可变外特性埋弧焊控制系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
埋弧焊焊接过程的控制是焊接领域内一个重要课题。由于电弧的非线性以及现场条件的复杂干扰,使得对埋弧焊焊接过程的控制存在较大的难度,控制效果难以达到要求。针对现有的控制器适应性和鲁棒性不高的问题,论文对埋弧焊的焊接过程进行了分析,并对其控制方法进行了研究。主要内容有:
     埋弧焊焊接过程分析。首先对埋弧焊焊接过程进行了分析,在对焊接过程的各个子模块进行详细研究的基础上,得到了埋弧焊的数学模型。并且分析了可变外特性埋弧焊系统中的两个子系统:等速送丝埋弧焊系统和变速送丝埋弧焊系统。
     埋弧焊系统的线性化。对常用的线性化方法做了分析,并采用基于微分几何的精确反馈线性化方法对埋弧焊系统进行了处理,得到了其线性化的数学模型。
     埋弧焊系统的滑模变结构控制。对滑模变结构控制理论进行了研究,针对得到的线性化埋弧焊数学模型,设计了变速送丝埋弧焊的滑模控制器。并且利用MATLAB搭建了仿真模型。仿真结果表明,设计的控制器能够达到控制要求,在出现干扰的情况下,弧长能够很快恢复。
     可变外特性埋弧焊系统实现。分析了系统的弧焊电源主电路、控制电路及送丝系统等各个部分。并且给出了控制系统的软件框图,通过软件实现滑模变结构控制算法。
In welding field, control for the process of submerged arc welding is an important subject. Because of the nonlinear of arc and complex disturbances in field conditions, it's difficult to control and meet the requirements. For the low adaptability and robustness of existing controllers, this paper analyzes the weld process of submerged arc welding and has a research on the control methods. The main contents of this paper are:
     An analysis is conducted on the submerged arc welding process. First, a detail study is given to every module of submerged arc welding process. Then, the model of the submerged arc welding is obtained based on the mathematical model of these sub-modules. And the changeable external characteristic of submerged arc welding system which contains two subsystems is studied. The two subsystems are the submerged arc welding system with constant wire feed speed and the one with variable wire feed speed are construed.
     Linearization of the non-linear submerged arc welding models is carried. First, the common meatheads of linearization are analyzed and the accurate feedback linearization based on differential geometry is chosen. According to this meathead, the non-linear model of submerged arc welding is converted to linear model.
     The sliding model controller for submerged arc welding is designed. First, the theory of sliding model control is studied. Then, the sliding model controller is planed for the linear model, which is converted from the submerged arc welding with variable wire feed speed. And then, the simulation models are set up on the platform of the MATLAB. The results show that the designed controller can commendably achieve the requirement. In the case of disturbance, the length of arc recovers quickly.
     The control system on submerged arc welding with changeable characteristics is realized. First, the main circuit of arc welding power is studied and designed. The control circuit and wire feed system are also analyzed. Then, the software charts are shown and the arithmetic of sliding mode control is realized.
