acta Chimica Sinica,2002,60,2209-2213.
    [61]T. G. Ebrey, B. Becher, B. Mao and P. Kilbride. Exciton interactions and chromophore orientation in the purple membrane [J]. Journal of Molecular Biology.1971,112,377-397.
    [62]M. H. Li and P. Keller. Stimuli-responsive polymer vesicles[J]. Soft Matter, 2009,5,927-937.
    [63]S. Belegrinou, J. Dorn, M. Kreiter, K. Kita-Tokarczyk, E. K. Sinner and W. Meier. Biomimetic supported membranes from amphiphilic block copolymers[J]. Soft Matter,2010,6,179-186.
    [64]M. Johnsson, M. Silvander, G. Karlsson and K. Edwards. Effect of PEO-PPO-PEO triblock copolymers on structure and stability of phosphatidylcholine liposomes[J]. Langmuir,1999,15,6314-6325.
    [65]M. Johnsson, N. Bergstrand, K. Edwards and J. J. R. Stalgren. Adsorption of a PEO-PPO-PEO triblock copolymer on small unilamellar vesicles:Equilibrium and kinetic properties and correlation with membrane permeability [J]. Langmuir,2001,17,3902-3911.
    [66]B. Lee and M. A. Firestone. Electron density mapping of triblock copolymers associated with model biomembranes:Insights into conformational states and effect on bilayer structure[J]. Biomacromolecules,2008,9,1541-1550.
    [67]K. Kostarelos, M. Kipps, T. F. Tadros and P. F. Luckham. Molecular structure and conformation in phospholipid vesicles sterically stabilized by (tri)-block copolymers investigated by multi-nuclear magnetic resonance techniques[J]. Colloids And Surfaces A-Physicochemical And Engineering Aspects,1998,136, 1-9.
    [68]T. Demina, I. Grozdova, O. Krylova, A. Zhirnov, V. Istratov, H. Frey, H. Kautz and N. Melik-Nubarov. Relationship between the structure of amphiphilic copolymers and their ability to disturb lipid bilayers[J]. Biochemistry,2005,44, 4042-4054.
    [69]G. H. Wu and K. Y. C. Lee. Interaction of Poloxamers with Liposomes:An Isothermal Titration Calorimetry Study[J]. Journal of Physical Chemistry B, 2009,113,15522-15531.
    [70]G. H. Wu and K. Y. C. Lee. Effects of Poloxamer 188 on Phospholipid Monolayer Morphology:An Atomic Force Microscopy Study[J]. Langmuir, 2009,25,2133-2139.
    [71]G. H. Wu, H. A. Khant, W. Chiu and K. Y. C. Lee. Effects of bilayer phases on phospholipid-poloxamer interactions [J]. Soft Matter,2009,5,1496-1503.
    [72]T. Sasaki, M. Sonoyama, M. Demura and S. Mitaku. Photobleaching of bacteriorhodopsin solubilized with Triton X-100[J]. Photochemistry and Photobiology,2005,81,1131-1137.
    [73]N. A. Dencher, H. J. Sass and G. Buldt. Water and bacteriorhodopsin:structure, dynamics, and function[J]. Biochimica Et Biophysica Acta-Bioenergetics,2000, 1460,192-203.
    [74]K. Voitchovsky, S. A. Contera and J. F. Ryan. Lateral coupling and cooperative dynamics in the function of the native membrane protein bacteriorhodopsin[J]. Soft Matter,2009,5,4899-4904.
    [75]A. K. Mukhopadhyay, S. Bose and R. W. Hendler. Membrane-mediated control of the bacteriorhodopsin photocycle[J]. Biochemistry,1994,33,10889-10895.
    [76]S. M. Barnett, S. Dracheva, R. W. Hendler and I. W. Levin. Lipid-induced conformational changes of an integral membrane protein:An infrared spectroscopic study of the effects of triton X-100 treatment on the purple membrane of Halobacterium halobium ET1001[J]. Biochemistry,1996,35, 4558-4567.
    [77]A. L. Drachev, L. A. Drachev, A. D. Kaulen and L. V. Khitrina. The Action Of Lanthanum Ions And Formaldehyde On The Proton-Pumping Function Of Bacteriorhodopsin[J]. European Journal of Biochemistry,1984,138,349-356.
    [78]M. Yoshida, K. Ohno and Y. Takeuchi. Altered Activity Of Bacteriorhodopsin In High-Concentrations Of Guanidine-Hydrochloride[J]. Journal of Biochemistry, 1980,87.491-495.
    [79]Y. Cao, G. Varo, A. L. Klinger, D. M. Czajkowsky, M. S. Braiman, R. Needleman and J. K. Lanyi. Proton-Transfer From Asp-96 To The Bacteriorhodopsin Schiff-Base Is Caused By A Decrease Of The Pk(A) Of Asp-96 Which Follows A Protein Backbone Conformational Change [J]. Biochemistry,1993,32,1981-1990.
