松辽盆地齐家—古龙凹陷凝析油气形成机制及资源潜力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
松辽盆地是我国最大的中新生代淡水湖泊相含油气盆地,齐家-古龙凹陷是盆地内的一个二级构造带,北部为齐家凹陷,南部为古龙凹陷。松辽盆地的形成大致经历了五个阶段,其中的裂陷阶段、沉陷阶段和萎缩平衡阶段沉积了齐家古龙凹陷的主要沉积盖层。青一段(qn1)、青二三段(qn23)、嫩一段(n1)泥岩是凹陷内的三套主要烃源岩,有机质类型以腐泥型为主,均为大型淡水(有海侵过程)深湖、半深湖相沉积;有机质丰度高、分布广、厚度大;嫩江组基本处于热催化生油气阶段,青山口组有相当部分进入热裂解生凝析油气阶段;生烃门限1200m 左右,生凝析油气门限1900m 左右。估计凹陷内现今地层温度与最高古地温相当。地层温度、压力皆南高北低,超压主要发育于南部葡萄花以下油层。
    齐家古龙地区有相当多的探井油气同产,绝大部分气油比较低。先用经验法对这些井进行初步筛选并考虑有无原始地化资料等因素,选择5 口井6 个油气层用经验法、计算相图法、实验相图法判别,最终认为英51 井葡萄花油层和古109 井葡萄花油层为凝析气藏,古31 井黑帝庙油层为产冷凝油的气藏。
    英51 井共有5 个油气层(F、qn1、G2、G1、P),顶部的葡萄花油层是凝析气,G2 层经相态判别为带气顶的油层。英51 井的5 个产层油气样品都进行了多项地化分析。根据英51 井和古109井的地质背景和油气组分分析,发现用业以提出的相态成因(如原生型、分异型、气洗型、气侵型)都难以给出圆满解释。
    与黑油相比,凝析油和和冷凝油的突出特征是以轻质组分为主,绝大部分为汽油馏分;油油对比和油源对比使用生标参数常难奏效。考虑到热蒸发是一种物理过程,性质相近的化合物之比值在热蒸发过程可能变化不大。本文尝试使用色谱指纹技术进行油油对比,根据热蒸发实验选择色谱图上相邻、分离效果,峰高相当的16 对化合物比值做为指纹。据色谱指纹、气体同位素、尤其是单体烃同位素的综合对比认为,英51 井葡萄花油层凝析油、气与下伏油层油、气同源,且与G2 层油气关系密切。
    由于沉积环境的相似性,常规的甾萜参数区分三套主要源岩效果不佳。对源岩色谱数据整理后建立了Pr/nC17、Ph/nC18区分青山口组和嫩江组的标准。由此标准判别,英51 井5 个油气层的油气皆来自青山口组。
    定量评价烃源岩生油气量在平面上的分布是凝析油气预测的基础。在比较了各种方法的优缺点后,选择了高压釜加水模拟实验法和有限平行一级反应化学动力学模型来评价源岩的油气生成量。由于凝析油以轻质组分为主,常用的两分法不能体现这一特征,为此进行了专项实验,标定了三分法(C1~5、C6~13、C14+)化学动力学参数,为定量评价区内烃源岩生气量,生“轻质油”量,生“重质油”量奠定了基础。
    英51 井、古109 井凝析气相态由热蒸发作用形成,是本文的重要观点之一,对此从地质、模拟实验、理论分析等多个方面进行了论证。(1) 凝析气分布在同源油的顶部且与下部含气油层关系密切,表明热蒸发作用的可能性。(2) 英51 井P凝析油与G2 黑油之间和古109 井区冷凝油与黑油之间的组分关系、甲苯/正庚烷和正庚烷/甲基环己烷参数关系,与蒸发实验所表现出来的规律一致。(3) 根据英51 井G2 层、P层温度、压力及两层油气的平均组分,计算了P层源自G2 层热蒸发的正构组分对(C1/C2~nC22/nC23)和部分常用化合物对(如Pr/nC17、正庚烷/甲苯等共7 对)的相对挥发度。实测G2、P层油气样品的这些组分含量比值与由相对挥发度在理论上所约束的关系具有很好的一致性;对古109 井也进行了类似的比较,同样与也支持热蒸发分馏机制。(4) 不同分区甲烷含量的垂向趋势也为热蒸发作用的存在提供了补充证据。经过分区成图,表现为热蒸发分馏模式的区块皆位于古龙凹陷内。(5) 蒸发出来的烃类需要通过油层顶部盖层向上部泄漏,这种
In China, the Songliao Basin is the biggest petroliferous basin with Cenozoic fresh water lacustrine facies. Qijia-Gulong sag is a second-order structural zone in the basin, in which the north is Qijia sag, and the south is Gulong sag. As known, formation of the Songliao Basin has approximately undergone five stages, in which the rift stage, the downpunching stage and the atrophy balance stage deposit the main deposition cover strata in Qijia-gulong sag. And the mudstones of Qingshkou 1st member (qn1), Qingshkou 2-3nd member (qn23) and Nenjiang 1st member (n1) are three sets of main hydrocarbon source rocks, in the sag, whose organic matter type is sapropelic, and the deposition is large scale fresh water semideep-deep lacustrine facies (with sea ingression process).And the organic matter is abundant, distribution is wide, the thickness is great. In general, the Nenjiang formation is at the thermo-catalysis stage, and the considerable proportion of Qingshankou formation has entered pyrolysis stage as condensate oil-gas generating; the depth threshold is about 1200m, and the condensation oil gas threshold is around 1900m. The nowadays geotemperature in sag may be equal to the maximum paleogeotemperature. Formation temperature and pressure is all high in south and low in north. And overpressure mainly develops in the south below Putouhua oil layer.
