面向再制造铁磁性构件损伤程度的磁记忆/超声综合无损评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的飞速发展和人口的迅猛增多,土地、能源和矿产的缺乏将会日益严重,因此,保护地球环境、节约可用能源和保持社会可持续发展变得尤为重要。再制造工程是以产品全寿命周期理论为指导,以提升废旧产品性能为目标,以优质、节能、高效、环保为准则,以先进的表面工程技术和产业化生产为手段,修复、改造废旧产品的一系列技术措施或工程活动的总称。再制造工程符合社会发展的需求,它以其特有优势,受到世界各国的广泛关注。随之而来,再制造工程需要解决的问题也越来越多。其中,如何保障再制造产品质量、增强用户对使用再制造产品的信心是重中之重,直接关系到再制造工程技术的推广应用。
     本课题以无损评估再制造铁磁性毛坯剩余寿命、保障再制造产品质量为研究目的,以金属磁记忆检测方法和超声检测方法为研究对象,通过大量静载和疲劳拉伸试验,研究金属磁记忆信号随载荷、循环次数和应力集中程度的变化规律,提取金属磁记忆信号表征疲劳损伤程度的关键参量。在此基础上,结合断裂力学理论,建立了综合采用金属磁记忆信号和超声波信号表征疲劳寿命的预测模型。在理论联系实际的基础上,综合采用金属磁记忆和超声波检测方法对再制造曲轴毛坯进行无损评估,研发相关检测装置,为无损检测技术在再制造质量评估中的应用奠定基础。主要研究成果如下:
     通过静载拉伸试验和拉-拉疲劳试验,研究了磁记忆信号与加载载荷的变化规律、磁记忆信号随载荷循环次数的变化规律以及应力集中系数对磁记忆信号的影响,提取磁记忆信号表征疲劳损伤程度的特征参量。研究了表面裂纹、应力集中程度、检测方向和提离高度对磁记忆信号的影响,用以指导磁记忆检测的工程应用。通过摩擦磨损试验,研究了试件磨损程度对磁记忆信号的影响,结果表明:磨损程度对磁记忆信号有显著影响,磁记忆信号表征磨损程度的关键参量为磁异变峰,磁记忆信号能较准确地表征试样表面磨损区域的大小和位置,并能定性评估试样表面磨损程度。
     在大量试验数据基础上,建立了静载拉伸和拉-拉疲劳时磁记忆信号随载荷和循环次数变化的数值拟合模型,并结合大量试验,验证了磁记忆信号和超声信号为特征参量表征疲劳裂纹萌生寿命和疲劳裂纹扩展寿命的预测模型的适用性。
     以再制造曲轴毛坯为研究对象,进行仿真模拟和失效分析,明确其受力状态、危险区域和失效原因,并根据分析结果,采用金属磁记忆检测技术检测旧曲轴表面裂纹和应力集中,评估旧曲轴的疲劳损伤程度;采用超声检测技术检测旧曲轴内部缺陷。
     根据再制造曲轴毛坯的材质和结构特征,设计了曲面单晶双斜探头和曲轴超声检测的专用检测装置,制定了探头校准方法,规范了曲轴超声检测步骤,解决了曲轴超声检测的定位和定量问题。
     规范了再制造曲轴毛坯的金属磁记忆检测方法。根据实际检测结果,提取了磁记忆信号表征曲轴疲劳损伤程度的关键参量——磁示应力集中系数KM,并利用KM将曲轴分为三个损伤等级,确定了表征斯泰尔发动机曲轴疲劳损伤的KM的阈值。以此为基础,综合采用金属磁记忆和超声波检测方法对再制造曲轴毛坯的再制造性进行评价。
With the rapid society and population growth, the lack of land, energy and mineral resources will become more and more serious, therefore, it becomes more and more important for environmental protection, energy conservation and society sustained development. Remanufacturing engineering is a generic terms of all techniques and engineering activity to maintain and rebuild worn products, which takes the productive whole life as direction, takes the upgrade of the perfomance of worn products as goal, takes the good quality, high efficiency, energy saving, environment protecting as rule, and takes the advanced surface engineering techniques and industrializing process as measures. Remanufacturing engineering is fit for the development of society, which is widely recognized. Then, more and more issues come out from remanufacturing engineering. How to ensure product quality and upgrade the consumer confidence are the most important, related with the application of remanufacturing engineering.