    [80]R. Simon-Vazquez, T. Lazarova, A. Peralvarez-Marin, J. L. Bourdelande and E. Padros. Cross-Linking of Transmembrane Helices Reveals a Rigid-Body Mechanism in Bacteriorhodopsin Transport[J]. Angewandte Chemie-International Edition,2009,48,8523-8525.
    [81]S. Subramaniam, M. Gerstein, D. Oesterhelt and R. Henderson. Electron-Diffraction Analysis Of Structural-Changes In The Photocycle Of Bacteriorhodopsin[J].EMBO Journal,1993,12,1-8.
    [82]P. A. Baldwin and W. L. Hubbell. Effects Of Lipid Environment On The Light-Induced Conformational-Changes Of Rhodopsin.2. Roles Of Lipid Chain-Length, Unsaturation, And Phase State[J]. Biochemistry,1985,24, 2633-2639.
    [83]S. Uchiyama, K. Iwai and A. P. de Silva. Multiplexing sensory molecules map protons near micellar membranes[J]. Angewandte Chemie-International Edition, 2008,47,4667-4669.
    [1]D. Oesterhelt and W. Stoeckenius. Rhodopsin-like protein from the purple membrane of Halobacterium halobium[J]. Nature:New biology,1971,233, 149-152.
    [2]Y. Mukohata, K. Ihara, K. Uegaki, Y. Miyashita and Y. Sugiyama. Australian halobacteria and their retinal-protein ion pumps[J]. Photochemistry and Photobiology,1991,54,1039-1045.
    [3]N. Enamil, K. Yoshimura, M. Murakami, H. Okumura, K. Hara and T. Kouyama. Crystal structures of archaerhodopsin-1 and-2:Common structural motif in archaeal light-driven proton pumps[J]. Journal of Molecular Biology,2006,358, 675-685.
    [4]M. Tateno, K. Ihara and Y. Mukohata. The novel ion-pump rhodopsins from Haloarcula form a family independent from both the bacteriorhodopsin and archaerhodopsin families/tribes[J]. Archives of Biochemistry and Biophysics, 1994,315,127-132.
    [5]A. Matsuno-Yagi and Y. Mukohata. Two possible roles of bacteriorhodopsin; a comparative study of strains of Halobacterium halobium differing in pigmentation[J]. Biochem..Biophys. Res. Commun.,1977,78,237-243.
    [6]R. A. Bogomolni and J. L. Spudich. Identification of third rhodopsin-like pigment in phototactic Halobacterium halobium[J].Proc. Natl. Acad. Sci. USA., 1982,79,6250-6254.
    [7]O. S. Mironova, R. G. Efremova, B. Person, J. Heberle, I. L. Budyak, G. Buldt and R. Schlesinger. Functional characterization of sensory rhodopsin II from Halobacterium salinarum expressed in Escherichia coli[J]. Febs Letters,2005, 579,3147-3151.
    [8]S. P. Balashov, E. S. Imasheva, V. A. Boichenko, J. Anton, J. M. Wang and J. K. Lanyi. Xanthorhodopsin:A proton pump with a light-harvesting carotenoid antenna[J]. Science,2005,309,2061-2064.
    [9]S. P. Balashov, E. S. Imasheva and J. K. Lanyi. Induced chirality of the light-harvesting carotenoid salinixanthin and its interaction with the retinal of xanthorhodopsin[J]. Biochemistry,2006,45,10998-11004.
    [10]Y. Mukohata. Comparative-studies on ion pumps of the bacterial rhodopsin family[J]. Biophysical Chemistry,1994,50,191-201.
    [11]K. Ihara, T. Umemura, I. Katagiri, T. Kitajima-Ihara, Y. Sugiyama, Y. Kimura and Y. Mukohata. Evolution of the archaeal rhodopsins:Evolution rate changes by gene duplication and functional differentiation[J]. Journal of Molecular Biology,1999,285,163-174.
    [12]L. S. Brown. Proton transport mechanism of bacteriorhodopsin as revealed by site-specific mutagenesis and protein sequence variability [J]. Biochemistry-Moscow,2001,66,1249-1255.
    [13]Q. G. Li, Q. G. Sun, W. Zhao, H. Wang and D. Q. Xu. Newly isolated archaerhodopsin from a strain of Chinese halobacteria and its proton pumping behavior[J]. Biochimica Et Biophysica Acta,2000,1466,260-266.
    [14]M. Ming, M. Lu, S. P. Balashov, T. G. Ebrey, Q. G. Li and J. D. Ding. pH dependence of light-driven proton pumping by an archaerhodopsin from Tibet: Comparison with bacteriorhodopsin[J]. Biophysical Journal,2006,90, 3322-3332.
    [15]J. Wu, L. Huang, J. Liu, M. Ming, Q. G. Li and J. D. Ding. Directional self-assembly in archaerhodopsin-reconstituted phospholipid liposomes[J]. Chinese Journal Of Chemistry,2005,23,330-333.