    In the Qijia-Gulong area, there are quite many exploratory wells which produce oil and gas synchronously; most of the gas/oil ratio is low. In this paper, first, by the experiential rule, primarily choose wells and consider some factors, such as the primitive geochemical material, and then pick out 5 wells 6 oil layers, with the experiential rule, the computation phase diagram method, and the experimental phase diagram method from the various distinction, finally obtain the result that the English 51 well Putouhua oil layer and the Gu 109 well Putouhua oil layer are condensate gas pools, the Gu 31 well Heidimiao oil layer is a gas pool with condensation oil .
    The Ying 51 well has 5 oil-gas layers (F, qn1, G2, G1, P), the top Putouhua oil layer is the condensate gas reservoir, the G2 layer, by the phase state distinguish, is a oil layer with gas cap. The samples from 5 oil-gas layers of Ying 51 well are all carried on many geochemical analyses. According to the Ying 51 well and the Gu 109 well geological backgrounds and the oil gas component analysis, find that it is difficult to explain perfectly by the phase state origins that have been proposed (such as primary, differentiation, gas washing, gas irruption).
    Compared with the black oil, the prominent characteristic of condensate and condensation oil is mainly of the light quality components, and most is gasoline fraction. For the oil-oil correlation and the oil-source correlation, using the biomarkers parameter is often difficult to be effective. Considering thermo-evaporation is physical process, in thermo-evaporation process, ratios of the compounds whose natures are close cannot change greatly. In this article, we attempt to use chromatograph fingerprint technology to carry on the oil-oil correlation. Based on thermo-evaporation experiment, choose 16 pairs of compound ratio as the fingerprint, which are neighboring, have separate effect, and considerablely high peak in the spectrogram. According to the synthesis contrast between chromatograph fingerprint,
    the gas isotope, especially monomer hydrocarbon isotope, believe that in Ying 51 well, Putouhua condensate oil and gas and underlying oil and gas are from the same source, also are relative to the G2 level oil gas closely. As a result of the environment of deposition similarity, the conventional parameters, steroid and terpene, can not differentiate three sets of main source rocks effectively. After the analysis of source rocks chromatograph data, the paper has established Pr/nC17, Ph/nC18 standard for distinguishing Qingshankou Formation and Nenjiang Formation. And by the standard, find that the oil-gas of Ying 51 well 5 oil layers all comes from the Qingshankou Formation. Evaluating source rock hydrocarbon generation quantificationally in the horizontal distribution is the foundation of condensation oil gas forecast. After comparing the merits and demerits of each method, choose the high pressure vessel watering simulation method and the limited parallel first level reacted the chemical kinetics model appraises the oil gas quantity generated by source rock. Due to the condensate makeup the light oil, the common dichotomy cannot reflect this characteristic, as a result, carry on the special experiment, demarcate the trichotomy (C1~5, C6~13, C14+) the chemical kinetics parameters, which lays the foundation for the quantitative evaluation of gas generation quantity, "the light oil" generation quantity, and "the heavy oil" generation quantity of the hydrocarbon source rocks in the area. The thermo-evaporation fractionation is the reason for condensation gas phase state in Ying 51 well and the Gu 109 well, which is one important view of this article. Demonstrate it from the geology, the modeling, the theoretical analysis and many other aspects. (1) The condensation gas layer distributes in oil layers top of homologous source and has close relation with lower part oil-gas layer, which indicates the possibility of thermo-evaporation function. (2) The oil component relations between the Ying 51 well P condensate and the G2 oil, and between the Gu 109 well area condensation oil and black oil, the parameter relations between toluene/ heptane and heptane/methyl cyclohexane, are consistent with the law displayed in evaporation experiment. (3) According to the temperature, pressure and average components of the two oil-gas reservoirs, G2 , P reservoirs in Ying 51 well, relative volatility of C1/C2~nC22/nC23 and the partial commonly used compound (for example Pr/nC17, the normal heptane/toluene and so on, altogether 7 pairs) are calculated if P layer hydrocarbons component accumulation from the G2 layer thermo-evaporation. The component content ratios measured from G2, P oil gas samples are well consistent with the theoretical relations which is restrained by relative volatility. And carry on the similar comparison in the Gu 109 well, in the same way, support the thermo-evaporation fractionation mechanism. (4) Trend of methane content variety with depth in different districts also has provided the supplement evidence for the existence of thermo-evaporation function. After districting, become the charts, all sub-areas displayed by the thermo-evaporation fractionation pattern are located in the Gulong sag. (5) Evaporated hydrocarbon compound needs to divulge through the top of cap rock to upside, this kind of micro leakage channel may be cap rock itself micropore, also can be the cap rock existence micro crack even some minor faults. The former studies indicate that there is the existence of this kind of micro crevasse, in mudstones of the Gulong sag Qingshankou Formation, which can be vapors channel for upward migration. This article has proven the existence of oil cracking into gas from 4 aspects: (1) Oil cracking gas and