     Taking nondestructive evaluation on residual life of remanufacturing core and quality ensurence of remanufacturing product as goal, and taking metal magnetic memory testing and ultrasonic testing as subject, in this research, the regularity of metal magnetic memory signals, which changed with loads, cycles and stress concentration, were studied, and the key parameter characterizing fatigue damage was found by static tension test and fatigue tensile test. Meanwhile, the fatigue life evaluating models characterized by metal magnetic memory signals and ultrasonic signals were gived, combined with fracture mechanics. In practical application, metal magnetic memory testing and ultrasonic testing were used to evaluate the worn crankshaft before remanufacturing, and nondestructive testing clamping fixture was designed. Some of main experimental results and conclusions are shown as follow.
     By static tension tests and fatigue tensile tests, the regularity of magnetic memory signals, changed with applied load, fatigue cycles and stress concentration factor, were investigated, and the key parameter between magnetic memory signals and fatigue damage was extracted. The influences of surface cracking, stress concentration, testing direction and lift-off height on magnetic memory signals were studied for the application of metal magnetic memory testing. The regularity of magnetic memory signals, influenced by friction wear, was studied. The results showed that magnetic memory signals were obviously affected by friction wear, and the key parameter between magnetic memory signals and friction wear was abnormal magnetic peak, which could quantitatively detect the size and site of friction area, and qualitatively estimate the degree of wear.
     The numerical models of magnetic memory signals, changed with applied load in static tension test and fatigue cycles in fatigue tensile test, were fitted based on test data. The simple models of fatigue life evaluation were constructed, which were characterized by magnetic memory signals and ultrasonic signals.
     Taking the worn crankshaft before remanufacturing as subject investigated, the simulation and failure analysis of crankshaft were done to confirm the stress distribution, risk area and failure reason. According to the results, metal magnetic memory testing was used to detect the surface cracking and stress concentration, and ultrasonic testing was used to detect the flaws in the crankshaft.
     Curved double angle beam probe was applied to detect the crankshaft because of the special construction of crankshaft. The calibrating method of probe was designed, and the testing procedure of worn crankshaft was confirmed. The special clamping fixture for ultrasonic testing on crankshaft was designed, and the problems of locating testing and quantitative testing were solved.
     Metal magnetic memory testing method of worn crankshaft before remanufacturing was confirmed for application. The key parameter KM, which was magnetic stress concentration factor, was extracted from the practical data, and used to estimate the degree of fatigue damage as three grades. The key value of KM for Stir engine crankshaft was confirmed in practical application. Finally, the quality of worn crankshaft before remanufacturing was estimated by metal magnetic memory testing and ultrasonic testing.
引文
1 Xu Binshi, Zhang Wei, Liu Shican, et al. Remanufacturing Technology for the 21st Century [C]. Proceedings of the 15th European Maintenance Conference, Gothenburg, Sweden, 2000: 335~339.
    2田民波.磁性材料[M].北京:清华大学出版社. 2001: 35~40.
    3 A. Gilanyi, K. Morishita, T. Sukegawa, et al. Magnetic Nondestructive Evaluation of Fatigue Damage of Ferromagnetic Steels for Nuclear Fusion Energy Systems [J]. Fusion Engineering and Design, 1998, 42(4): 485~491.
    4徐滨士,朱胜,马世宁,等.装备再制造工程学科的建设与发展[J].中国表面工程. 2003, 16(3): 1~6.
    5徐滨士.再制造工程基础及其应用[M].哈尔滨:哈尔滨工业大学出版社. 2005: 87~90.
    6陈传尧.疲劳与断裂[M].武汉:华中科技大学出版社. 2002: 101~106.
    7袁熙,李舜酩.疲劳寿命预测方法的研究现状与发展[J].航空制造技术. 2005(12): 80~84.
    8姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社. 2003: 89~96.
    9刘建中,谢里阳,徐灏.随机疲劳全寿命可靠性分析方法[J].农业机械学报. 1992, 23(4): 46~49.
    10 Tchankov, S. Ohta, A. Suzuki, et al. Random Loading Fatigue Life Assessments for Notched Plates [J]. International Journal of Fatigue. 1999, 21(9): 941~946.