    [16]M. Ming, Y. Z. Wang, J. Wu, D. W. Ma, Q. G. Li and J. D. Ding. Triton X-100 can alter the temporal sequence of the light-driven proton pump of archaerhodopsin 4[J]. Febs Letters,2006,580,6749-6753.
    [17]J. K. Lanyi. Bacteriorhodopsin[J]. Annual Review of Physiology,2004,66, 665-688.
    [18]H. Wang, S. X. Zhan, Q. G. Sun, D. Q. Xu, W. Zhao, W. D. Huang and Q. G. Li. Primary structure of helix C to helix G of a new retinal protein in H.sp.xz515[J]. Chinese Science Bulletin,2000,45,1108-1113.
    [19]Y. R. Wang, J. Hong, M. Ming, J. D. Ding, Q. G. Li and W. D. Huang. Rapid cloning of an archaerhodopsin gene from Halobacterium species xz515 by LPA[J]. Journal of Fudan University,2003,42,577-583.
    [20]L. Tang, Q. A. Sun, Q. G. Li, Y. B. Huang, Q. Q. Wei, Y. Zhang, J. Hu, Z. H. Zhang, M. Q. Li and F. J. Yang. Imaging bacteriorhodopsin-like molecules of claret-membranes from Tibet halobacteria xz515 by atomic force microscope [J]. Chinese Science Bulletin,2001,46,1897-1900.
    [21]B. M. Becher and J. Y. Cassim. Improved isolation procedures for the purple membrane of Halobacterium halobium[J].Prep. Biochem.,1975,5,161-178.
    [22]P. Alexandridis and T. A. Hatton. Poly(Ethylene Oxide)-Poly(Propylene Oxide)-Poly(Ethylene Oxide) Block-Copolymer Surfactants in Aqueous-Solutions and at Interfaces-Thermodynamics, Structure, Dynamics, and Modeling[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects,1995,96,1-46.
    [23]J. N. Umbreit and J. L. Strominger. Relation Of Detergent Hlb Number To Solubilization And Stabilization Of D-Alanine Carboxypeptidase From Bacillus-Subtilis Membranes[J]. Proceedings of the National Academy of Sciences of the United States of America,1973,70,2997-3001.
    [24]P. Alexandridis, J. F. Holzwarth and T. A. Hatton. Micellization of Poly(Ethylene Oxide)-Poly(Propylene Oxide)-Poly(Ethylene Oxide) Triblock Copolymers in Aqueous-Solutions-Thermodynamics of Copolymer Association[J]. Macromolecules,1994,27,2414-2425.
    [25]J. Wu, D. W. Ma, Y. Z. Wang, M. Ming, S. P. Balashov and J. D. Ding. Efficient Approach to Determine the pK(a) of the Proton Release Complex in the Photocycle of Retinal Proteins[J]. Journal of Physical Chemistry B,2009,113, 4482-4491.
    [26]Q. G. Li, H. Wang and D. J. Song. The isolation and purification of archaerhodopsin from H.Sp.xz515[J]. Acta Biochimica Et Biophysica Sinica, 1997,29,517-520.
    [27]S. C. Kushwaha, M. Kates and W. G. Martin. Characterization and composition of the purple and red membrane from Halobacterium cutirubrum[J].Can. J. Biochem.,1975,53,284-292.
    [28]J. P. Cartailler and H. Luecke. X-ray crystallographic analysis of lipid-protein interactions in the bacteriorhodopsin purple membrane[J]. Annual Review of Biophysics and Biomolecular Structure,2003,32,285-310.
    [29]R. W. Hendler, S. M. Barnett, S. Dracheva, S. Bose and I. W. Levin. Purple membrane lipid control of bacteriorhodopsin conformational flexibility and photocycle activity-An infrared spectroscopic study [J]. European Journal of Biochemistry,2003,270,1920-1925.
    [30]R. W. Hendler and S. Dracheva. Importance of lipids for bacteriorhodopsin structure, photocycle, and function[J]. Biochemistry-Moscow,2001,66, 1311-1314.
    [31]A. A. Seddon, P. Curnow and P. J. Booth. Membrane proteins, lipids and detergents:not just a soap opera[J]. Biochimica Et Biophysica Acta-Biomembranes,2004,1666,105-117.
    [32]A. Watts. Bacteriorhodopsin-The mechanism of 2d-array formation and the structure of retinal in the protein[J]. Biophysical Chemistry,1995,55,137-151.
    [33]P. K. Fyfe, K. E. McAuley, A. W. Roszak, N. W. Isaacs, R. J. Cogdell and M. R. Jones. Probing the interface between membrane proteins and membrane lipids by X-ray crystallography [J]. Trends In Biochemical Sciences,2001,26,106-112.
    [34]J. Teissie, M. Prats, A. Lemassu, L. C. Stewart and M. Kates. Lateral proton conduction in monolayers of phospholipids from extreme halophiles[J]. Biochemistry,1990,29,59-65.
    [35]M. P. Krebs and T. A. Isenbarger. Structural determinants of purple membrane assembly[J]. Biochimica Et Biophysica Acta-Bioenergetics,2000,1460,15-26.