    kerogen degradation gas have different component characteristics, Puxi oilfield and the Gu 6 well area Putouhua oil layer mainly manifest the mixing effect for oil cracking gas and kerogen degradation gas. (2) The simulation experiment for oil heating indicates that when the crude oil is heated up to the point, Ro=1.2~1.6%, oil starts to crack into gas, and δ13C1 generated by oil cracking obviously change to be lighter in the early stage of oil cracking. (3) In this article, Qijia-Gulong nature gas δ13C1 becoming lighter just may explain that the kerogen degradation gas mixes up with the gas from early oil cracking. (4) Combining hydrocarbon generated section with bury history, it is could be know that qn1 and qn23 mainly generate and exclude the mature oil, but the light hydrocarbon parameters indicate that most Qijia-Gulong crude oil is high-mature oil. The author believes that majority of high-mature oil results from continuing mature, which can qualitatively interpretate why placanticline is the mature oil distribution area, but the Gulong sag is the high-mature oil distribution area. It could be obtained that the oil cracking is at the early stage according to Qingshankou Formation's Ro situation and the hydrocarbon generating section. The oil cracking gas provides the supplement matter for the thermo-evaporation. Meanwhile, based on the preliminary analysis, believe that the oil to gas is the main reason for the unusual pressure in the Gulong sag. The gas washing is another origin for which the condensation oil gas forms. This article defines concepts of the relative solubility, α, and the residual ability, h, deduces the equations to express component change relations related to αand h; examines the influence of gas-oil ratio, temperature and pressure on αwhen gas washes occurs, and the changes of partial geochemical parameters in different gas wash condition. In terms of the above theoretical achievement, analyze the component characteristics and the main relations between geochemical parameters of three oil gases in Gu 31 well (to be upward, in turn P, H2, H1), and believe that in Qingshankou Formation, natural gas washes the H2 reservoir which has already formed along the fault upward migration and gathers at upside and forms H1 gas reservoir. As gas washing occurs at low temperature, low pressure, small oil enters in the gas phase, moreover, the temperature and pressure of H1 reservoir are lower, therefore H1 contains few condensation oil. According to the chemical kinetics achievement and the source rock growth situation, calculate the C14+ oil generated mass of n1, qn23 and qn1 in Qijia-Gulong area, in turn, is163.1×108t, 191.4×108t, 156.3×108t, the C6~13 oil generated mass is 28.2×108t, 90.0×108t, 104.8×108t, the C1~5 gas generated mass is 3.51×1011m3, 33.83×1011m3, 108.15×1011m3; the expelled oil mass is 95.3×108t, 167.1×108t, 197.9×108t, the expelled gas mass is 0.66×1011m3, 22.0×1011m3, 103.3×1011m3, total generated light oil mass is 223.0×108t, and total expelled oil mass and gas mass is 460.4×108t and 126.0×1011m3. We see that the light oil mass is less than half of the total oil mass, comparing with the condensate major part for the gasoline fraction, there is great difference. Even if make use of qn1 which the expelled gas mass is the biggest to calculate, the gas-oil ratio can not reach the general requirement for the condensation gas pool formation, in fact, which is the internal cause for the Qijia-Gulong area difficult to form the primary condensation gas pool. In general, although the condensate gas mainly is composed of light oil and gas, at most conditions,light oil and gas cannot always form the condensate gas pool, only in the middle of the sag where temperature and pressure are higher, and only when the component composition and the gas-oil ratio is proper, there is the possibility to form the condensate gas pool. The
    phase state origin of Ying 51 well and the Gu 109 well condensate furtherly show the strict conditions to be needed to form the condensation gas pool in the Qijia-Gulong area. Based on the former experience and the Qijia-Gulong realities, regard the natural gas transport-gather coefficient as 5‰~3%, in the area natural gas resources quantity is situated between 730~4370×108m3. Considering the practice of condensation gas formation in the area, it is reasonable to believe that 10% of natural gas resources can form condensate gas, and use medium condensate content gas-oil ratio 5000m3/m3 to caluclate, then in the region of interest the condensate resources quantity is situated between 150~870×104m3, and the corresponding the condensate gas is 73~437×108m3. The superimposition shows the primary factors which may possibly affect the condensation gas pool to form and distribute, that is, the light oil generating intensity isoline, the natural gas generating intensity isoline, the Putouhua oil layer temperature isoline and n1 section mudstone percentage isoline which is regarded as important region cap rock in area(reflecting preserving condition), It is observed that, the Gu 124-Gu 86 well area should be the most advantageous distribution area for growing the condensation gas pool, while Ying 8 well area and the Gu 933-Jin 45 well area might be better areas where light oil and natural gas generating intensity are higher but other conditions are not synchronously best. Considering the thermo-evaporation fractionation as the main mechanism to formed the condensation gas pool in the area, the areas whose faults grow better, through which can link upper and lower oil layers in the advantageous area, are good target for exploring condensate gas pool, which need more work on the geology and the geophysics.