    11董月香,高增梁.疲劳寿命预测方法综述[J].大型铸锻件. 2006, 14(3): 39~42.
    12 S. K. Visvanatha, P. V. Straznicky, R. L. Hewitt. Influence of Strain Estimation Methods on Life Predictions Using the Local Strain Approach [J]. International Journal of Fatigue. 2000, 22: 675~681.
    13 H. Agerskov. An Analytical Model for Fatigue Life Prediction Based on Fracture Mechanics and Crack Closure [J]. Construct. Steel Res.1996, 37(3): 229~261.
    14 J. W. Ringsberg. Life Prediction of Rolling Contact Fatigue Crack Initiation [J]. International Journal of Fatigue. 2001, 23: 575~586.
    15 K. C. Liu, J. A. Wang. An Energy Method for Predicting Fatigue Life, Crack Orientation, and Crack Growth under Multiaxial Loading Conditions [J]. International Journal of Fatigue. 2001, 23s: 129~134.
    16 Xiulin Zheng. On Some Basic Problems of Fatigue Research in Engineering [J]. International Journal of Fatigue. 2001, 23: 751~766.
    17 A. M. P. Jesus, A. S. Ribeiro, A. Portela, et al. Software Development for the Fatigue Life Prediction of Structural Components [J]. Welding in the World. 2001, 45(11/12): 1~5.
    18 Guochun Yao, Lixing Huo, Yufeng Zhang, et al. Numerical Stress Analysis of Crack at Welder Beam-column Connection [J]. China Welding. 2000, 19(2): 30~35.
    19娄路亮,李付国,李庆华.一种计算疲劳裂纹萌生寿命的数值方法[J].机械强度. 2000, 22(3): 203~205.
    20 M. Grosse, M. Niffenegger, D. Kalkhof. Monitoring of Low-cycle Fatigue Degradation in X6CrNiTi18-10 Austenitic Steel [J]. Journal of Nuclear Materials. 2001, 296: 305~311.
    21 J. L. S. Maurer. Characterization of Accumulated Fatigue Damage in Ti-6Al-4V Plate Material using Transmission Electron Microscopy and Nonlinear Acoustics [D]. University of Dayton, 2001: 88~110.
    22 L. Cretegny, A. Saxena. Evolution of Surface Deformation during Fatigue of PH 13-8Mo Stainless Steel using Atomic Force Microscopy [J]. Fatigue Fract. Engng. Mater. Struct. 2002, 25: 305~314.
    23 G. Dobmaann, L. Debarberis, J. F. Coste. Aging Material Evolution and Studies by Non-destructive Techniques (AMES-DNT)-a European Network Project [J]. Nuclear Engineering and Design. 2001, 206:363~374.
    24 Y. Tomita, K. Hashimoto, N. Osawa. Nondestructive Estimation of Fatigue Damage for Steel by Barkhausen Noise Analysis [J]. NDT&E International. 1996, 29(5): 275~280.
    25 A. Gilanyi, K. Morishita, T. Sukegawa, et al. Magnetic Nondestructive Evaluation of Fatigue Damage of Ferromagnetic Steels for Nuclear Fusion Energy Systems [J]. Fusion Engineering and Design. 1998, 42: 485~491.
    26赵少汴.局部应力应变法的推广应用[J].机械强度. 2000, 22(3): 56~59.
    27 Tchankov, D. S. Ohta, A. Suzuki, et al. Random Loading Fatigue Life Assessments for Notched Plates [J]. International Journal of Fatigue. 1999, 21(9): 941~946.
    28 S. Suresh,王中光.材料的疲劳[M].北京:国防工业出版社. 1993: 105~120.
    29 J. Schijve. Four Lectures of Fatigue Crack Growth [J]. Engng. Fract. Mech. 1979, 44(11): 167.
    30 K. C. Liu, J. A. Wang. An Energy Method for Predicting Life Crack Orientation and Crack Growth under Multiaxial Loading Conditions [J]. International Journal of Fatigue. 2001, 23: s129~s134.
    31陈立佳,吴葳, P. K. Liaw.三种高温合金的蠕变-疲劳交互作用行为及寿命预测[J].金属学报. 2006, 42(9): 952~958.
