水热法单晶硅表面均匀小尺寸金字塔的制备及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源危机与环境污染问题促进了清洁能源的广泛研究与应用开发。太阳能光伏发电是一种利用光伏效应将太阳光辐射能直接转换为电能的新型发电技术。太阳电池种类繁多,大致可分为晶体硅电池和薄膜电池两大类。由于研究开发成果的应用及各国多种普及推广政策的促进,晶体硅太阳电池早已达到实用化阶段。而且,自从20世纪80年代初商业化薄膜电池开始进入市场以来,晶体硅电池的性能业已取得了尤为显著的进步,且电池的效率仍存在进一步提升的潜力。
     高的光电转换效率和低的生产成本是太阳能光电工业和研究界始终追求的目标,为了达到这个目的,人们进行了很多研究。减反射是提高效率的一种途径。其方法之一是在太阳电池表面镀一层减反膜,另一种方法是把太阳电池表面作成一个高密度的金字塔形或四面体结构的织构表面,即表面制绒。在硅片表面制作绒面可以增加硅片表面对太阳辐射的吸收,有效地减少太阳光在硅片表面的反射损失,实现陷光作用的高可能性,所以正逐渐成为低成本晶体硅表面形貌的制备方法。
     本文第一章阐述了太阳电池的基本理论,概述了国内外的太阳电池的发展现状,简要说明了晶体硅太阳电池的制作流程;并对所报道的各种制绒方法进行了阐述及比较,最后对本文的研究意义、主要工作做了说明。
     第二章研究了太阳电池用单晶硅片绒面的制备技术。简要介绍了单晶硅太阳电池绒面制备实验原理及具体实验过程,详细描述了分别用碳酸钠与碳酸氢钠混合溶液(Na_2CO_3/NaHCO_3)、氨水溶液(NH_3·H_2O)作为腐蚀液并通过将织构液置于密封搅拌的环境下,对单晶硅片表面进行绒面制备的实验。最后利用扫描电镜、紫外-可见分光光度计对腐蚀后的单晶硅片的表面形貌、表面反射率等性能进行测试。
     第三章针对两种方法制备出的单晶硅片减反射绒面的性能,将该项制绒技术的各种实验参数优化比较,分析了两者的优劣和影响绒面制备的各种因素。即研究溶液中各成分的含量、腐蚀时间和制绒温度对绒面制作的影响,从而得出最佳的结果。最后我们针对现在实验室的研究状况提出了存在的问题及相应的解决方法。
The energy crisis and enviromental pollution promoted the clean energy’s extensiveresearch and application development. Solar photovoltaic power generation is a new technology,by using of photovoltaic effects, the sunlight radiant energy can convert to electrical energydirectly. There are various kinds of solar cell, which can be roughly divided into crystallinesilicon cells and thin-film solar cells. With the achievements of application research anddevelopment and the international popularisation of various policy, the crystalline silicon solarcells have already entered a practical stage. Moreover, since the commercial thin-film solar cellsbegan to enter the market around1980s, the performance of crystalline silicon cells haveobtained particularly remarkable progress, and the photoelectric conversion efficiency ofcrystalline silicon cells still has further improve potential.
     In order to obtain high energy photoelectric conversion efficiency, reduce production costs,in recent years people have made much studying on it. It is an effective way to apply the anti-reflection layer to improve efficiency. That’s one of the method is to have a coating on the solarcells, another way is to make the surface to high-density pyramid or the structure of thetetrahedron structural surface, that is texture. The special surface can increase wafer surface ofthe sun radiation absorption,on the surface, minimize the surface reflection losses of sunlighteffectively, realize the high probability use to catching the light, thus is becoming a low costcrystalline silicon surface morphology of the method of preparation.
     In the first chapter,we illustrate the basic theory of solar cells, summarize the currentresearh situation of crystalline silicon solar cells at home and abroad. We also briefly explain thecrystalline silicon solar cell production process, and the comparison among various kinds oftexturization preparation reported are described. Finally we illustrate the significance and themain research of this paper.