引文
[1] Barth, T. et al. Generation of organic compounds by hydrous pyrolysis of kimmeridge oil shale-bulk results and activation energy calculations[J]. Org.Geochem.,1989,14,No.1.
    [2] Behar, F., S. Kressmann, J. L. Rudkiewicz et al. Experimental simulation in a confined system and kinetic modelling of kerogen and oil cracking [J]. Org. Geochem., 1992, 19(1-3):173-190.
    [3] Bjorφy, M. , Peter B. Hall and Rita P. Moe, Variation in the isotopic of single components in the C4-C20 fraction of oils and condensates [J]. Org. Geochem. 1994, 21(6/7):761-776.
    [4] Bjorφy, M., B. P. Hall and R. P. Moe. Variation in the isotopic of single components in the C4-C20 fraction of oils and condensates. Org. Geochem. 1994,21(6/7):761-776.
    [5] Botneva, T. A., N. S. Shulova, O. L. Nechaeva, et al. Geochemical aspects of the genesis and accumulation of gas-condensate systems [J]. Org. Geochem., 1990, 16(1-3):569-575
    [6] Burnham, A. K. and J. J. Sweeney, A chemical kinetic model of vitrinite maturation and reflectance [J]. Geochim. Cosmochim. Acta 1989, 53:2649-2657.
    [7] Ca?ipa-Morales, N. K., C. A. Galán-Vidal, M. A.Guzmán-Vega, et al. Effect of evaporation on CB7B light hydrocarbon parameters. Org. Geochem., 2003, 34:813-826.
    [8] Carpentier, B., P. Ungerer, I. Kowalewski. Molecular and isotopic fractionation of light hydrocarbons between oil and gas phase [J]. Org. Geochem, 1996, 24(12).
    [9] Castelli, A., M. A. Chiaramonte, P. L. Beltreme. Thermal degradation of kerogen by hydrous pyrolysis A kinetic study [J]. Org. Geochem., 1990, 16(1-3):75-92.
    [10] Connan, J. Time-temperature relation in genesis [J]. AAPG Bull. 1974, 58: 2516-2521.
    [11] Cooles, G.P., et al. Calculation of petroleum masses generated and expelled from source rocks[J]. Org. Geochem., 1986, 10:235-245.
    [12] Cramer. B., M. K. Bernhard, L. Ralf. Modelling isotope fractionation during primary cracking of natural gas: a reaction kinetic approach [J]. Chemical Geology, 1998, 149:235-250.
    [13] Danesh, Ali. 油藏流体的PVT 与相态[M], 沈平平, 韩冬译. 北京:石油工业出版社, 2000, 263-264.
    [14] Delvaux D., H. Marin, P. Lwplat et al. Geochemical characterization of sedimentary organic matter by means of pyrolysis pyrolysis kinetic parameters [J]. Org. Geochem., 1990, 16(1-3):175-187.
    [15] Duppenbeckev, S. and Horsfield, B. Compositional information for kinetic modeling and petroleum type prediction [J]. Org. Geochem., 1990, 16(1-3).
    [16] Dzou, L. I. P. and W. B. Hughes. Geochemistry of oils and condensates, K field, offshore Taiwan: a case study in migration fractionation [J]. Org. Geochem. 1993, 20(4):437-462.
    [17] Graas, G. W. van, A. E. Gilje, T. P. I. Isom et al. The effect of phase fractionation on the composition of oils, condensates and gas [J]. Org. Geochom., 2000, 31:1419-1439.
    [18] Hill, R. J., Tang Yongchan, I. R. Kaplan, Insight into oil cracking based on laboratory experiment. Org. Geoohem., 2003, 34:1651-1672.
    [19] Klomp,U.C. and P.A.Wright,1990,A new method for the measurement of kinetic parameters of hydrocarbon generation from source rocks,Org.Geochem.,16(1-3):49-60.
    [20] Lafargue,E. et al.,Experimental simulation of hydrocarbons expulsion[J]. Org. Geochem.,1990, 16(1-3).
    [21] Larter, S., Mills,N. Phase-controlled molecular fractionation in migrating petroleum changes, in:England, W.A. & Fleet,A,J.(eds.)[M], Petroleum Migration, Geological Society, Special Publication, 1991, 59:137-147.