    [1]R. R. Birge. Photophysics and Molecular Electronic Applications of the Rhodopsins[J]. Annual Review of Physical Chemistry,1990,41,683-733.
    [2]H. O'Neill and E. Greenbaum. Spectroscopy and photochemistry of spinach Photosystem I entrapped and stabilized in a hybrid organosilicate glass[J]. Chemistry Of Materials,2005,17,2654-2661.
    [3]A. Schonafinger, S. Muller, F. Noll and N. Hampp. Bioinspired nanoencapsulation of purple membranes[J]. Soft Matter,2008,4,1249-1254.
    [4]R. R. Birge, N. B. Gillespie, E. W. Izaguirre, A. Kusnetzow, A. F. Lawrence, D. Singh, Q. W. Song, E. Schmidt, J. A. Stuart, S. Seetharaman and K. J. Wise. Biomolecular electronics:Protein-based associative processors and volumetric memories[J]. Journal of Physical Chemistry B,1999,103,10746-10766.
    [5]N. Hampp. Bacteriorhodopsin as a photochromic retinal protein for optical memories[J]. Chemical Reviews,2000,100,1755-1776.
    [6]L. Wei, J. Luo, J. Zhu, M. Lu, Y. Y. Zhao, D. W. Ma and J. D. Ding. Nonlinear photoinduced anisotropy and modifiable optical image display in a bacteriorhodopsin/polymer composite film[J]. Applied Physics Letters,2007,90.
    [7]H. J. Choi and C. D. Montemagno. Artificial organelle:ATP synthesis from cellular mimetic polymersomes[J]. Nano Letters,2005,5,2538-2542.
    [8]M. D. E. Faris, D. Lacoste, J. Pecreaux, J. F. Joanny, J. Prost and P. Bassereau. Membrane Tension Lowering Induced by Protein Activity[J]. Physical Review Letters,2009,102,038102..
    [9]L. Huang, M. Ming, J. Liu, J. Liu, Q. G. Li and J. D. Ding. Preparation of liposome containing bacteriorhodopsin with "natural" preferred orientation and detection of its transient photoresponse[J]. Acta Biochimica Et Biophysica Sinica, 2003,35,391-395.
    [10]J. Wu, L. Huang, J. Liu, M. Ming, Q. G. Li and J. D. Ding. Directional self-assembly in archaerhodopsin-reconstituted phospholipid liposomes[J]. Chinese Journal Of Chemistry,2005,23,330-333.
    [11]D. Oesterhelt and W. Stoeckenius. Rhodopsin-like protein from the purple membrane of Halobacterium halobium[J]. Nature:New biology,1971,233, 149-152.
    [12]O. Beja, E. N. Spudich, J. L. Spudich, M. Leclerc and E. F. DeLong. Proteorhodopsin phototrophy in the ocean[J]. Nature,2001,411,786-789.
    [13]E. S. Imasheva, K. Shimono, S. P. Balashov, J. M. Wang, U. Zadok, M. Sheves, N. Kamo and J. K. Lanyi. Formation of a long-lived photoproduct with a deprotonated Schiff base in proteorhodopsin, and its enhancement by mutation of Asp227[J]. Biochemistry,2005,44,10828-10838.
    [14]B. Xi, W. C. Tetley, D. L. Marcy, C. Zhong, G. Whited, R. R. Birge and J. A. Stuartt. Evaluation of blue and green absorbing proteorhodopsins as holographic materials[J]. Journal of Physical Chemistry B,2008,112,2524-2532.
    [15]B. Schobert and J. K. Lanyi. Halorhodopsin Is A Light-Driven Chloride Pump[J]. Journal of Biological Chemistry,1982,257,306-313.
    [16]S. P. Balashov, E. S. Imasheva, V. A. Boichenko, J. Anton, J. M. Wang and J. K. Lanyi. Xanthorhodopsin:A proton pump with a light-harvesting carotenoid antenna[J]. Science,2005,309,2061-2064.
    [17]M. Ming, M. Lu, S. P. Balashov, T. G. Ebrey, Q. G. Li and J. D. Ding. pH dependence of light-driven proton pumping by an archaerhodopsin from Tibet: Comparison with bacteriorhodopsin[J]. Biophysical Journal,2006,90, 3322-3332.
    [18]M. Ming, Y. Z. Wang, J. Wu, D. W. Ma, Q. G. Li and J. D. Ding. Triton X-100 can alter the temporal sequence of the light-driven proton pump of archaerhodopsin 4[J]. Febs Letters,2006,580,6749-6753.
    [19]K. Yoshimura and T. Kouyama. Structural role of bacterioruberin in the trimeric structure of archaerhodopsin-2[J]. Journal of Molecular Biology,2008,375, 1267-1281.
    [20]S. P. Balashov. Protonation reactions and their coupling in bacteriorhodopsin[J]. Biochimica Et Biophysica Acta-Bioenergetics,2000,1460,75-94.
