低热输入变极性短路过渡GMAW焊接系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着薄板和超薄板焊接技术在汽车、集装箱等企业中大量应用,对焊接过程提出了低热输入的要求。短路过渡变极性控制是一种新型的低热输入焊接方法,日益受到关注。然而这种方法尚处于发展的初期阶段,国外参考资料少,国内研究目前还处于起步阶段。因此,对短路过渡的控制及能量分配原理进行深入研究,提出理想的变极性控制方案,并研制出焊接系统平台,是目前焊接技术发展的一个重要课题。
     为了满足低热输入短路过渡的变极性控制,本文设计了双芯DSP控制的焊接电源系统,由主电路、控制电路和送丝系统三部分组成。双芯分别负责控制电路和送丝系统,两者通过CAN总线进行通信。主电路结构采用二次逆变结构,一次逆变采用全桥双零软开关逆变器,通过PWM控制获得焊接过程中所需的能量;二次逆变采用带耦合电感的半桥逆变结构,实现电流的极性变换,达到低热输入的目的。控制系统以DSP为核心,实现整个系统的时序控制,采用数字PID算法,实现PWM控制的数字化。采用了固定点采样的数值处理方法和整周期协调控制的策略,保证了控制的精度和稳定性。针对传统的软开关逆变电源无法满足700W以下的低功率输出的问题,创造性地提出“两级连续PWM控制方法”,使逆变电源能在全桥和半桥两种工作方式下切换,解决软开关逆变电源小功率输出的问题,从而真正实现低热输入。
     数字化送丝系统是数字化焊接电源的重要组成部分,其性能的好坏直接影响整个系统的精度及焊接过程稳定性,因此提高送丝系统的稳态精度和快速响应性是焊接过程中不可回避的问题。本文设计了受限单极式可逆PWM调速电路,控制芯片采用DSP,通过CAN总线与焊接电源的控制系统进行通信。通过采样电流断续时的电枢感应电压,采用数字PI方法调节PWM占空比,维持电枢感应电压恒定,从而保证送丝电机转速恒定。采用模糊PI控制技术在线整定PI参数,可提高送丝系统的动态性能。试验表明,送丝系统的静态和动态性能均高于一般的电枢电压负反馈控制,能够完美地实现送丝稳定性。提出基于弧压负反馈的变速送丝系统来解决分段恒流控制引起的弧长不稳定的问题。该系统采用双闭环模糊PI控制,内环采用感应电压负反馈的模糊控制,提高送丝速度的稳定性和快速响应性;外环采用电弧电压负反馈,调节送丝速度,保证弧长的稳定性。试验证明,该方法还能实现恒弧长、等熔深的控制。
     通过对短路过渡过程中熔滴受力情况的分析,提出一种波形控制方法,在短路初期降低电流减小瞬时飞溅,在短路末期液桥爆断之前迅速降低电流,使熔滴在表面张力的作用下稳定过渡。在燃弧期间采用大恒流+小恒流控制,可精确控制燃弧能量、改善焊缝成形。通过对DCEP和DCEN时焊丝和工件的热作用分析,提出了一种变极性控制方法:在短路末期实现DCEP→DCEN,不影响熔滴过渡和电弧稳定性;在燃弧初期采用DCEN实现焊丝的快速熔化、减小熔池冲击、提高熔敷效率;在燃弧后期DCEN→DCEP,对熔滴进行整形,便于熔滴过渡。提出一种电流控制方法,可避免燃弧后期极性变换时的熄弧问题,在电流过零前施加较大的燃弧脉冲,保证电流换向的顺利进行。提出一种短路限流加慢送丝的引弧方法,提高了引弧成功率。
     在分析短路过渡电弧物理特性的基础上,利用Matlab/Simulink工具建立了GMAW焊接电源-电弧系统动态仿真模型。功率变换单元以实际应用电路和器件为原型,所建模型能实现固定臂的零电流开关、移动臂的零电压开关。通过移动臂占空比的调节,验证了软开关逆变电路存在最小输出功率的问题,采用“两级连续PWM控制方法”可以降低功率输出。数字控制单元能根据电弧电压和电流信号实时计算主电路IGBT的驱动信号,实现分段恒流控制,使焊接电流与给定的波控信号具有很好的一致性。短路负载单元考虑了短路期间的熔滴动态变化过程,包括燃弧时弧长变化模型和液桥电路模型。仿真波形与试验结果基本一致,证明所建的系统仿真模型是正确的。
     在自制的变极性GMAW焊接电源平台上,进行了大量的试验研究。试验结果证明变极性短路过渡焊接方法是一种低热输入的焊接方法。同时论文还针对该方法焊接过程中各种参数大小对能量分配的实际影响作用进行相关试验研究,并得出了相应的规律。
Wide application of sheet metal and ultra thin sheet metal welding technology in car, containerand other manufacturing leads to the requirements of low heat input during welding process.Short-circuit transfer control of variable polarity is a novel low heat input welding method, which hasbeen drawing more and more attention. However, this method is still in the initial stage ofdevelopment. Additionally, there is little foreign reference, and domestic research is still in its infancy.Therefore, studying control and energy distribution principle of short-circuit transfer in-depth,proposing ideal control schemes and developing a welding system platform are important topics in thedevelopment of welding technology.