    32 S. K. Visvanatha, P. V. Straznicky, R. L. Hewitt. Influence of Strain Estimation Methods on Life Predictions using the Local Strain Approach [J]. International of Fatigue. 2000, 22: 675~681.
    33 R. K. Luo, B. L. Gabbitas, B. V. Brickle. Fatigue Life Evaluation of a Railway Vehicle Bogie using an Integrated Dynamic Simulation [J]. Proc. Insn. Mech. Engrs. 1994, 208: 23~132.
    34 R .K. Luo, B. L. Gabbitas, B. V. Brickle. Fatigue Damage Evaluation for a Railway Vehicle Bogie using Appropriate Sampling Frequencies [J]. Vehicle System Dynamics. 1998, 28: 405~415.
    35 R. K. Luo, B. L. Gabbitas, B. V. Brickle. An Integrated Dynamic Simulation of Metro Vehicle in a Real Operating Environment [J]. Vehicle System Dynamics. 1993, 23: 335~345.
    36 R. K. Luo, B. L. Gabbitas, B. V. Brickle. Fatigue Design in Railway Vehicle Bogies based on Dynamic Simulation [J]. Vehicle System Dynamics. 1996, 25: 449~459.
    37 S. Dietz, H. Netter, D. Sachau. Fatigue Life Prediction of a Railway Bogie under Dynamic Loads through Simulation [J]. Vehicle System Dynamics. 1998, 29: 385~402.
    38 S. Stichel, K. Knothe. Fatigue Life Prediction for an S-Train Bogie [J]. Vehicle System Dynamics Supplement. 1998, 28: 390~403.
    39 S. Srikantan, S. Yerrapalli, H. Keshtkar. Durability Design Process for TruckBody Structures [J]. International Journal of Vehicle Design. 2000, 23(1/2): 95~108.
    40王成国,孟广伟,原亮明.新刑高速客车构架的疲劳寿命数值仿真分析[J].中国铁道科学. 2001, 58(3): 32~35.
    41孟广伟,王成国,刘敬辉.用虚拟疲劳样机技术分析转8A型转向架侧架的疲劳寿命[J].中国铁道科学. 2002, 60(4): 40~44.
    42虞丽娟,李元君,沈钢.机车构件疲劳寿命仿真分析[J].铁道学报. 1998, 44(3): 26~30.
    43张国庆.零件剩余疲劳寿命预测方法与产品可再制造性评估研究[D].上海交通大学博士学位论文. 2007: 39~65.
    44楼华山,楼江燕,杨靖.虚拟样机在柴油机中的应用[J].科技咨询导报. 2007, 9(27): 35~38.
    45郑中兴.无损检测概论[M].北京:北方交通大学. 1990: 154~170.
    46车俊铁,侯强,于静.兵器零部件微裂纹检测方法的对比分析[J].兵器材料科学与工程. 2005, 28(5): 44~47.
    47北京市技术交流站.超声波探伤原理及其应用[M].北京:机械工业出版社. 1982: 50~70.
    48《美国无损检测手册译审委员会》译.美国无损检测手册超声卷(下册)[M].世界图书出版公司. 1996: 220~240.
    49范智勇,郑中兴,崔建英,等.球罐焊缝检测用自动爬行器研制[J].无损探伤. 1998, 36(1): 42~46.
    50郑中兴,滕永平,崔建英,等.全数字化超声波探伤成像仪研制[J].北方交通大学学报. 1995, 19(3): 32~37.
    51 Z. X. Zheng., H. S. Sal, T. P. Yong, et al. The Study of Portable Ultrasonic P-Scan Imaging System Austenitic Weld Testing [C]. 14th World conference on NDT. India, New Delhi, 1996: 56~62.
    52 N. Nielsen. P-Scan System for Ultrasonic Weld Inspection [J]. British Journal of NDT. 1981, 3: 50~55.
    53郑中兴,滕永平,崔建英,等.超声波P扫描成像系统研究[J].机械工程学报. 1996, 32(3): 21~25.
    54 J. Spanner, G. Selby. Sizing Stress Corrosion Cracking in Natural Gas Pipelines Using Phased Array Ultrasound [J]. NDE Engineering. 2002, 22: 68~71.