    [21]J. K. Lanyi. Bacteriorhodopsin[J]. Annual Review of Physiology,2004,66, 665-688.
    [22]J. Wu, D. W. Ma, Y. Z. Wang, M. Ming, S. P. Balashov and J. D. Ding. Efficient Approach to Determine the pK(a) of the Proton Release Complex in the Photocycle of Retinal Proteins[J]. Journal of Physical Chemistry B,2009,113, 4482-4491.
    [23]B. Liang, B. F. Li and L. Jiang. Study on the long lifetime of the M state in chemically modified bacteriorhodopsin film[J]. Chemistry Of Materials,2001, 13,2746-2748.
    [24]J. Liu, M. Ming, J. Liu, L. Huang, Q. G. Li and J. D. Ding. Preparation and study of bacteriorhodopsin/poly (vinyl alcohol) composite film[J]. Acta Chimica Sinica, 2002,60,2209-2213.
    [25]H. Otto, T. Marti, M. Holz, T. Mogi, M. Lindau, H. G. Khorana and M. P. Heyn. Aspartic acid-96 is the internal proton donor in the reprotonation of the Schiff base of bacteriorhodopsin[J]. Proceedings of the National Academy of Sciences of the United States of America,1989,86,9228-9232.
    [26]L. Zimanyi, Y. Cao, M. Chang, B. F. Ni, R. Needleman and J. K. Lanyi. The 2 Consecutive M-Substates In The Photocycle Of Bacteriorhodopsin Are Affected Specifically By The D85n And D96n Residue Replacements [J]. Photochemistry and Photobiology,1992,56,1049-1055.
    [27]A. N. Radionov and A. D. Kaulen. Inhibition of the M1->M2 (M-closed->M-open) transition in the D96N mutant photocycle and its relation to the corresponding transition in wild-type bacteriorhodopsin[J]. Febs Letters, 1997,409,137-140.
    [28]L. Zimanyi, A. Kulcsar, J. K. Lanyi, D. F. Sears and J. Saltiel. Singular value decomposition with self-modeling applied to determine bacteriorhodopsin intermediate spectra:Analysis of simulated data[J]. Proceedings of the National Academy of Sciences of the United States of America,1999,96,4408-4413.
    [29]A. Seitz and N. Hampp. Kinetic optimization of bacteriorhodopsin films for holographic interferometry[J]. Journal of Physical Chemistry B,2000,104, 7183-7192.
    [30]A. Miller; id D. Oesterhelt. Kinetic optimization of bacteriorhodopsin by aspartic acid-96 as an internal proton donor[J]. Biochimica Et Biophysica Acta, 1990,1020,57-64.
    [31]S. G. Wu, L. M. Ellerby, J. S. Cohan, B. Dunn, M. A. Elsayed, J. S. Valentine and J. I. Zink. Bacteriorhodopsin encapsulated in transparent sol-gel glass-a new biomaterial[J]. Chemistry Of Materials,1993,5,115-120.
    [32]B. Liang, B. F. Li, J. P. Zhang and L. Jiang. Prolonged lifetime of the M intermediate in D96N-mutant bacteriorhodopsin films enhanced by diaza-15-crown-5[J]. New Journal Of Chemistry,2002,26,1049-1053.
    [33]J. G. Sun, S. V. Graeter, L. Yu, S. F. Duan, J. P. Spatz and J. D. Ding. Technique of Surface Modification of a Cell-Adhesion-Resistant Hydrogel by a Cell-Adhesion-Available Inorganic Microarray[J]. Biomacromolecules,2008,9, 2569-2572.
    [34]A. Biesso, W. Qian, X. H. Huang and M. A. El-Sayed. Gold Nanoparticles Surface Plasmon Field Effects on the Proton Pump Process of the Bacteriorhodopsin Photosynthesis[J]. Journal Of The American Chemical Society,2009,131,2442-2443.
    [35]M. Nakasako, M. Kataoka and F. Tokunaga. Arginine Remarkably Prolongs The Lifetime Of The M-Intermediate In The Bacteriorhodopsin Photocycle At Room-Temperature [J]. Febs Letters,1989,254,211-214.
    [36]S. J. Milder, T. E. Thorgeirsson, L. J. W. Miercke, R. M. Stroud and D. S. Kliger. Effects of Detergent Environments on the Photocycle of Purified Monomeric Bacteriorhodopsin[J]. Biochemistry,1991,30,1751-1761.
    [37]K. Fukuda, A. Ikegami, A. Nasudakouyama and T. Kouyama. Effect Of Partial Delipidation Of Purple Membrane On The Photodynamics Of Bacteriorhodopsin[J]. Biochemistry,1990,29,1997-2002.
    [38]R. Korenstein and B. Hess. Hydration Effects On Photocycle Of Bacteriorhodopsin In Thin-Layers Of Purple Membrane [J]. Nature.1977,270, 184-186.