    [22] Leythaeuser, D. Geochemical effects of primary migration of petroleum in kimmeridge source rock from Brae field area,North sea [J]. Geochim. Cosmochim. Acta, 1988,52:701-713.
    [23] Lopatin, N. V. Temperiatare and geologic time as factors in coalification. Izvastiya Akademii Nauk USSR. Seriya Geologicheskaya, 1971, 3:95-106.
    [24] Mango F. D. The light hydrocarbon in petroleum: A critical review [J]. Org. Geochem. 1997, 7/8:417-440.
    [25] Mango F. D. The origin of light hydrocarbon in petroleum: a kinetic last of the steady state catalytic hypothesis [J]. Geochim. Cosmochim. Acta, 1990, 54:1315-1323.
    [26] Masterson, W. D., L. I. P. Dzou, A.G. Holba, et al. Evidence for biodegradation and evaporative fractionation in West Sak, Kuparuk and Prudhoe Bay field areas, North Slope, Alaska. 2001, 32:411-441.
    [27] Meulbroek, P. Equations of state in exploration [J]. Org. Geochem, 2002, 33(6):613-634.
    [28] Meulbroek,P., Cathles, L. & Whelan, J. Phase fractionation at South Eugene Island Black 330[J]. Org. Geochem, 1998, 29(1-3):223-239.
    [29] Peng, D.Y., Robinson D.B., A new two-constant equation of state [J], Ind Engchem Fund. 1976, 15(1):59-64
    [30] Price, L. C., L. M., Wenger, T. Ging, et al. Solubility of crude oil in methane as a function of pressure and temperature [J]. Org. Geoehom. 1983, 4(314):201-221.
    [31] Prinzhofer, A., é. Pernaton, Istopically light methane in naturcl gas: bacterial imprint or diffusivo fractionation. Chemical Geolagy 1997, 142:193-200.
    [32] Prinzhonfer, A. and Huc A Y. Genetic and post genetic molecular and isotopic fractionations in natural gases [J]. Chemical Geology, 1995, 126:281-290.
    [33] Sajgó, Cs. Assessment of generation temperatures of crude oils. Org. Geochem., 2000, 31:1301-1323.
    [34] Snowdon, Lloyd R. Natural gas composition in a geological environment and the implication for the processes of generation and preservation. [J]. Org. Geochem. , 2001, 32:913-931.
    [35] Stahl, W. J. Carbon and nitrogen isotopes in hydrocarbon research and exploration. Chem. Geol., 1977, 20, 121-149.
    [36] Sweeney, J. J., and A. K. Burnham. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics [J]. AAPG, 1990, 74(10):1559-1570.
    [37] Sweeney, J. J., R. L. Braun, A. k. Burnham, et al. Chemical kinetic model of hydrocarbon generation, Expulsion, and destruction applied to the Maracaibo Basin, Venezuela[J]. AAPG. 1995, 79(10):1515-1532.
    [38] Sylat,φ. Modeling of second migration and entrapment of a multicomponent hydrocarbon mixture using equation of state and ray-tracing modeling techniques, in: England, W.A. & Fleet, A.J. (eds.), Petroleum Migration [M]. London:Geological Society Special Publication, 1991, 111-122.
    [39] Thompson K.F.M. Light hydrocarbons in subsurface sediments [J], Geochim. Cosmochim. Acta, 1979, 43:.657-672.
    [40] Thompson, K.F.M. Classification and thermal history of petroleum based on light hydrocarbons [J]. Geochimica et Cosmochimica Acta, 1983, 47:303-316.
    [41] Thompson, K.F.M. Fractionated aromatic petroleum and the generation of gas-condensates [J]. Org. Geochem, 1987, 11(6):573-590.
    [42] Tissot, B.P and Welte, D.H. Petroleum Formation and Occurrence [M]. New York: Springer-Verlag,Berlin Heidelberg, 1978.
    [43] Ungerer,P. State of the art of research in kinetic modeling of oil formation and expulsion [J]. Org. Geochem., 1990, 16(1-3):1-25.
    [44] 白执松,罗光熹.石油及天然气物性预测[M].北京:石油工业出版社, 1995,70-78, 26.
    [45] 蔡利学等. 齐家-古龙凹陷及两侧中下部含油组合油气运聚特征和成藏条件研究. 大庆研究院(内部资料), 1998.
    [46] 陈践发、沈平等,我国凝析油的成因类型及其地球化学特征和意义[J]. 沉积学报, 1995, 13(1):
    [47] 陈荣书. 天然气地质学[M]. 武汉:中国地质大学出版社, 1989, 8-34.
    [48] 陈兴壁等. 松辽盆地北部古龙地区黑帝庙油层油气藏形成条件的几点认识. 大庆石油管理局勘探开发研究院[会议报告]. 1983.
    [49] 陈义才, 李延军, 杨远聪等. 松辽盆地古龙凹陷凝析气藏判断及其分布[J], 新疆石油地质, 1997, 18(4):313-318.