    55 Z. X. Zheng, Z. Y. Fang, J. Y. Chen. Judgment of Defect in Welds by Ultrasonic Imaging Analysis System and Compared With UT-RT of Common Method in Practice [C]. 9th Application conference on NDT. USA, Anaheim, 1998: 72~76.
    56 A. A. Dubov. A Study of Metal Properties using the Method of Magnetic Memory [J]. Metal Science and Heat Treatment. 1997, 39(9-10): 401~402.
    57郭贻诚.铁磁学[M].北京:人民教育出版社. 1965: 82~90.
    58任吉林,林俊明.金属磁记忆检测技术[M].北京:中国电力出版社. 2000: 10~16.
    59 A. A. Dubov. Technique for Monitoring the Bends of Boiler and Steam–Line Tubes Using the Magnetic Memory of Metal [J]. Thermal Engineering. 2001, 48(4): 289~295.
    60杜波夫.金属磁记忆技术在俄罗斯和其他国家应用小结[C]. 2004年全国电磁(涡流)检测技术研讨会论文集.辽宁鞍山, 2004: 179~181.
    61张卫民,董韶平,张之敬.金属磁记忆检测技术的现状与发展[J].中国机械工程. 2003, 34(10): 892~896.
    62杜波夫.金属磁记忆方法和已知磁无损检测方法的原则性区别[C]. 2004年全国电磁(涡流)检测技术研讨会论文集.辽宁鞍山, 2004: 182~185.
    63任吉林,邬冠华,宋凯,等.磁记忆检测技术在飞机起落架检测中的应用[J].无损检测. 2002, 24(8): 346~348.
    64任吉林,宋凯,朱辉.磁记忆检测技术在汽轮机构件检测中的应用[J].华北电力技术. 2003, 14(6): 38~41.
    65陈曦,任吉林,王为兰,等.金属磁记忆微观机理试验研究[J].南昌航空工业学院学报. 2006, 22(3): 31~35.
    66黎连修.磁致伸缩和磁记忆问题研究[J].无损检测. 2004, 26(3): 109~112.
    67戴光,王文江,李伟.不同构件的磁记忆检测及分析方法研究[J].无损检测. 2002, 24(6): 262~266.
    68仲维畅.金属磁记忆法诊断的理论基础——铁磁材料的弹?塑性应变磁化[J].无损检测. 2001, 23(10): 424~426.
    69梁志芳,李午申,王迎娜,等.金属磁记忆信号的零点特征[J].天津大学学报. 2006, 26(7): 847~850.
    70邸新杰,李午申,黄炳炎,等.基于微分方法的焊接裂纹金属磁记忆特征研究[J].焊接技术. 2006, 24(4): 14~15.
    71梁志芳,李午申,王迎娜,等.金属磁记忆法检测焊接裂纹的时间空间有效性[J].焊接学报. 2006, 22(8): 9~11.
    72胡先龙,池永滨.磁记忆诊断技术中应力集中水平定量评估方法[J].华北电力技术. 2005, 14(6): 9~13.
    73肖迪红,罗大庸.裂缝宽度对磁记忆信号的影响的研究[J].长沙航空职业技术学院学报. 2007, 12(1): 42~44.
    74黄松岭,李路明,汪来富,等.用金属磁记忆方法检测应力分布[J].无损检测. 2002, 24(5): 212~214.
    75孙海涛,张卫民,刘红光,等.地磁场环境下铁磁性试件单向静拉伸试验研究[J].理化检验(物理分册). 2005, 26(5): 222~225.
    76张英,宋凯,任吉林.铁磁构件应力集中的计算机模拟和磁记忆检测[J].南昌航空工业学院学报. 2004, 18(1): 64~69.
    77邢海燕,樊久铭,李雪峰,等.基于磁记忆机理的铁磁材料弯曲变形状态研究[J].哈尔滨工业大学学报. 2006, 20(7): 1017~1019.
    78王文江,戴光.油管疲劳累积损伤的磁记忆检测[J].无损检测. 2005, 27(8): 393~401.
    79吴磊.结构的累积损伤和磁记忆效应的关系研究[D].大庆石油学院:黑龙江, 2005: 56~70.
    80孔红友.车用曲轴材料48MnV钢弯曲疲劳损伤的磁记忆表征研究[D].上海交通大学:上海, 2007: 82~100.