     In order to realize the low heat input and short-circuit transfer control of variable polarity,dual-chip DSP controlled welding power supply system was introduced in this paper, which wascomposed of three parts, the main circuit, control circuit and wire-feeding system. Dual chips wererespectively responsible for the control circuit and the wire-feeding system, both communicating viaCAN bus. The two-stage inverter structure was adopted in main circuit. Full-Bridge Zero Voltage andZero Current (FB-ZVZC) soft-switching inverter was applied to the first inverter, which obtained therequired energy during welding process by PWM control. The half-bridge inverter structure withcoupled inductor was applied to the second inverter to realize current polarity transformation so that itcan achieve the purpose of low heat input. Control system based on DSP as the chip of the entiresystem timing control, used digital PID algorithm to digitized PWM control. Use numerical method offixed point sampling and full cycle control strategy to ensure the control precision and stability. Tosolve the problem that traditional soft-switching inverter cannot output low power below700W, thetwo-stage continuous control of PWM was creatively put forward to enable inverter switch betweenfull-bridge and half-bridge, thereby the problem caused by low power output of soft-switchinginverter can be solved and low heat input can be realized.
     The digital wire-feeding system is an important part of the digital welding power supply system,whose performance directly affect the accuracy and stability of the welding process. Therebyincreasing the steady-state accuracy and fast response of wire-feeding system is an inevitable issueduring the welding process. A limited unipolar reversible speed control circuit was designed in thispaper. Control chip adopted DSP and communicated with welding power control system throughCAN bus. According to the armature induction voltage sampling when current was zero, digital PImethod was used to adjust the PWM duty cycle to maintain the armature induced voltage constant, thus to ensure a constant wire-feeding motor speed. It used fuzzy PI control technology for onlinetuning of PI parameters to improve dynamic performance of wire-feeding system. Tests showed thatthis system can feed wire stably and its static and dynamic performance is better than that of thearmature voltage negative feedback control system. Variable speed wire-feeding system based on arcvoltage negative feedback was proposed to solve the problem of arc instability caused by sectionalconstant current control. This system used double-loop fuzzy PI control. The inner loop adoptedinduced voltage negative feedback fuzzy control to improve the stability of wire-feeding speed andthe ability of fast response. The outer loop adopted arc voltage negative feedback to adjustwire-feeding speed and ensure the stability of the arc length. Tests proved that this method canachieve constant arc length and equal penetration depth control.
     Basing on the force analysis of molten droplets during short circuit transfer process, a waveformcontrol method was adopted, that reducing current to eliminate the instantaneous splash in initial shortcircuit period and reducing current quickly before liquid bridge blasting off in the final period of shortcircuit. In arcing period the peak current and the background current was adopted to control arcenergy precisely and improve the weld formation. Basing on thermal effect analysis of the wire andthe work piece during DCEP and DCEN period, a variable polarity control method was adopted thatemploying DCEP to DCEP at the end of the short-circuit phase to ensure the stability of arc andmolten droplet transition, employing DCEN in the early of arcing for rapid melting of welding wire,less molten pool impact and high deposition efficiency, and employing DCEN to DCEP later in thearcing period to facilitate the droplet transition through shaping the drop. A current control methodwas proposed in order to avoid arc-quenching triggered by polarity reversal later in the arcing period.And large arc pulse was applied before the current through zero to ensure the smooth progress of thecurrent commutation. In addition, an arc method consisting of short-circuits current limiting and slowwire-feeding was adopted to improve the success rate of arc ignition.