     Chapter2detailes the texturization technique for monocrystalline silicon solar cells, byusing of two kinds of corrosion solutions. We briefly illustrate the chemical reaction principlesand the texturization process of monocrystalline silicon solar cells. The homogeneous and smallpyramids in the textured structure of silicon crystalline is obtained by placing the solutions inseal environment, by using Na2CO3/NaHCO3solution, NH3·H2O solution as an escharotics,respectively. Finally, the morphology of corroded monocrystalline silicon chips have beenobserved by scanning electron microscope, and the surface reflectivity performance testing havebeen taken with uv-vis spectrophotometer.
     In the third chapter of this paper, based on the obtained results, the effects of eachcomponent content, etching time, temperature in the solution on the surface texturisation ofsilicon were investigated. Moreover, we conclude the best experimental parameters, that includesthe concentration of solutions, texturing time and reaction temperature.
     At last, we summarize the technique’s advantages, analyze the existing problems, proposeits corresponding solutions.
引文
[1]史少飞.HIT太阳能电池的发展概况[J].材料导报,2011,13:130-133.
    [2] Green M A.Crtstalline Silicon Solar Cells[M].Photovoltaics Special ResearchCentre,University of New South Wales,Sydney,N.S.W.Australia,2002.
    [3] Wenham S R,Green M A,S Edmiston,et al.Limits to the Efficiency of Silicon Multilayer ThinFilm Solar Cells[C].Conf.Record,First World Conference on Photovoltaic EnergyConversion,Hawaii,December,1994.
    [4] Mitchell K W.The Reformation of CZ Si Photovoltaics[C].Conf. Record,First WorldConference on Photovoltaic Energy Conversion,Hawaii,December,1994.
    [5]狄大卫,欧阳子,韩见殊,等.硅太阳电池高级原理与实践[M].上海交通大学出版社,2011.
    [6] Landis G.Coal and Solar Futures[J].Progress in Photovoltaics,1993,1:319-320.
    [7] Green M A.In:Proceeding of the21st IEEE Photovoltaic Specialists Conference.Orlando,USA:IEEE Publication,1990.
    [8] Ohl R S.Light sensitive electric device[P].US Patent240252,field27March1941,Lightsensitive electric device including silicon[P].US Patent2443542,field27May1941.
    [9]余晓飞.大组件太阳电池测试系统的研制[D].上海大学硕士学位论文,2008.
    [10] Chapin D M,Fuller C S,Pearson G L.A new silicon p-n junction photocell for convertingsolar radiation into electrical power[J].J.Appl.Phys.,1954,8:676.
    [11] Smith K D,Gummel H K,Bode J D,et al.The Solar Cells and their Mounting[J].BellSys.Tech.J.,1963,41:1765-1816.
    [12]靳瑞敏.太阳能电池原理与应用[M].北京大学出版社,2011.
    [13] Iles P A.Increased Output from Silicon Solar Cells[C].Conference Record,8th IEEEPhotovoltaic Specialists Conference,Seattle,1970:345-352.
    [14] Gereth R,Fischer H,Link E,et al.Silicon Solar Technology of theSeventies[C].Conf.Record,8th IEEE Photovoltaic Specialists Conference,Seattle,1970:353.
    [15] Pearson G L,1985,PV founders award luncheon[C].Conf. Record,18th IEEE PhotovoltaicSpecialists Conf.,Las Vegas,1985.
    [16] Mandellkorn J,McAfee C,Kesperis J,et al.Fabrication and Characteristics of Phosphorus-Diffused Silicon Solar Cells[J].Journal of the Electrochemical Society,1962:313-318.
    [17] Mandelkorn J,Lamneck J H.A New Electric Field Effect in Silicon SolarCells[J].J.Appl.Phys.,1973,44:4785.
    [18] Haynos J,Allison J,Arndt R,et al.The Comsat Non-Reflective Silicon Solar Cell:A SecondGeneration Improved Cell[C].Int.Conference on Photovoltaic PowerGeneration,Hwmburg,September,1974:487.
    [19] Chong C M,Wenham S R,Green M A.High Efficiency Laser Grooved,Buried Contact SolarCell[J].Appl.Phys.Lett.,1988,52:107-109.