    81周后兵.裂纹扩展速率和磁记忆信号的相关性研究[D].哈尔滨工业大学:哈尔滨, 2006: 52~60.
    82Π.Chechko. Using the Method of Magnetic Memeory of Metal to Evaluate the Service Life of the Iterms of Power Equipment at the Konakovo District Power station [J]. Thermal Engingeering. 2002, 49(12): 1028~1031.
    83 A. A. Doubov. Express Method of Quality Control of a Spot Resistance Welding with Usage of Metal Magnetic Memory [J]. Welding in the World. 2002, 44(46): 317~320.
    84钟万里,刘红文,林清如.电站铁磁构件的金属磁记忆检测[C]. 2004年全国电磁(涡流)检测技术研讨会. 2004,辽宁鞍山: 73~78.
    85刘三江,李邦宪,周裕峰,等.金属磁记忆检测技术概况及初步应用[J].无损检测. 2002, 24(9): 400~402.
    86盛民,林俊明.金属磁记忆诊断技术及其对电站高温高压螺栓的检测[J].山东电力技术. 2002, 15(6): 49~51.
    87莫乾凯,杜好阳,张春雷.异种钢焊接接头的金属磁记忆检测技术[J].吉林电力. 2003, 12(2): 4~9.
    88 A. A. Doubov. Diagnostics of Metal Items and Equipment by Means of Metal Magnetic Memory [C]. NDT’99 and UK Corrosion’99 Conference. UK, London, 1999: 287~293.
    89王维明,王淑琴,刘宪民. 18CrNi4A钢组织与性能研究[J].钢铁. 1995, 30: 94~98.
    90 L. H. Dong, S. Y. Dong, B. S. Xu, et al. Investigation of Metal Magnetic Memory Signals from the Surface of Low-carbon Steel and Low-carbon Alloyed Steel [J]. Journal of Center South University Technology. 2007, 14(1): 24~27.
    91 S. T. Jiang, W. Li. Condensed Matter Magnetic Physics [M]. Beijing Science Publishing Company, 2003: 102~120.
    92 L. H. Dong, B. S. Xu, S. Y. Dong, et al. Variation of Stress-induce Magnetic Signals during Tensile Testing of Ferromagnetic Steels [J]. NDT&E International. 2008, 41: 184~189.
    93任尚坤,李新蕾,任吉林.金属磁记忆检测技术的物理机理[J],南昌航空大学学报. 2008, 22(2): 11~17.
    94张卫民,刘红光,袁俊杰,等.低碳钢扭转过程弱磁信号变化及金属磁记忆效应[J].北京理工大学学报. 2005, 25(11): 1003~1007.
    95董丽虹,徐滨士,董世运,等.拉伸载荷作用下中碳钢记忆信号的机理[J].材料研究学报. 2006, 20(4): 440~443.
    96张军,王彪.金属磁记忆检测中应力集中区信号的识别[J].中国电机工程学报. 2008, 28(28): 144~148.
    97冯瑞.金属物理学[M].北京:科学出版社. 1998: 88~100.
    98王丹,董世运,徐滨士,等.静载拉伸45钢材料的金属磁记忆信号分析[J].材料工程. 2008, 53(8): 77~80.
    99陈香军,马祥华,苏兰海.铁磁构件疲劳损伤的磁记忆效应[J].理化检验. 2008, 44(10): 536~539.
    100任吉林,陈晨,刘昌奎.磁记忆检测力-磁效应微观机理的试验研究[J].航空材料学报. 2008, 28(5): 41~44.
    101 M. A. Jiboory, D. G. Lord, Y. J. Bi, et al. Magnetic Domains and Microstructural Defects in Terfenol-D [J]. Journal of Applied. Physics. 1993, 73(10): 6168~6176.
    102屈晓斌,陈建敏,周惠娣.材料的磨损失效及其预防研究现状与发展趋势[J].摩擦学学报. 1999, 19(2): 187~192.
    103董世运,徐滨士,董丽虹,等.金属磁记忆检测技术用于再制造毛坯寿命预测的试验研究[J].中国表面工程. 2006, 19(5): 71~75.
    104 S. S. Manson.金属疲劳损伤——机理、探测、预防和维修[M].北京:国防工业出版社. 1976: 92~108.
    105 V. Kottler, N. Essaidi, N. Ronarch, et al. Dichroic Imaging of Magnetic Domains with a Scanning Near-field Optical Microscope [J]. Journal of Magnetism and Magnetic Materials. 1997, 165: 336~340.