    [39]L. M. Shamansky, K. M. Luong, D. Han and E. L. Chronister. Photoinduced kinetics of bacteriorhodopsin in a dried xerogel glass[J]. Biosensors & Bioelectronics,2002,17,227-231.
    [40]V. Kundeti, S. Rajasekaran and R. R. Birge,2009 IEEE Congress on Evolutionary Computation[C],2009,1585-1590.
    [1]G. Zhou, Y. X. Cheng, L. X. Wang, X. B. Jing and F. S. Wang. Novel polyphenylenes containing phenol-substituted oxadiazole moieties as fluorescent chemosensors for fluoride ion[J]. Macromolecules,2005,38,2148-2153.
    [2]G. Zhou, G. Qian, L. Ma, Y. X. Cheng, Z. Y. Xie, L. X. Wang, X. B. Jing and F. S. Wang. Polyfluorenes with phosphonate groups in the side chains as chemosensors and electroluminescent materials[J]. Macromolecules,2005,38, 5416-5424.
    [3]Y. Wang, H. Z. Chen and M. Wang. Synthesis of ester substituted copper phthalocyanines by phase transfer catalysis reaction and their photoconductivity[J]. Chemical Journal of Chinese Universities-Chinese,2005, 26,146-148.
    [4]Q. Hou, Y. H. Niu, W. Yang, R. Q. Yang, M. Yuan and Y. Cao. Synthesis and electroluminescent properties of copolymer of fluorene and thiophene[J]. Acta Polymerica Sinica,2003,161-166.
    [5]J. H. Zhang, X. B. Ding, Y. X. Peng and M. Wang. Magnetic polymer microsphere with photoconductivity-Styrene copolymerized with reactive Fe-phthalocyanine[J]. Acta Polymerica Sinica,2002,277-281.
    [6]Q. J. Wu, L. X. Wu, Z. N. Qi and F. S. Wang. The study of fractal structure in highly sulfonated polyaniline[J]. Acta Polymerica Sinica,2000,172-175.
    [7]N. Hampp. Bacteriorhodopsin as a photochromic retinal protein for optical memories[J]. Chemical Reviews,2000,100,1755-1776.
    [8]K. S. Hu, Y. Sun, D. L. Chen and Y. N. Zhang. The effect of lipid environment in purple membrane on bacteriorhodopsin[J]. Journal Of Photochemistry And Photobiology B-Biology,2000,58,163-169.
    [9]B. Liang, B. F. Li and L. Jiang. Study on the long lifetime of the M state in chemically modified bacteriorhodopsin film[J]. Chemistry Of Materials,2001, 13,2746-2748.
    [10]B. L. Yao, Y. L. Wang, K. S. Hu, D. L. Chen, Y. Zheng and M. Lei. Characteristics and the mechanism of bacteriorhodopsin photoelectric response[J]. Acta Biochimica Et Biophysica Sinica,2001,33,443-446.
    [11]C. P. Zhang, G. Y. Chen, X. Wei, Z. X. Guo, J. G. Tian, X. Y. Wang, G. Y Zhang and Q. W. Song. Optical novelty filter using bacteriorhodopsin film[J]. Optics Letters,2005,30,81-83.
    [12]G. Y. Zhang, B. F. Li and J. P. Zhang. The photochemical conversion in the chemically modified bacteriorhodopsin using polyvinyl alcohol as the protectant[J]. Colloids And Surfaces A-Physicochemical And Engineering Aspects,2005,257-58,473-477.
    [13]Y. Mukohata. Comparative-studies on ion pumps of the bacterial rhodopsin family[J]. Biophysical Chemistry,1994,50,191-201.
    [14]Y. Mukohata, Y Sugiyama, K. Ihara and M. Yoshida. An Australian halobacterium contains a novel proton pump retinal protein:archaerhodopsin[J]. Biochem. Biophys. Res. Commun.,1988,151,1339-1345.
    [15]K. Ihara, T. Umemura, I. Katagiri, T. Kitajima-Ihara, Y. Sugiyama, Y. Kimura and Y Mukohata. Evolution of the archaeal rhodopsins:Evolution rate changes by gene duplication and functional differentiation[J]. Journal of Molecular Biology,1999,285,163-174.
    [16]L. S. Brown. Proton transport mechanism of bacteriorhodopsin as revealed by site-specific mutagenesis and protein sequence variability[J]. Biochemistry-Moscow,2001,66,1249-1255.
    [17]Q. G. Li, Q. G. Sun, W. Zhao, H. Wang and D. Q. Xu. Newly isolated archaerhodopsin from a strain of Chinese halobacteria and its proton pumping behavior[J]. Biochimica Et Biophysica Acta,2000,1466,260-266.
    [18]M. Ming, M. Lu, S. P. Balashov, T. G Ebrey, Q. G. Li and J. D. Ding. pH dependence of light-driven proton pumping by an archaerhodopsin from Tibet: Comparison with bacteriorhodopsin[J]. Biophysical Journal,2006,90, 3322-3332.