    [50] 陈义才, 李延均等. 应用热模拟实验资料油气生成相态[J]. 西南石油学院学报,1999,21(4)
    [51] 陈义才, 杨远聪等. 松辽盆地古龙凹陷凝析气藏判断及分布[J]. 新疆石油地质,1997,18(4).
    [52] 陈义才等. 塔里木盆地特殊类型天然气(塔里木国家“九.五”重点攻关项目中评估报告)[会议报告]. 西南石油学院, 1997.
    [53] 陈元千. 地层流体性质与油气藏类型[J]. 石油知识, 1987, 4.
    [54] 陈子恩, 推算沉积岩中原始有机碳含量的方法[J], 石油学报,1980,1(2).
    [55] 程克明, 钟宁宁, 王铁冠.烃源岩地球化学[M]. 北京:科学出版社, 1995, 23-76.
    [56] 程克明等. 陆相原油及凝析油的轻烃单体组成特征及地质意义[J].石油勘探与开发.1987,1:34-43.
    [57] 迟元林, 杜洪文, 霍秋立等. 高温, 高压热模拟实验装置研制及源岩生排烃研究[会议报告], 2001
    [58] 戴金星, 裴锡古, 戚厚发. 中国天然气地质学.卷一[M]. 石油工业出版社, 1992, 75
    [59] 戴金星, 戚厚发, 宋岩. 鉴别煤型气和油型气若干指标的初步探讨. 石油学报, 1985, 6(2).
    [60] 戴金星. 各类烷烃气的鉴别[J]. 中国科学(B 辑), 1992.
    [61] 戴金星. 中国煤成大中型气田形成的主控因素[J]. 科学通报.1999,44(22):2455—2464.
    [62] 戴金星等. 中国大中型天然气田形成条件与分布规律[M]. 北京:地质出版社, 1997,
    [63] 丁文龙、张博闻等. 古龙凹陷泥岩非构造裂缝的形成[J]. 石油与天然气地质,2003, 24(1)
    [64] 冯建辉,谈玉明,罗小平等. 东濮凹陷杜-桥-白地区天然气及凝析油地球化学特征及成因[J]. 地球化学,2002, 31(6):509-516.
    [65] 傅家谟, 秦匡宗. 干酪根地球化学[M]. 广东:科技出版社, 1995, 27-43.
    [66] 傅宁, 李友川, 陈桂华等. 东海西湖凹陷油气”蒸发分馏”成藏机制[J]. 石油勘探与开发, 2003, 30(2):39-42.
    [67] 高瑞褀, 蔡希源. 松辽盆地油气田形成条件与分布规律[M]. 北京:石油工业出版社. 1997, 4-10,48, 107.
    [68] 高瑞褀, 何承全, 乔秀云. 松辽盆地白垩纪两次海侵的沟鞭新种属[J].古生物学报.1992,31(1):17-29.
    [69] 郭庆福, 周平. 松辽盆地齐家英台安达地区油气生成运移和资源量预测研究[会议报告]. 大庆石油管理局勘探开发研究院, 1984.
    [70] 郭天民. 多元汽-液平衡和精馏[M]. 北京:石油工业出版社, 2002,161,81.
    [71] 郭占谦, 蔡希源, 李世荣. 松辽盆地北部及外围盆地二次油气资源评价研究[会议报告]. 大庆石油管理局, 1993.
    [72] 郝石生、高岗、王飞宇等.高过成熟海相烃源岩[M]. 北京:石油工业出版社, 1996,20-55.
    [73] 何文祥, 王培荣, 潘贤庄等. 莺-琼盆地原油的蒸发分馏作用[J]. 石油勘探与开发, 2004, 31(4):52-61.
    [74] 洪世铎. 油藏物理[M]. 北京:石油工业出版社, 1985, 24.
    [75] 黄第藩. 塔里木盆地东部天然气的成因类型及其成熟度判识[J]. 中国科学(D 辑), 1996, 26(4).
    [76] 黄第藩等. 陆相有机质的演化和成烃机理[M]. 北京:石油工业出版社, 1984.
    [77] 黄福堂. 松辽盆地油气水地球化学特征[M]. 北京:石油工业出版社. 1999, 2-6.
    [78] 黄海平, 张水昌, 苏爱国. 油气运移聚集过程中的地球化学作用[J]. 石油实验地质,2001, 23(3): 278-283.
    [79] 黄清华, 陈春瑞, 王平在等. 松辽盆地晚白垩世生物演化和古湖泊缺事件[J].微体古生物学报,1998,15(4): 417-425.
    [80] 黄汝昌等. 中国低熟油及凝析油形成与分布规律[M]. 北京:石油工业出版社, 1997.
    [81] 姜平.千米桥潜山构造凝析油气成因[J]. 天然气工业,2001,21(4):39-42.
    [82] 金强. 生油岩原始有机质恢复方法的探讨[J]. 石油大学学报,1989,13 (1):17-24.
    [83] 康永尚, 张一伟. 油气成藏动力学. 地质出版社, 1999, 10-13.