    106 X. B. Zhu, P. Grutter. Magnetic Force Microscopy Studies of Patterned Magnetic Structures [J]. IEEE Transactions on Magnetics. 2003, 39(5): 3420~3425.
    107刘文庭,仇仲翼,黄乃人,等.结构中的断裂与疲劳控制——断裂力学的应用[M].北京:机械工业出版社. 1985: 125~140.
    108 D. B. Garcia, A. F. Grandt. Application of a Total Life Prediction Model for Fretting Fatigue in Ti–6Al–4V [J]. International Journal of Fatigue. 2007, 29(7): 1311~1318.
    109董丽虹.再制造铁磁材料金属磁记忆技术基础研究[D].装甲兵工程学院博士论文. 2008: 122~132.
    110 P. Ducheyne, E. Aernoudt, P. D. Meester. The Mechanical Behaviour of Porous Austenitic Stainless Steel Fibre Structures [J]. Journal of Material and Science A. 1978, 13: 2650~2658.
    111 J. Banhart. Manufacture, Characterisation and Application of Cellular Metals and Metal Foams [J]. Progress Mater. Sci. 2001, 46: 559~632.
    112 A. E. Markaki, V. Gergely, A. Cockburn, et al. Production of a Highly Porous Material by Liquid Phase Sintering of Short Ferritic Stainless Steel Fibres and a Preliminary Study of Its Mechanical Behaviour [J]. Comp. Sci. Techn. 2003, 63:2345~2351.
    113 Y. Yamada, C. E. Wen, Y. Chino, et al. Processing and Mechanical Properties of Open-cell Mg Alloys [J]. Mat. Sci. Forum. 2003, 419: 1013~1018.
    114 A. Woesz, J. Stampfl, P. Fratzl. Cellular Solids beyond the Apparent Density– an Experimental Assessment of Mechanical Properties [J]. Adv. Eng. Mater. 2004, 6(3): 134~138.
    115 M. Delince, F. Delannay. Elastic Anisotropy of a Transversely Isotropic Random Network of Interconnected Fibres: Non-triangulated Network Model [J]. Acta Materials. 2004, 52: 1013~1022.
    116 A. Tesch, R. Pippan, H. D?ker. New Testing Procedure to Determine da/dN–ΔK Curves at Different, Constant R-values using One Single Specimen [J]. International Journal of Fatigue. 2007, 29(7): 1220~1228.
    117徐滨士.维修工程的新方向——再制造工程在中国的发展(一)[J].维修与管理. 2009, 16(4): 17~19.
    118徐滨士,刘世参,史佩京.汽车发动机再制造效益分析及对循环经济贡献研究[J].中国表面工程. 2005, 18(1): 1~7.
    119徐滨士,刘世参,史佩京.再制造工程的发展及推进产业化中的前沿问题[J].中国表面工程. 2008, 21(1): 1~7.
    120邢忠,谢建军.汽车发动机再制造质量控制及效益分析[C].机电产品再制造工程学术研讨会论文集.济南, 2004: 10~17.
    121徐滨士.装备再制造工程的理论与技术[M].北京:国防工业出版社. 2007.
    122董世运,徐滨士,何鹏,等.重型汽车发动机曲轴断裂分析[J].失效分析与预防. 2009, 4(3): 138~142.
    123杨杰,邵慰严.整体曲轴应力计算分析[J].内燃机工程. 1982, 21(3): 34~37.
    124 F. S. Silva. Analysis of a Vehicle Crankshaft Failure [J]. Engineering Failure Analysis. 2003, 10: 605~616.
    125 C. L. Wang, C. J. Zhao, D. P. Wang. Analysis of an Unusual Crankshaft Failure [J]. Engineering Failure Analysis. 2003, 12: 465~473.
    126 W. Y. Zhi, X. L. Xu. Failure Analysis of a Diesel Engine Crankshaft [J]. Engineering Failure Analysis. 2003, 12: 487~495.
    127李坚,胡智,郭洪涛,等.单晶双斜探头探伤时缺陷定位问题的研究[J].南昌航空工业学院学报. 2001, 9(3): 12~16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700