    [20] Lindmayer J,Allison J.The Violet Cell:An improved Silicon Solar Cells[J].COMSATTech.Rev.,1973,3:1-22.
    [21] Fossum J G,Burgess E L.High Efficiency p+n n+Back-Surface-Field Silicon SolarCells[J].Applied Physics Letters,1978,33:238-240.
    [22] Gereth R,Fischer H,Link E,et al.Contribution to the Solar Cell Technology[J].EnergyConversion,1972,12:103-107.
    [23] Zhao J,Green M A.Optimized Antireflection Coatings for High Efficiency Silicon SolarCells[J].IEEE Trans.Electron Devices,1991,38:1925-1934.
    [24]张维清,程亮.太阳能电池发展现状与展望[J].科技创新与生产力,2011,8:26-28.
    [25]唐继刚.中国光伏产业发展状况及前景分析[OL].[2010-08-19].http://www.opticsjournal.net/OEPNNews.htm?id=PT1008190000016B8E
    [26]鲁瑾.我国多晶硅产业的发展与问题[OL].[2012-01-09].http://www.solarmedia.com.cn/xinwendongtai/taiyangnen/20120109/1516.html
    [27]钱顺崇.中国光伏产业2012年展望与分析[OL].[2012-02-03].http://www.kmsolar.cn/new.asp?id=474197
    [28]马南.外媒称中澳研制出最高效纳米薄膜太阳能电池[OL].[2012-02-16].http://world.yzdsb.com.cn/system/2012/02/16/011603679.shtml
    [29]刘霞.纳米薄膜太阳能电池转化效率达8.1%[OL].[2012-02-16].http://www.stdaily.com/kjrb/content/2012-02/16/content_427463.htm
    [30]高雪.尚德已研制效率达8.1%纳米薄膜太阳能电池[OL].[2012-02-20].http://www.globepv.com/guangfujishu/dianchijishu/6706.html
    [31] Green M A,Wenham S R.Silicon Cells:Single Junction,One Sun,Terresyrial,Single-&Multi-Crystalline[M].in《Solar Cells and Their Applications》,L.Partain,NewYork:Wiley,1995.
    [32] Kaiser U,Kaiser M,Schindler R.Texture Etching of MulticrystallineSilicon[C].Conf.Record,10th E.C.Photovoltaic Solar Energy Conference,Lisbon,April1991:293-294.
    [33] Magee T J,Pettijohn R R,Shelly S A,et al.Method of Controlling Surface Texturization ofCrystalline Semiconductor Material[C].US Patent4,147,564.
    [34] Sopori B.Reflection Characteristics of Textured Polycrystalline Silicon Substrates for SolarCells[J].Solar Cells,1988.25:15-26.
    [35] Narayanan S,Green M A.High Efficiency Processing of Polycrystalline SiliconSubstrates[C]. Presented at3rd International Photovoltaic Science and EngineeringConf.,Tokyo,November,1987.
    [36] Willeke G,Nussbaumer H,Beder H,et al.A Simple and Efficitive Light Trapping Techniquefor Polycrystalline Silicon Solar Cells[J].Solar Energy Materials and SolarCells,1992,26:345//Nussbaumer H,Willeke G,Bucher E.Optical Behaviour of TexturedSilicon[J].J.Appl.Phys.,1994,74:2202.
    [37] Zolper J C,Narayanan S,Wenham S R,et al.16.7%Efficiency,Laser Textured,Buried ContactPolycrystalline Silicon Solar Cells[J].Appl.Phys.Lett.,1989,55:2636-2365.
    [38]李安定,吕全亚,陈丹婷,等.薄膜太阳电池的基础与应用[M].机械工业出版社,2011.
    [39]高鹏.单晶硅太阳电池丝网印刷烧结工艺研究[D].厦门大学硕士学位论文,2006.
    [40] Smith K D,Gummel H K,Bode J D,et al.The Solar Cells and their Mounting[J].BellSystem.Tech.J.,1963,42:1765.
    [41] Wenham S R,Green M A,Want M.Applied Photovoltaics[M].Bridge Printery,Sydney,1993.