    [19]J. Wu, D. W. Ma, Y. Z. Wang, M. Ming. S. P. Balashov and J. D. Ding. Efficient Approach to Determine the pK(a) of the Proton Release Complex in the Photocycle of Retinal Proteins[J]. Journal of Physical Chemistry B,2009,113, 4482-4491.
    [20]J. Wu, L. Huang, J. Liu, M. Ming, Q. G. Li and J. D. Ding. Directional self-assembly in archaerhodopsin-reconstituted pnospholipid liposomes[J]. Chinese Journal Of Chemistry,2005,23,330-333.
    [21]M. Ming, Y. Z. Wang, J. Wu, D. W. Ma, Q. G. Li and J. D. Ding. Triton X-100 can alter the temporal sequence of the light-driven proton pump of archaerhodopsin 4[J]. Febs Letters,2006,580,6749-6753.
    [22]B. Ni, M. Chang, A. Duschl, J. Lanyi and R. Needleman. An efficient system for the synthesis of bacteriorhodopsin in halobacterium-halobium[J]. Gene,1990,90, 169-172.
    [23]H. Otto, T. Marti, M. Holz, T. Mogi, M. Lindau, H. G. Khorana and M. P. Heyn. Aspartic acid-96 is the internal proton donor in the reprotonation of the Schiff base of bacteriorhodopsin[J]. Proceedings of the National Academy of Sciences of the United States of America,1989,86,9228-9232.
    [24]J. Liu, M. Ming, J. Liu, L. Huang, Q. G. Li and J. D. Ding. Preparation and study of bacteriorhodopsin/poly (vinyl alcohol) composite film[J]. Acta Chimica Sinica, 2002,60,2209-2213.
    [25]D. Oesterhelt and W. Stoeckenius. Rhodopsin-like protein from the purple membrane of Halobacterium halobium[J]. Nature:New biology,1971,233, 149-152.
    [26]J. K. Lanyi. Bacteriorhodopsin [J]. Annual Review of Physiology,2004,66, 665-688.
    [27]S. P. Balashov. Protonation reactions and their coupling in bacteriorhodopsin[J]. Biochimica Et Biophysica Acta-Bioenergetics,2000,1460,75-94.
    [28]Q. G. Li, H. Wang and D. J. Song. The isolation and purification of archaerhodopsin from H.Sp.xz515[J]. Acta Biochimica Et Biophysica Sinica, 1997,29,517-520.
    [29]R. R. Birge, N. B. Gillespie, E. W. Izaguirre, A. Kusnetzow, A. F. Lawrence, D. Singh, Q. W. Song, E. Schmidt, J. A. Stuart, S. Seetharaman and K. J. Wise. Biomolecular electronics:Protein-based associative processors and volumetric memories[J]. Journal of Physical Chemistry B,1999,103,10746-10766.
    [30]J. K. Lanyi. Bacteriorhodopsin[J]. Biochimica Et Biophysica Acta-Bioenergetics, 2000,1460,1-3.
    [31]Y. C. Zhao, J. Hong, D. W. Ma, J. Wu, Q. G. Li, W. D. Huang, J. D. Ding. Preparation of a gene-engineering mutant of bacteriorhodopsin BR-D96V and corresponding poly(vinyl alcohol)-based functional composite films[J]. Chinese Science Bulletin,2010,55, doi:10.1007/s11434-010-3217-1.
    [32]L. Wei, J. Luo, J. Zhu, M. Lu, Y. Y. Zhao, D. W. Ma and J. D. Ding. Nonlinear photoinduced anisotropy and modifiable optical image display in a bacteriorhodopsin/polymer composite film[J]. Applied Physics Letters,2007, 90(17).173902.
    [33]X. L.Teng, M. Lu, Y. Y. Zhao, D. W. Ma, J. D. Ding, W. D. Huang. Photoinduced nonlinear refraction in a polymeric film encapsulating a bacteriorhodopsin mutant. Applied Physics Letters,2010,97(7),071109.
    [1]B. L. Yao, M. Lei, L. Y. Ren, N. Menke, Y. L. Wang, T. Fischer and N. Hampp. Polarization multiplexed write-once-read-many optical data storage in bacteriorhodopsin films[J]. Optics Letters,2005,30,3060-3062.
    [2]H. O'Neill and E. Greenbaum. Spectroscopy and photochemistry of spinach Photosystem I entrapped and stabilized in a hybrid organosilicate glass [J]. Chemistry Of Materials,2005,17,2654-2661.
    [3]B. Liang, B. F. Li, J. P. Zhang and L. Jiang. Prolonged lifetime of the M intermediate in D96N-mutant bacteriorhodopsin films enhanced by diaza-15-crown-5[J]. New Journal Of Chemistiy,2002,26,1049-1053.
    [4]J. Liu, M. Ming, J. Liu, L. Huang, Q. G. Li and J. D. Ding. Preparation and study of bacteriorhodopsin/poly (vinyl alcohol) composite film[J]. Acta Chimica Sinica, 2002,60,2209-2213.