引文
[1]胡绳荪.现代弧焊电源及其控制[M].北京:机械工业出版社,2006
    [2]韩国民.焊接工艺理论及技术[M].北京:机械工业出版社,2007
    [3]王纯洁.新一代的埋弧焊[J].电焊机,2010,40(2):88~90
    [4]王星云,王平,李国锋,等.弧焊电源的现状与展望[J].电焊机,2009,39(7):66~68
    [5]Dhas J.E.R, Kumanan, S. Neuro hybrid model to predict weld bead width in submerged arc welding process[J]. Science and Industrial,2010,69(5): 350~354
    [6]武春学,张俊旭,朱丙坤,等.高效埋弧焊技术的发展及应用[J].热加工工艺,2009,38(23):173~176
    [7]Ueyama, T. Welding power sources [J]. Welding International,2010,24(9): 699~705
    [8]林放,黄文超,陈小峰,等.基于局部牛顿插值的数字化焊机参数自调节算法[J].焊接学报,2011,32(3):33~36
    [9]高莹,李桓,黄宗仁,等.交直流双丝埋弧焊电弧干扰分析及控制策略[J].焊接学报,2009,30(2):17~20
    [10]杨绍辉.埋弧焊机数字化控制的研究[D].济南:山东大学,2006
    [11]何宽芳,黄石生,李学军,等.双电弧共熔池埋弧焊数字化协同控制系统[J].中国机械工程,2011,22(2):235~239
    [12]Xixia Huang, Fanhuai Shi, Wei Gua, etc. SVM-based fuzzy rules acquisition system for pulsed GTAW process[J]. NDT & E International,2010,22(8): 1245~1255
    [13]何宽芳,黄石生,孙德一.面向埋弧焊的专家系统[J].华南理工大学学报,2008,36(10):135~138
    [14]Juan Zapata, Rafael Vilar, Ramon Ruiz. An adaptive-network-based fuzzy inference system for classification of welding defects[J]. NDT & E International,2010,43(3):191~199
    [15]S. M. Mahmoud, L. Chrifi-Alaoui, V. Van Asshe, etc. Sliding mode control nonlinear SISO systems with both matched and unmatched disturbances [J]. International Journal of Science and Techniques of Automatic Control and Computer Engineering,2008,2(1):350~367
    [16]Mehata A.J, Bandyopadhyay B, Inoue A. Reduced-order observer design for servo system using duality to discrete-time sliding-surface design[J]. IEEE Transactions on Industrial Electronics,2010,57(11):3793~3800
    [17]张光先.逆变焊机原理与设计[M].北京:机械工业出版社,2008
    [18]张立斌.弧焊质量自动控制基础[M].哈尔滨:哈尔滨工程大学出版社,2007
    [19]董锋斌,皇金锋,钟彦儒.一种三相SPWM逆变器的建模的控制方法[J].电机与控制学报,2010,14(8):87~92
    [20]庞清乐.数字脉冲MIG弧焊电源的设计[J].焊接学报,2010,31(8):53~56
    [21]佘致廷,陈文科,潘岱灿,等.新型半桥高频软开关PWM DC-DC气保逆变焊机[J].仪器仪表学报,2010,31(10):2568~2573
    [22]王春芳,李强.基于DSP+单片机的逆变弧焊电源控制系统[J].控制工程,2006,13(9):108~111
    [23]李桓,刘琼,杨立军,等.脉冲埋弧焊动态过程仿真模型的建立[J].焊接学报,2005,26(4)9~12
    [24]左敦桂.基于DSP的数字化脉冲MIG焊接电源的弧长控制及仿真研究[D].上海:上海交通大学,2007
    [25]薛晓明,杨长江.无刷直流电机建模研究[J].电机与控制学报,2009,13(6):875~878
    [26]黄健康,石玗,卢立晖,等.脉冲MIG焊建模仿真分析及弧长控制[J].机械工程学报,2011,47(4):37~41
    [27]李桓,刘琼,杨立军,等.变速送丝系统脉冲埋弧焊过程仿真模型的建立[J].兰州理工大学学报,2004,30(8)291~294
    [28]何建萍,华学明,吴毅雄.GMAW短路过渡动态模型的建立[J].焊接学报,2006,27(9):77~80
    [29]Murphy A.B. A self-consistent three-dimensional model of the arc, electrode and weld pool in gas-metal arc welding[J]. Applied Physics,2011,44(19): 2658~2664
    [30]Khalili M, Haeri M, Tipi A.R.D. Designing of a static frequency observer for GMAW process in the globular transfer mode[J]. Control Automation and Systems,2010,5(17):286~289.