    [42] Smith A W,Rohatgi A.Ray Tracing Analysis of the Inverted Pyramid Texturing Geometryfor High Efficiency Silicon Solar Cells[J].Solar Energy Materials and SolarCells,1993,29(11):37-49.
    [43]罗雪莲,吴麟章,江小涛,等.太阳能电池及其应用[J].武汉科技学院学报,2005,18(10):36–38.
    [44]于静,王宇,耿魁伟.晶硅太阳电池工业生产中制绒工艺与设备设计要点[J].电子工业专用设备,2010,183(35):1–3.
    [45] Pierre V,Olivier E,Emmanuel M,et al.The Surface Texturization of Solar Cells:a NewMethod Using V-grooves with Controllable Sidewall Angles[J].Solar Energy Material andSolar Cells,1992,26(1-2):71-78.
    [46] Nishimoto Y,Namba K.Investigation of texturization for crystalline silicon solar cells withsodium carbonate solutions[J].Solar Energy Materials&Solar Cells,2000,61:393-402.
    [47] You J S,Kim D,Huh J Y.Experiments on anisotropic etching of Si in TMAH[J].SolarEnergy Materials and Solar Cells,2001,66:37-44.
    [48] Chaoui R,Lachab M,Chiheub F,et al.Texturization of monocrystalline silicon withpotassium carbonate solutions [C].Proceedings of the14th European Photovoltaic SolarEnergy Conference,Barcelona,1997:812-814.
    [49]Singh P K,Kumar R,Lal M,et al.Effectiveness of anisotropic etching of silicon in aqueousalkaline solutions[J].Solar Energy Materials&Solar Cells,2001,70:103-113.
    [50] King D L,Buck M E.Experimental Optimization of an Anisotropic Etching Process forRandom Texturization of Silicon Solar Cells[C].Proceedings of the22nd IEEE InternationalPhotovoltaic Specialists Conference,1991:303-308.
    [51] Chitre S R.A high volume cost efficient production micro-structuring[C].Processings of the13th IEEE International Photovoltaic Specialists Conference,1978:152-154.
    [52] Szlufcik J,Sivoththaman S, Nijs J F,et al.Low-cost industrial technologies of crystallinesilicon solar cells[C].Proc.IEEE,1997,85:711-730.
    [53] Vazsonyi E,De Clercq K,Einhaus R,et al.Improved anisotropic etching process for industrialtexturing of silicon solar cells[J].Solar Energy Materials&Solar Cells,1999,57:179-188.
    [54] Chu A K,Wang J S,Tsai Z Y,et al. A simple and cost-effective approach for fabricatingpyramids on crystalline silicon wafers[J].Solar Energy Materials&SolarCells,2009,93:1276–1280.
    [55] Irena Zubel,Irena Barycka,Kamilla Kotowska,et al.The effect of organic and inorganicagents on silicon anisotropic etching process[J].Sensors and Actuators A,2001,87:163-171.
    [56] Singh P K,Kumar R,Lal M,et al.Effectiveness of anisotropic etching of silicon in aqueousalkaline solutions[J].Solar Energy Materials&Solar Cells,2001,70:103-113.
    [57] Hayoung Park,Soonwoo Kwon,Joon Sung Lee,et al.Improvement on surface texturing ofsingle crystalline silicon for solar cells by saw-damage etching using an acidicsolution[J].Solar Energy Materials&Solar Cells,2009,93:1773–1778.
    [58]赵汝强,江得福,李军勇,等.采用正交实验优化单晶硅太阳电池表面织构化工艺[J].材料研究与应用,2008,4(2):441-446.
    [59]沈辉,柳锡运.太阳能电池单晶硅表面织构化正交试验[J].华南理工大学(自然科学版),2006,10(34):11-14.
    [60]吴江宏,胡社军,王忆,等.单晶硅太阳电池表面绒面制备及其性质研究[J].化工技术与开发,2010,8(39):5-10.
    [61] Zhenqiang Xi,Deren Yang,Wu Dan,et al.Investigation of texturing for monocrystallinesilicon solar cells with different kinds of alkaline[J].Renewable Energy,2004(29):2101-2107.