     Basing on the analysis of the physical characteristics of short arc transition, a GMAW weldingpower-arc system dynamic simulation model was created by Matlab/Simulink. Power conversionunit used practical application circuits and devices as the prototype. This model was able to achieve afixed arm zero-current switching, zero-voltage switching of moving arm. Adjusted the duty of movingarm to verify the presence of the issue that soft-switching inverter circuit had minimum power output."Two-stage continuous PWM control method” could reduce the power output of the system. Digitalcontrol unit could realize real-time computing main circuit IGBT drive signal according to the arcvoltage and current signals to achieve sectional constant current control. So that the welding currentand the given wave control signal had a good consistency. Short circuit load cell took the droplet dynamic process into account during short period, which included the model of arc length changesand the liquid bridge circuit model during arcing period. Simulation waveforms were consistent withthe experimental results, which proved that the system simulation model was correct.
     After a lot of experimental researches carried out in a homemade variable polarity the GMAWwelding power platform, it was proved that this variable polarity short circuit welding method is a lowheat input welding method. The paper also elaborated on the experimental research relating to theeffect of various parameters on the energy allocation by using this method. The corresponding lawwas drawn in this paper as well.
引文
[1]殷树言编著.气体保护焊工艺基础[M].北京.机械工业出版社.2007.1
    [2]安藤弘平,长古川光雄合著.焊接电弧现象(增补版)[M].北京.机械工业出版社.1985.1
    [3] Lancaster J F. The physics of welding [M]. London: Pergamon Press,1984.
    [4]黄石生.弧焊电源及其数字化控制[M].北京:机械工业出版社,2010.01.
    [5] T. Era; T. Ueyama. Spatter reduction in GMAW by current waveform control [J]. Welding International.21(2007)496-501.
    [6] Stava E. K. The surface-tension-transfer power source: a new low-spatter arc welding machine [J]. WeldingJournal72(1993)25-29.
    [7] Manh Dung Ngo, Vo Hoang Duy, Nguyen Thanh Phuong, et al. Development of digital gas metal arc weldingsystem[J].Journal of Materials Processing Technology189(2007)384-391.
    [8] T. Era et al. Controlled bridge transfer (CBT) gas metal arc process for steel sheets joining [J]. Science andTechnology of Welding and Joining14(2009)493-499.
    [9]周水亮,陶军,郭德伦.钛合金焊缝晶粒细化技术的现状[J].焊接,2009,(8)11-15.
    [10]上山智之,周栄慶一,恵良哲生,西坂太志.通过CBT方法开发低热输入、低飞溅CO2/MAG交流焊接系统[A].金属加工:中国焊接产业论坛-北京埃森焊接展专刊.2008,增刊2:104-107.
    [11]姚屏,薛家祥,黄文超.脉冲MIG焊熔滴过渡阶段的波形控制[J].华南理工大学学报.2009,37(4):52-56.
    [12]廖平.薄板铝合金VP PMIG焊接设备及电弧稳定性研究[D].北京:北京工业大学博士学位论文.
    [13] Qiu Ling.A novel variable polarity welding power based on high-frequency pulse modulation [J]. ChinaWelding.2006,15(3):11-15.
    [14] Hongjun Tong, Ichizo Yazawa, Tomoyuki Ueyama. High speed welding of aluminum alloy sheets using laserassisted AC pulsed MIG process [A]. Shanghai2003133-142.
    [15]魏占静,约克.希勒.变极性MIG/MAG焊工艺及应用[J].焊接.2009(8):2-5.
    [16] http://www.cloos.com.cn/
    [17]廖平,黄鹏飞,卢振洋,殷树言.变极性脉冲MIG焊控制系统[J].焊接学报.2006,27(3):53-56.