    [84] 康竹林, 傅诚德等. 中国大中型气田概论[M]. 北京:石油工业出版社, 2000, 12.
    [85] 李国玉, 唐养武等. 世界气田图集[M]. 石油工业出版社, 1991, 41.
    [86] 李绍基, 武国英. 早期识别凝析气藏的注意要点[J]. 天然气工业,1987, 7: 54-58.
    [87] 李术元. 化学动力学在盆地模拟生烃评价中的应用. 东营:石油大学出版社, 2000.
    [88] 李维铮, 甘应爱等.运筹学[M]. 北京:清华大学出版社, 1992,30-43.
    [89] 李延均、陈义才、朱江. 松辽盆地古龙地区葡萄花油层油气成因与凝析气藏形成分布[J].西南石油学院学报, 1997, 19(3).
    [90] 里德, R.C., J.M.普劳斯尼茨,B.E.波林. 气体和液体的性质[M]. 北京:石油工业出版社,李芬芝、杨怡生译,1994,11-26.
    [91] 刘庆吉, 张传绪, 张长海等,实用最优化方法[M]. 哈尔滨:黑龙江科学技术出版社, 1995
    [92] 卢双舫, 陈昕, 付晓泰. 台北凹陷有机质成烃动力学模型及其应用[J]. 沉积学报, 1997, 15(2):126-129.
    [93] 卢双舫, 付晓泰, 王振平等. 煤岩有机质成油成气热模拟动力学模型的建立及标定[J]. 地质科学, 1996, 31(1):15-21
    [94] 卢双舫, 刘晓艳, 曲佳燕等. 海拉尔盆地呼和湖凹陷有机质原始生烃潜力和原始丰度的恢复[J]. 大庆石油学院学报, 1995, 19(1).
    [95] 卢双舫, 薛海涛, 钟宁宁. 石油保存下限的化学动力学研究[J]. 石油勘探与开发, 2002, 29(6):1-3.
    [96] 卢双舫, 付晓泰, 刘晓艳等. 油成气动力学模型及其标定[J]. 天然气工业, 1996, 16(6):6-9.
    [97] 卢双舫,李洪涛,付广等.天然气富集的主控因素剖析[J]. 天然气工业,2003,23(6):7-11.
    [98] 卢双舫. 有机质成烃动力学理论及其应用[M]. 北京:石油工业出版社, 1996,
    [99] 卢双舫等. 干酪根类型数值化的探讨[J]. 天然气工业,1986,7(3).
    [100] 卢双舫等. 干酪根类型数值化的再探讨[J]. 大庆石油学院学报,1993,17(增刊).
    [101] 马安来, 包建平, 王培荣等. 盐城凹陷凝析油地质地球化学特征[J]. 地质地球化学,2003, 31(6).
    [102] 马柯阳, 周永红等. 塔里木盆地气-液溶解机制下的原油轻烃行为及其地质意义[J]. 沉积学报, 1995, 13(4).
    [103] 马柯阳. 凝析油形成新模式-原油蒸发分馏机制研究[J]. 地球科学进展, 1995, 10(6)
    [104] 庞雄奇、陈章明、陈发景. 含油气盆地地史、热史、生留排烃史数值模拟研究与烃源岩定量评价[M]. 北京: 地质出版社, 1993, 21-55.
    [105] 庞雄奇. 排烃门限控油气理论及其应用[M]. 北京:石油工业出版社, 1995,
    [106] 庞雄奇等. 地史过程中的岩石有机质含量变化及其计算[J]. 石油学报,1988,9 (1):17-24.
    [107] 任战利, 萧德铭, 迟元林. 松辽盆地古地温恢复[J].大庆石油地质与开发.2001,20(1): 13-15.
    [108] 邵华开, 陈仁华. 计算方法[M]. 北京:石油工业出版社, 1997, 10-21.
    [109] 沈平, 徐永昌, 王先彬. 气源岩和天然气地球化学特征及成气机理研究[M].甘肃科技出版社. 1991.
    [110] 石广仁. 油气盆地数值模拟方法.石油工业出版社. 1999.
    [111] 史继扬, 向明菊等. 凝析油及其伴生气在运移过程中分异研究[J]. 石油与天然气地质,1991, 12(2)
    [112] 宋岩, 王毅, 王震亮等. 天然气运聚动力学与气藏形成. 石油工业出版社,2002, 90-114.
    [113] 苏爱国, 张水昌, 向龙斌等. 相控和气洗分馏作用对油气组分和碳同位素组成的影响[J]. 地球化学,2000,29(6):549-555.
    [114] 苏爱国, 朱扬明, 梁狄刚等. 青海柴达木盆地南八仙油田油源与成藏机理[J]. 地球化学,2003, 32(4),:393-398.
    [115] 田在艺,张庆春. 中国含油气沉积盆地论[M]. 北京:石油工业出版社, 1996, 127.
    [116] 童景山. 流体热物理学性质的计算[M]. 北京:清华大学出版社, 1982,.