    [62]王立娟.单晶硅太阳电池绒面的制备[D].内蒙古师范大学硕士学位论文,2011.
    [63]王立娟,周炳卿,那日苏,等.一种新型腐蚀剂——醋酸钠溶液对单晶硅太阳电池表面织构化的作用[J].材料导报,2011,9(25):70-77.
    [64] Zhenqiang Xi,Deren Yang,Duanlin Que.Texturization of monocrystalline silicon withtribasic sodium phosphate[J].Solar Energy Materials and Solar Cells,2003,77:255-263.
    [65] Gangopadhyay U,Kim K H,Dhungel S K,et al.A novel low cost textrization method forlarge area commercial monocrystalline silicon solar cells[J].Solalr Energy Materials andSolar Cells,2006,90:3557-3667.
    [66] Linfeng Sun,Jiuyao Tang.A new texturing technique of monocrystalline silicon surface withsodium hypochlorite[J]. Applied Surface Science,2009,22:9301-9304.
    [67]古贺生.单晶硅太阳能电池制绒新技术研究[D].浙江大学硕士学位论文,2011.
    [68] Leneinella D,Centurioni E,Rizzoli R,et al.An optimized texturing proeess for silicon solarcell substrates using TMAH[J].Solar Energy Materials&Solar Cells,2005,87:725-732.
    [69] Sarro P M,Brida D,Vlist W,et al.Effect of surfactant on surface quality of siliconmicrostructures etched in saturated TMAHW solutions[J].Sensors and Actuators,2000,85:340-345.
    [70] Yang C R,Chen P Y,Chiou Y C,et al.Effects of various ion-typed surfactants on siliconanisotropic etching properties in KOH and TMAH solutions[J].Sensors and ActuatorsA,2005,119:271-281.
    [71] Campbell S A,Coopert K,Dixon L,et al.Inhibition of pyramid formation in the etching of Sip(100) in aqueous potassium hydroxide-isopropanol[J].Journal of Micromechanics andMicroengineering,1995,3(5):209-219.
    [72] You J S,Kim D,Huh J Y.Experiments on anisotropic etching of Si in TMAH[J].SolarEnergy Materials and Solar Cells,2001,66:37-44.
    [73]吴文娟,张松,张立元,等.四甲基氢氧化铵应用于单晶硅高效制绒[J].硅酸盐学报,2011,05:863-867.
    [74] Kim J M,Kim Y K.The enhancement of homogeneity in the textured structure of siliconcrystal ultrasonic wave in the caustic etching process[J].Solar Energy Material&SolarCells,2004,81:239-247.
    [75]周春兰,王文静,等.单晶硅表面均匀小尺寸金字塔制备及其特性研究[J].物理学报,2010,59:5777-5783.
    [76] Sopori B L,Pryor R A.Optical characteristics of textured (100) oriented silicon surfaces-Applications to solar cells[C].Conference Record of15th IEE Photovoltaic SpecialistsConference,Orlando,May,1981.
    [77]宋佩珂.带本征薄层异质结太阳能电池关键技术的研究[D].华中科技大学硕士学位论文,2008.
    [78]王海燕.硅基太阳能电池陷光材料及陷光结构的研究[D].郑州大学硕士学位论文,2005.
    [79]许彦旗,汪义川,季静佳,等.关于单晶硅各向异性腐蚀机理的讨论[C].中国太阳能光伏会议.2003.34-38.
    [80]杨勇,杨志平,励旭东,等.硅酸钠在单晶硅太阳能电池表面织构化中的作用[C].第八届光伏会议论文集.深圳中国轻工杂志社,2004.896-899.
    [81]闫宝华,檀柏梅,刘玉岭.太阳能电池单晶Si表面织构化的工艺改进[J].微纳电子技术,2009,11:695-699.
    [82]曹锡章,宋天佑,王杏乔,等.无机化学[M].高等教育出版社,1994.
    [83]朱裕贞,苏小云,路琼华.工科无机化学[M].华东理工大学出版社,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700