    [18]杭争翔,安敏,李小欣,贾莹. VP PMIG焊接电弧及熔滴过渡控制[J].电焊机.2009,31(1):66-68.
    [19]古金茂.全数字交流短路过渡焊接系统及低热输入研究[D].北京:北京工业大学,2009.
    [20]古金茂,黄鹏飞,卢振洋等.本周期交流短路过渡焊接方法及系统[J].焊接学报.2009,30(4):73-76.
    [21] S.F.Goecke, L.Dorn. Research on the influence of process control and shielding gas composition on spatterformation and groove geometry in MAG short arc welding of thin steel sheets less than0.5mm thick[J]. FinalReport DFG.2000,3:202/26-3.
    [22]恵良哲生,上山智之.電流波形制御によるGMA溶接のスパッタ低減.溶接学会誌[J].2006,75(7):19~23
    [23] T.Era, A.Ide, T.Uezono.Spatter Reduction of steel sheets welding using controlled bridge transfer (CBT).Materials Science Forum[J].2008,580/582:303-306.
    [24]上山智之.通过CBT方法开发低热输入低飞溅CO2/MAG交流焊接系统[J].电焊机,2009,39(9):10-13,87.
    [25]姚屏,薛家祥,张思章.轻薄材料低热输入焊接新工艺[J].焊接.2010,(8):5-10.
    [26] C. G. Pickin, K. Young. Evaluation of cold metal transfer (CMT) process for welding aluminum alloy [J].Science and Technology of Welding and Joining11(2006)583-585.
    [27] Seyed Hossein Hosseini, Mehran Sabahi, Ali Yazdanpanah Goharrizi. An improved topology of electronic ballastwith wide dimming range, PFC and low switching losses using PWM-controlled soft-switching inverter [J].Electric Power Systems Research78(2008):975-984
    [28] Pekka Ahtiala. The optimal pricing of computer software and other products with high switching costs [J].International Review of Economics and Finance15(2006)202-211.
    [29] M.D. Ngo et al. Development of digital gas metal arc welding system [J]. Journal of Materials ProcessingTechnology189(2007)384-391
    [30] S.H. Hosseini et al.An improved topology of electronic ballast with wide dimming range, PFC and lowswitching losses using PWM-controlled soft-switching inverter [J]. Electric Power Systems Research78(2008)975-984.
    [31]刘嘉.弧焊逆变电源的数字化控制[D].北京:北京工业大学博士学位论文,2002.
    [32] H. T. Zhang, J. C. Feng, P. He. Interfacial phenomena of cold metal transfer (CMT) welding of zinc coated steeland wrought aluminium [J]. Materials Science and Technology24(2008)1346-1349.
    [33] C.G. Pickin, S.W. Williams, M. Lunt. Characterisation of the cold metal transfer (CMT) process and itsapplication for low dilution cladding [J].Journal of Materials Processing Technology211(2011)496-502
    [34]彭海燕,黄石生,吴开源等.基于DSP的脉冲MIG焊数字控制系统[J].焊接学报.2008,29(9):63-66.
    [35]朱志明,吴文楷,陈强.短路过渡CO2焊接熔滴形状数值模拟与控制[J].机械工程学报,2006,42(7):164-169.
    [36] WU Kaiyuan, HUANG Shisheng, WU Shuifeng, LI Xinglin. Intelligent control system of pulsed MAG weldinginverter based on digital signal processor [J]. Chinese Journal of Mechanical Engineering21(2008)86-90.
    [37]张撼鹏,黄鹏飞,殷树言等.新型低热输入数字化焊接电源控制系统的研制[J].焊接学报,2007,28(1):89-92.
    [38]杨立军,徐立城,张晓囡等.短路过渡CO2焊电信号的小波滤波[J].焊接学报,2006,27(8):31-34,38.
    [39] Jurn Burm eisterr. Fuzzy logic-not just a fashionable trend [J]. Scaiwciben and Scamciclen43(1991)200-203.
    [40] Chu Y X et al. Signature analysis for quality monitoring in short-circuit GMAW [J]. Welding Journal83(2004)336S-343S.