    [117] 汪辑安,汪集旸. 中国大陆沉积盆地地热特征与油气资源,见:含油气盆地地质学进展[M]. 西安:西北大学出版社, 1993.
    [118] 王大锐. 油气稳定同位素地球化学[M]. 北京:石油工业出版社, 2000,200-207.
    [119] 王道钰, 王德进. 生油岩与油页岩热解总包一级反应动力学方程参数的数值计算[J]. 1984,
    [120] 王璞珺, 杜小弟, 王东坡. 松辽盆地白垩纪湖侵沉积层序与湖海沟通事件的地球化学纪录[J]. 岩相古地理,1995,15(4): 14-20.
    [121] 王顺玉, 王廷栋, 明巧. 高演化地区煤系凝析油的地球化学特征[J]. 天然气工业, 1994,14(2):26-29.
    [122] 王涛. 中国天然气地质理论基础与实践[M]. 北京:石油工业出版社, 1997
    [123] 王庭斌. 天然气与石油成藏条件差异及中国气田成藏模式[J]. 天然气地球科, 2003,14(2): 79-86.
    [124] 王永祥, 徐树宝, 胡见义. 凝析气藏中油环的统计判别法探讨[J]. 天然气工业, 1990,10(5):,19-23.
    [125] 王志武,杨继良, 高瑞祺,中国石油地质志卷二-大庆油田[M].北京:石油工业出版社, 1993,15,92,118,165,237-327,376,559.
    [126] 王子文,卢双舫等. 原始有机质丰度的恢复及其意义[J]. 大庆石油地质与开发,1991,10(4).
    [127] 文亨范, 张建深等. 松辽盆地北部西部地区油气生成和运移的地球化学特征研究[会议报告]. 大庆石油管理局勘探开发研究院, 1993.
    [128] 吴乾蕃, 谢毅真. 松辽盆地大地热流[J]. 地震地质,1985,7(2):59-64.
    [129] 吴肇亮, 黄醒汉. 用生油岩生烃动力学模型计算生气量[J]. 华东石油学院学报,1986,10(3),.
    [130] 武守诚. 石油资源评价导论[M].石油工业出版社, 1994, 98-126.
    [131] 辛仁臣, 田春志, 窦同君. 油藏成藏年代学分析[J].地学前缘, 2000, 7(3):48-53.
    [132] 许运新. 古109 井凝析气藏油气特征及其形成条件分析[J].大庆石油地质与开发,1989, 8(4).
    [133] 杨峰平,陈发景,王玉华. 松辽盆地中央坳陷磷灰石裂变径迹分析[J]. 石油勘探与开发1995,22(6).
    [134] 杨国华等. 不同类型干酪根热解生烃动力学研究(二)[J].石油大学学报,1990,14(2)
    [135] 杨万里等. 松辽陆相盆地石油地质[M]. 北京:石油工业出版社, 1985,
    [136] 杨万里等. 一种利用干酪根热解参数计算生油量的方法,见:油气资源评价方法研究与应用[M]. 北京:石油出版社, 1988.
    [137] 于文卿,孙希,于恩君等.松辽盆地白垩纪地层时代划分[J].铀矿地质, 1999, 15(5):257-265.
    [138] 战树麟. 石油化工分离工程[M]. 北京:石油工业出版社, 1994, 128-130.
    [139] 张功成, 蔡希源,周章保等. 裂陷盆地分析原理和方法—以松辽盆地为例[M]. 北京:石油工业出版社, 1996, 261-266.
    [140] 张水昌. 运移分馏作用:凝析油和蜡质油形成的一种重要机制[J]. 科学通报,2000, 45(6): 667-670.
    [141] 张雁、王立新等,凝析油相态计算及储量预测[J]. 油气井测试,2002,11(1).
    [142] 张子枢. 世界大气田概论[M]. 北京:石油工业出版社, 1990.
    [143] 赵靖舟. 前陆盆地天然气成藏理论及应用. 石油工业出版社, 2003, 121-125.
    [144] 赵孟军, 曾凡刚, 秦胜飞等. 塔里木发现和证实两种裂解气[J].天然气工业,2001, 21(1)
    [145] 赵孟军, 周兴熙等. 塔里木盆地天然气分布规律及勘探方向[M]. 北京:石油工业出版社, 2002,172.
    [146] 赵文革等. 齐家-古龙地区油气藏分布规律及勘探目标评价[会议报告]. 大庆油田研究院1997.
    [147] 周兴熙, 李绍基, 陈义才. 塔里木盆地凝析气形成[J]. 石油勘探与开发,1996,23(6):7-12.
    [148] 周兴熙. 塔里木盆地凝析气的相态成因[J]. 天然气工业, 1996, 16(2):5-8.
    [149] 周兴熙. 塔里木盆地天然形成条件及分布规律[M]. 北京:石油工业出版社, 1998, 129-130.
    [150] 朱扬明, 苏爱国, 梁狄刚等. 柴达木盆地北缘南八仙油气藏的蒸发分馏作用[J].石油学报, 2003, 24(4):31-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700