    [31]张元涛,石为人,李建立,等.基于反馈线性化的船舶自动舵模糊滑模 控制[J].系统仿真学报,2010,22(10):2337~2341
    [32]梅生伟,申铁龙,刘康志.现代鲁棒控制理论与应用[M].北京:清华大学出版社,2008
    [33]汤志杰.非线性反馈线性化方法在飞控系统中的应用[D].西安:西北工业大学,2010
    [34]李小伟,史俊武,张建武.主动油气悬架反馈线性化及PID控制[J].上海交通大学学报,2006,43(10):1521~1525
    [35]马红波,冯全源.基于精确反馈线性化的Buck开关变换器变频PWM滑模控制[J].电力自动化设备,2009,29(8):28~32
    [36]Jesper. S. Thomesen. Feedback Linearization based Arc Length Control for Gas Metal Arc Welding[J]. American Control Conference,2005,6(12): 3568~3573
    [37]王奔,庄圣贤译.非线性控制系统[M].北京:电子工业出版社,2006
    [38]胡春华.基于精确线性化方法的纵列式无人直升机输出跟踪[D].北京:清华大学,2004
    [39]姚玮,陈敏,牟善科,等.基于反馈线性化的高性能逆变器数字控制方法[J].中国电机工程学报,2010,30(12):14~19
    [40]林辉,王永宾,计宏.基于反馈线性化的永磁同步电机模型预测控制[J].中国电机工程学报,2011,30(3):53~57
    [41]Brown G, Postlethwaite C.M, Silber M. Time-delayed feedback control of unstable periodic orbits near a subcritical Hopf bifurcation[J]. Nonlinear Phenomena,2011,240(10):859~871
    [42]韩绪鹏,李志民,孙勇,等.基于反馈线性化的TCSC滑模控制[J].控制工程,2010,17(1):51~54
    [43]张昌凡,何静.滑模变结构的智能控制理论与应用[M].北京:科学出版社,2005
    [44]K. A. Michels. Model Based Fuzzy Controller[J]. Fuzzy Sets and Systems, 2006,85(2):223~225
    [45]Michael Basin, Dario Calderon-Alvarez. Sliding mode regulator as solution to optimal control problem for non-linear polynomial systems [J]. Franklin Instisute.2010,347(6):910~922
    [46]B. Yoo, W. Ham. Adaptive fuzzy sliding mode control of nonlinear system [J]. IEEE Transactions Fuzzy Systems,2004,6(7):315~321
    [47]Bazargan-Lari Y, Eghtesad M, Assadsangabi B. Study of Internal Dynamics Stability and Regulation of Globular-Spray Mode of GMAW Process via MIMO Feedback-linearization Scheme[J]. Intelligent Engineering Systems, 2008,16(4):31~36
    [48]李庆良,雷虎民,杨志峰,等.一种基于即时学习的非线性系统滑模预测控制方法[J].控制与决策,2011,26(4):53~55
    [49]胡强晖,胡勤丰.基于趋近率的永磁同步电动机滑模变结构抖振[J].电机与控制应用,2010,37(12):7~12
    [50]瞿少成.不确定系统的滑模控制理论及应用研究[M].武汉:华中师范大学出版社,2008
    [51]汪海波,周波,方斯琛.永磁同步电机调速系统的趋近律滑模控制[J].微电机,2009,42(10):44~48
    [52]胡剑波,庄开宇.高级变结构控制理论与应用[M].西安:西北工业大学出版社,2008
    [53]孙彪,孙秀霞.一种新的趋近律离散滑模控制方法及仿真[J].系统仿真学报,2010,22(10):2422~2426
    [54]胡清阳,赵智江,鲍云杰.基于DSP的CAN总线通信及其在交直流埋弧焊中的应用[J].电焊机,2009,39(6):57~62
    [55]刘和平,严利平,张学锋,等.TMS320LF240xDSP结构、原理及应用[M].北京:北京航空航天大学出版社,2006
    [56]黄鹏飞,张涛,古金茂,等.基于模糊PI控制的全数字送丝系统研究[J].电焊机,2010,40(7):33~37
    [57]潘厚宏,张智明,王清龙.基于H桥电机驱动模块L292的埋弧焊送丝电路[J].电焊机,2010,40(10):52~54
    [58]张大鹏,李良光,邢丽坤.基于DSP2812的IGBT逆变焊机设计[J].电源技术,2011,35(2):207~209
    [59]张建纲,孙俊生.基于数值模拟的GMAW焊接熔深控制模型[J].山东大学学报,2002,32(3):232~235
    [60]Ranjeet Agarwala. Control of Robot Integrated Gas metal Arc Welding Process [D]. Kingsville:Texas A&M University,2000
    [61]Srikanth Kottilingam. Control of robot-integrated gas metal arc welding process [D]. Alabama:Auburn University,2001
    [62]王睿.全数字化焊接电源控制系统研究[D].兰州:兰州理工大学,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700