    [41]丁京柱,殷树言,刘嘉.基于80C196KC的CO2焊逆变电源数字控制系统[J].机械工程学报,2002,38(2):145-147.
    [42] Yamamoto et al. Improved Current Control Makes Inverters the Power Source of Choice [J]. Welding Journal,76(1997)47-49.
    [43] S. Yamane, S. Xiang, Y. Kaneko, K. Oshima. Effect of power source characteristic on CO2short circuiting arcwelding [J]. Science and Technology of Welding and Joining,2005,10(3):281-286.
    [44]杨立军,李俊岳,李桓等.波控CO2短路过渡焊的电弧行为[J].焊接学报.2003,24(5):73-76.
    [45]张军红,王洪方,黄石生. CO2气体保护焊的波形模糊逻辑控制的方法[J].北京航空航天大学学报.2002,28(3):346-349.
    [46]黄鹏飞,刘嘉,吕耀辉,殷树言.逆变GMAW焊机短路过渡波形控制研究[J].材料科学与工艺.2004,12(5):471-475.
    [47]孙广,何建萍,张春波等.参数可调多斜率波控GMAW[J].焊接学报.2005,26(3):63-66.
    [48]冯曰海,刘嘉,殷树言,卢振洋.短路过渡CO2焊全数字控制系统[J].机械工程学报.2005,41(11):207-212.
    [49]汪有韬,陈焕明,曾敏.高速CO2焊波控逆变电源设计[J].电力电子技术.2008,42(4):45-50.
    [50]张光先,邹增大,尹海等. CO2气体保护焊表面张力的过渡[J].焊接学报.2003,24(1):80-84.
    [51]张光先,邹增大,陈仁富等. CO2气保焊表面张力过渡的建模及仿真[J].焊接学报.2003,24(4):68-72.
    [52]刘明志,张光先,聂丽丽等.表面张力过渡动态过程的仿真[J].焊接学报.2003,24(5):60-64,84.
    [53] T. Era; T. Ueyama. Spatter reduction in GMAW by current waveform control [J]. Welding International21(2007)496-501.
    [54] Stava, E. K. System and method of short circuiting arc welding: United States,5148001[P].1992-09-15.
    [55] Jair Carlos Dutra; Regis Gonalves de Silva. MIG/MAG short-circuit metal transfer control of the current waveform fundamentals of the CCC and STT systems [J]. Welding International23(2009)181-185.
    [56]薛海涛,李桓,杨立军,李俊岳. CO2焊短路过渡过程缩颈信息的小波提取[J].焊接学报.2004,25(1):74-76,79.
    [57]田松亚,吴冬春,孙烨等.基于DSP的CO2焊短路信号的小波检测[J].焊接学报.2007,28(7):65-68.
    [58]张晓囡,李俊岳,李桓等.基于小波分析的CO2弧焊电源工艺动特性的评定[J].机械工程学报,2002,38(1):112-116.
    [59] Zhiming Ou. Method and system for reducing spatter in short-circuit transfer gas shielded arc welding: UnitedStates,7265320[P].2003-01-28.
    [60]区智明.用于降低短路过渡气体保护焊飞溅的方法和系统:中国,1600486A [P].2005-3-30.
    [61] Flood, et al. Welding current control system and method: United States,6794608[P].2004-09-21.
    [62]曹彪,黄增好,曾敏,叶玮渊.波控短路过渡高速焊弧长模糊控制[J].焊接学报.2005,26(6):17-20.
    [63]张撼鹏,黄鹏飞,殷树言,白立来.新型低热输入数字化焊接电源控制系统的研制[J].焊接学报.2007,28(1):89-92.
    [64] Y. Hirata. Innovation in welding-related manufacturing systems by using fully digitally controlled arc weldingmachines [J]. Welding International.20(2006)425-429.
    [65] H. Tong, T. Ueyama. Solutions to problems of tiny spatter and arc interruption in AC pulsed MIG arc welding [J].Welding International.19(2005)279-286.
    [66] Shimizu H., Itoh K., Masaie N., et al. Feed ability of wires during metal active gas welding [J] Science andTechnology of Welding and Joining11(2006)81-93.