    [5]D. Oesterhelt and W. Stoeckenius. Rhodopsin-like protein from the purple membrane of Halobacterium halobium[J]. Nature:New biology,1971,233, 149-152.
    [6]R. H. Lozier, R. A. Bogomolni and W. Stoeckenius. Bacteriorhodopsin:a light-driven proton pump in Halobacterium halobium[J].Biophysical Journal, 1975,15,955-963.
    [7]J. K. Lanyi. Bacteriorhodopsin[J]. Biochimica Et Biophysica Acta-Bioenergetics, 2000,1460,1-3.
    [8]Q.. G. Li, Q. G. Sun, W. Zhao, H. Wang and D. Q. Xu. Newly isolated archaerhodopsin from a strain of Chinese halobacteria and its proton pumping behavior[J]. Biochimica Et Biophysica Acta,2000,1466,260-266.
    [9]M. Ming, M. Lu, S. P. Balashov, T. G. Ebrey, Q. G. Li and J. D. Ding. pH dependence of the light-driven proton pumping by an archaerhodopsin from Tibet:comparison with bacteriorhodopsin[J]. Biophysical Journal,2006,90, 3322-3332.
    [10]Z. P. Chen, A. Lewis, H. Y. Takei and I. Nebenzahl. Bacteriorhodopsin Oriented in Poly vinyl-Alcohol Films as an Erasable Optical Storage Medium[J]. Applied Optics,1991,30,5188-5196.
    [11]S. G. Wu, L. M. Ellerby, J. S. Cohan, B. Dunn, M. A. Elsayed, J. S. Valentine and J. I. Zink. Bacteriorhodopsin encapsulated in transparent sol-gel glass-a new biomaterial[J]. Chemistry Of Materials,1993,5,115-120.
    [12]B. Liang, B. F. Li and L. Jiang. Study on the long lifetime of the M state in chemically modified bacteriorhodopsin film[J]. Chemistry Of Materials,2001, 13,2746-+.
    [13]S. Y. Liu and T. G. Ebrey. Photocurrent measurements of the purple membrane oriented in a polyacrylamide gel[J]. Biophysical Journal,1988,54,321-329.
    [14]M. Zourob, J. E. Gough and R. V. Ulijn. A micropatterned hydrogel platform for chemical synthesis and biological analysis[J]. Advanced Materials,2006,18, 655-+.
    [15]J. G. Sun, S. V. Graeter, L. Yu, S. F. Duan, J. P. Spatz and J. D. Ding. Technique of Surface Modification of a Cell-Adhesion-Resistant Hydrogel by a Cell-Adhesion-Available Inorganic Microarray[J]. Biomacromolecules,2008,9, 2569-2572.
    [16]J. H. Huang and J. D. Ding. Nanostructured interfaces with RGD arrays to control cell-matrix interaction[J]. Soft Matter,6,3395-3401.
    [17]A. Helenius and K. Simons. Solubilization Of Membranes By Detergents[J]. Biochimica Et Biophysica Acta,1975,415,29-79.
    [18]N. Hampp. Bacteriorhodopsin as a photochromic retinal protein for optical memories[J]. Chemical Reviews,2000,100,1755-1776.
    [19]N. A. Dencher and M. P. Heyn. Formation and properties of bacteriorhodopsin monomers in the non-ionic detergents octyl-beta-D-glucoside and Triton X-100[J]. Febs Letters,1978,96,322-326.
    [20]J. A. Reynolds and W. Stoeckenius. Molecular weight of bacteriorhodopsin solubilized in Triton X-100[J]. Proceedings of the National Academy of Sciences of the United States of America,1977,74,2803-2804.
    [21]T. Sasaki, M. Sonoyama, M. Demura and S. Mitaku. Photobleaching of bacteriorhodopsin solubilized with Triton X-100[J]. Photochemistry and Photobiology,2005,81,1131-1137.
    [22]N. A. Dencher and M. P. Heyn. Preparation And Properties Of Monomeric Bacteriorhodopsin[J]. Methods In Enzymology,1982,88,5-10.
    [1]吴佳博士论文,2009。
    [2]Sirokman, G; Fasman, G. D. Refolding And Proton-Pumping Activity Of A Polyethylene-Glycol Bacteriorhodopsin Water-Soluble Conjugate, Protein Science 1993,2,1161
    [3]Jo, S.; Engel, P. S.; Mikos, A. G. Synthesis of poly(ethylene glycol)-tethered poly(propylene fumarate) and its modification with GRGD peptide, Polymer 2000,41,7595.
    [4]Robertson, B.; Lukashev, E. P. Rapid Ph Change Due to Bacteriorhodopsin Measured with a Tin-Oxide Electrode, Biophysical Journal 1995,68,1507.
    [5]Veronese, F. M.; Harris, J. M. Preface-Introduction and overview of peptide and protein pegylation, Advanced Drug Delivery Reviews 2002,54,453.
    [6]Veronese, F. M. Peptide and protein PEGylation:a review of problems and solutions, Biomaterials 2001,22,405.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700