    [67] Gho J S, Chae Y M, Kim K S, et al. A study on the effect of wire feeding controller in inverter arc weldingmachine[C]. IEEE1999International Conference on Power Electronics and Drive Systems, PEDS'99, July1999,Hong Kong:394-398.
    [68]尔桂花,窦日轩编著.运动控制系统[M].北京:清华大学出版社,2002.10.
    [69] Michael J. Burridge, Zhihua Qu. An improved nonlinear control design for series DC motors [J]. Computers andElectrical Engineering29(2003)273-288.
    [70]杨帅,刘嘉,闫思博,殷树言.数字化交流伺服CO2焊推拉送丝系统[J].焊接学报,2009,30(5):101-104.
    [71]沙德尚,廖晓钟,单立军等.送丝电机全数字化控制策略[J].焊接学报,2009,30(3):49-52.
    [72]叶振忠,王芸,杨昱等.一种实用新型CO2弧焊PWM送丝调速系统[J].焊接学报,2003,24(3):79-81.
    [73]田松亚,顾公兵,龙火军.基于TL494的PWM等速送丝电路的设计[J].焊接学报,2004,25(5):33-36.
    [74]翟玉喜,郭怀书,曹玉玺.感应电压反馈送丝调速系统[J].电焊机,2007,37(11):18-20.
    [75]翟玉喜,曹玉玺.一种数字化送丝调速系统[J].电焊机,2006,36(11):56-57.
    [76] Ahmed N.A.. Modeling and simulation of AC–DC buck-boost converter fed DC motor with uniform PWMtechnique [J]. Electric Power Systems Research73(2005)363-372.
    [77]刘嘉,卢振洋等.电焊机的数字化[J].焊接学报,2002,23(1):88-92.
    [78]华学明,吴毅雄等.印刷电机调速电路的研究[J].电焊机.2002,62(6):22-24
    [79] T.M izuno, T.Ya egashi, H.Y amamoto, et al. Efficiency characteristics of linear DC motor by using a novelmeasuring method[J]. Sensors and Actuators. A91(2001)137-140.
    [80] M T Liao, W J Chen. A comparison of gas metal arc welding with flux-cored wires and solid wires usingshielding gas[J]. Int J Adv Manuf Technol15(1999)49-53.
    [81] Sadk C. Absi Alfaro, K.S Chawla, John Norrish. Computer based data acquisition for welding research andproduction. Journal or Materials Processing Technology53(2005)1-13.
    [82] Fronius handbook. http://www.fronius.com.
    [83] http://www.millerwelds.com.
    [84]汤文博,陶玲.数显开关型送丝电源的研制[J].电焊机,2000(3):34-35.
    [85]杨显,叶振忠. GMAW送丝速度稳定性研究[J].焊接技术,2002,31(3):48-49.
    [86]张广军,耿正,吴林. GTAW用送丝装置研制[J].电焊机,2000(4):28-30.
    [87]张继红,徐秀平,吴长顺.步进电机直接驱动的GMAW焊送丝实验样机研制[J].电焊机,1998(2):21-23.
    [88]王欣仁. CO2焊送丝系统的研究[D].南京:河海大学硕士论文,2011.
    [89] Marjan Golob, Arpad Koves, Ales Puklavee. Modelling, simulation and fuzzy control of the GMAW weldingprocess[C].15th Triennial World Congress,2002.
    [90] Jesper S. Thomsen. Feedback linearization based arc length control for gas metal arc welding[C]. AmericanControl Conference,2005:3568-3573.
    [91] Mohamed AbdelRahman. Feedback linearization control of current and arc length in GMAW systems[C].Proceedings of the American Control Conference,1998:1757-1761.
    [92]冯曰海,卢振洋,刘嘉,殷树言.全数字控制CO2焊Matlab/Simulink建模与仿真[J].焊接学报,2005,26(7):27-32.
    [93] CHOL J H, LEE J Y, YOO C D. Simulation of dynamical behavior in a GMAW system[J]. Welding Journal,2001,80(10):239s-245s
    [94] Jonson P G, Szekely J, Choo R T C, et al. Mathematical models of transport phenomena associated witharc-welding process[J]. Modeling and Simulation in Materials Science and Engineering,1994,2(5):995-1016.
    [95] Choi S K, Yoo C D, Kim Y S. Dynamic simulation of metal transfer in GMAW, Part1: Globular and spraytransfer models[J]. Welding Journal,1998,77(1):38s-44s.
    [96]张光先.软开关逆变式低飞溅CO2气体保护焊的研究[D].济南:山东大学博士论文,2004.
    [97]张光先,邹增大,陈仁富. CO2气保焊表面张力过渡的建模及仿真[J].焊接学报,2003,24(4):68-74.
    [98]何健萍.短路过渡GMAW动态过程建模及系统动态过程的研究[D].上海交通大学博士论文,2005.
    [99]何建萍,吴毅雄,焦馥杰. GMAW短路过渡液桥形状动态模型[J].焊接学报,2008,29(7):5-8.
    [100]王宗杰.熔焊方法及设备[M].北京:机械工业出版社.2006.12.
    [101] TianMing Li, Sooseok Choi, Takayuki Watanabe, et al. Discharge and optical characteristics of long arc plasmaof direct current discharge [J].Thin Solid Films523(2012)72-75.
    [102] M Mohebi Moghadam, SH Seyedein, M Reza Aboutalebi. Fluid flow and heat transfer modeling of AC arc inferrosilicon submerged arc furnace [J].Journal of Iron and Steel Research, International17(2010)14-18.
    [103] N. Karunakaran, V. Balasubramanian. Effect of pulsed current on temperature distribution, weld bead profilesand characteristics of gas tungsten arc welded aluminum alloy joints[J].Transactions of Nonferrous MetalsSociety of China21(2011)278-286.
    [104]武传松,陈茂爱,李士凯. GMAW焊接熔滴长大和脱离动态过程的数学分析[J].机械工程学报,2006,42(2):76-81.
    [105] P.K. Ghosh, L. Dorn, Marc Hübner, et all. Arc characteristics and behaviour of metal transfer in pulsed currentGMAW of aluminium alloy [J].Journal of Materials Processing Technology194(2007)163-175
    [106] P.K. Ghosh, Lutz Dorn, Shrirang Kulkarni, et al. Arc characteristic and behavior of metal transfer in pulsedcurrent GMA welding of stainless steel [J]. Journal of materials processing technology,209(2009):1262-1274.
    [107] Bruce D. DeRuntz. Assessing the benefits of surface tension transfer welding to industry [J]. Journal of IndustryTechnology19(2003)1-8.
    [108] Shuangyu Liu, Fengde Liu, Hong Zhang, et al. Analysis of droplet transfer mode and forming process of weldbead in CO2laser–MAG hybrid welding process [J].Optics&Laser Technology44(2012)1019-1025.
    [109]区智明,马健,严小生.减小短路过渡焊接飞溅的方法.电焊机(增刊),全国焊接学术交流会2004:78-81.
    [110] Danut Iordachescu, Luisa Quintino. Steps toward a new classification of metal transfer in gas metal arcwelding[J].Journal of Materials Processing Technology202(2008)391-397
    [111] Guang-jun ZHANG, Zhi-hong YAN, Lin WU. Visual sensing of weld pool in variable polarity TIG welding ofaluminium alloy[J].Transactions of Nonferrous Metals Society of China16(2006)522-526
    [112]贾贵玺,刘金涛,王长风等.全桥移相零电流弧焊逆变器[J].焊接学报,2004,25(3):85-88.
    [113]杜贤昌,邓占峰,孙威威等.软开关弧焊电源的设计及参数选择(II)[J].焊接学报,2006,27(5):105-108.
    [114]王聪.软开关功率变换器[M].北京:科学出版社,2002.01
    [115] M.J Kang, Y.Kim, S.Rhee. Spatter Rate Estimation in the of GMAW:A study shows the optimal model forestimating spatter rate using an artificial neural network in the short circuit transfer region of GMAW[J].Welding Journal.82(2003)238-240.
    [116]邱灵,杨春利,林三宝,伍昀.基于移相全桥ZVS-PWM变极性焊接电源的设计[J].焊接学报,2006.27(7):65-68.
    [117] Jinhong Zhu, Hongxin Shi, Kaitong Lu. ARM based full digital IGBT inverter power supply for fine waveformcontrol of short-circuit CO2arc welding[C]. International Conference on Control Automation and Systems,2007:1847-1850.
    [118] Bayindir N.S, Kukrer O, Yakup M. DSP-based PLL-controlled50-100kHz20kW high-frequency inductionheating system for surface hardening and welding applications[J]. IEE Proceedings-Electric Power Applications,150(2003)365-371.
    [119]丁坤.变极性弧焊逆变电源的建模方法与控制策略研究[D].南京:河海大学博士论文,2009.
    [120]邢岩,肖曦,王莉娜编著.电力电子技术基础[M].北京:机械工业出版社,2009.01.
    [121]张光先.逆变焊机原理与设计[M].北京:机械工业出版社,2008.
    [122] I.S.Pin Chuck. Stabilization of transfer and methods of reducing the spattering of metal in CO2welding with ashort arc [J]. Welding Research Abroad5(1982)33-35.
    [123]夏军.一种实用的高压开关电源采样隔离反馈电路[J].高压电器,Vol.42,2006(8):295-300.
    [124]丁坤,姚河清,祁涛等.数字化逆变弧焊电源采样策略研究[J].电焊机,2009,39(6):17-20.
    [125]胡寿松.自动控制原理[M].第四版.北京:科学出版社,2001.
    [126] Charles K, Matthew N O, Fundamental of electric circuits[M]. Beijing: Publishing House of Electronics Industry,2003.
    [127]陈伯时主编.电力拖动自动控制系统[M].北京:机械工业出版社.2005.1.
    [128]秦继荣,沈安俊编著.现代直流伺服控制技术及其系统设计[M].北京:机械工业出版社.2002.7.
    [129]田松亚,顾公兵,龙火军.基于TL494的PWM等速送丝电路的设计[J].焊接学报,2004,25(5):33-36.
    [130] Z.H. Rao, J. Zhou, H.L. Tsai. Determination of equilibrium wire-feed-speeds for stable gas metal arc welding [J].International Journal of Heat and Mass Transfer55(2012)6651-6664
    [131]王凌去,刘卫国.基于模糊PI控制的无刷直流电机调速系统的仿真[J].计算机仿真,2009,31(5):24-26.
    [132] A. F. Knyaz'kov, N.Yu Krampit, A. G. Krampit. Controlling the droplet transfer process in CO2welding with along arc [J]. Welding International.22(2008)534-536.
    [133] Xiaolin Yi, Ping Shan, Shengsun Hu, et al. A numerical model of wire melting rate in CO2gas-shielded welding[J]. Materials&Design23(2002)501-504.
    [134] Zhang Hongbing, Huang Shisheng, Zhou Yiqing. Fuzzy control of wire feeder in pulse welding system[C].International Conference on Electronic Measurement and Instruments7(2007)3670-3674.
    [135]傅强,薛松柏,姚河清,徐勇.基于感应电压负反馈的数字化送丝系统[J].焊接学报,2010,31(8):9-12.
    [136] Fu Q, Xue S B, Yao H Q, et al. Digital wire-feeding system based on fuzzy adaptive PI control[C]. The2ndInternational Conference on Information Science and Engineering7(2010)5079-5082.
    [137] G.W. Chang, H.X. Wang, X.D. Yue, H.L. Zhang. Research of the feeding speed adopting cored-wire method tospheroidize ductile iron Melt[J]. Acta Metallurgica Sinica21(2008):362-368.
    [138] Waheed Ul Haq Syed, Lin Li. Effects of wire feeding direction and location in multiple layer diode laser directmetal deposition [J]. Applied Surface Science248(2005):518-524.
    [139]傅圣希,李烨.焊丝熔化率公式研究[J].焊接学报,1995,16(4):226-231
    [140]张广军,李莉群,高洪明.焊接电弧引弧机理的探讨[J].焊接学报,1997,18(4):238-249
    [141] D. Farson,C. Conrardy. Arc initiation in gas metal arc welding [J]. Welding Journal77(1998)315-321.
    [142]傅延安. GMAW引弧动态过程DSP控制优化[D].上海:上海交通大学硕士论文.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700