液压胀形管件的可制造性评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对燃料和原材料成本节约的要求及各国环保法规对汽车废气排放的严格限制,汽车车身的轻量化显得越来越重要。但减小汽车车身重量的同时,必须保证汽车零部件的强度、刚度等安全性能指标,以保证汽车行驶安全。解决这一矛盾除了采用轻质材料外,另外一个重要的途径就是在结构上采用空心及变截面等强度结构件。管件液压胀形技术正是在这种背景下发展起来的一种制造空心轻质构件的先进制造技术。与传统的冲压-焊接工艺所制造的汽车结构件相比,采用管件液压胀形技术所制造的汽车零件具有重量轻、刚度和强度高、耐撞性能好、节约材料、结构紧凑、加工工序少等一系列优点,能够很好地满足汽车轻量化的特殊要求。目前,管件液压胀形技术已经在汽车车身的轻量化中发挥了重要的作用,并且受到了各大汽车制造商的广泛重视。可以预见,该技术的应用将有力的推动汽车制造技术水平的进步与提高。本文针对管件的液压胀形工艺展开研究,对于推动轿车的国产化水平具有重要的意义。
     近年来,国内外学者对于液压胀形管件的工艺设计、缺陷预测等方面开展了广泛的研究,已取得了一定的成果。但由于在汽车工业的应用较晚,液压胀形技术在产品设计、工艺设计及可制造性评价等诸多方面有待深入研究。液压胀形技术在轿车上的应用面临着诸多问题:首先,是现有零件的改型,即采用液压胀形零件代替现有的冲压-焊接零件,这是液压胀形产品设计的关键步骤。目前,液压胀形产品关键几何特征的设计缺乏必要的理论依据。其次,是液压胀形管件原材料的选择。准确的确定原材料的性能是合理选择原材料的基础,是液压胀形工艺设计及可制造性评价的重要依据。目前,仍然缺乏适用于管件液压胀形工艺的管材成形性能测试方法。如何根据液压胀形产品特征及原材料的性能设计合理的液压胀形工艺,从而在液压胀形过程中有效的避免各种成形缺陷的发生,是液压胀形产品设计的另外一个重要问题。现有的液压胀形管件的临界缺陷预测模型还不适用于复杂工艺条件下的管件缺陷预测。
     本文采用实验与理论分析相结合的方法对液压胀形管件的可制造性评价问题展开研究。首先研究了液压胀形条件下管材的成形性能的评估方法,主要包括管材的各向异性系数和管材的应力-应变关系以及管材的成形极限曲线的测试方法;然后,根据轿车用液压胀形管件的几何特征及主要缺陷形式,建立了圆形和非圆形管件的破裂和起皱临界预测模型;最后,研究了管件液压成形工艺的设计方法,为液压成形产品设计初期,零件的可制造性评价及关键几何尺寸设计提供了理论指导。
     本文的主要研究内容和创造性工作包括以下几个方面:
     1.管材成形性能评价方法研究
     影响管材液压胀形可加工性的主要材料性能有管材的各向异性性能和加工硬化特性。本文首先从材料的厚向异性系数的定义出发,提出采用液压胀形试验为主,辅以试样的单向拉伸试验的管材厚向异性系数测试方法;并提出通过液压胀形试验,辅以各种先进的测试方法构建管材的应力-应变关系曲线,从而得到液压胀形条件下管材的加工硬化模型。与试样的单向拉伸测试方法相比,有效的考虑了管材各向异性及管材制备工艺的影响,因此,更加适用于液压胀形条件下管材成形性能的评价。
     2.管材的成形极限评价方法研究
     本文从材料成形极限曲线构造的基本要求出发,针对管材在各种液压胀形模具中的变形特点,开发了适用于各种应变状态下管材成形极限测试的试验模具;根据加载路径对应变路径的影响,提出适用于成形极限曲线测试的加载路径设计方法。以此为基础,提出适用于管件液压胀形的成形极限曲线的完整测试方案。
     3.液压胀形管件的缺陷预测模型研究
     本文针对管件液压成形过程中经常出现的各种缺陷,分析各种缺陷发生的机理。采用薄壳弹塑性稳定性理论、能量法则、材料的塑性成形理论及管件的液压胀形理论,得到了管件液压胀形的起皱和破裂预测模型。为液压胀形零件及工艺设计提供了理论基础。
     4.管件的液压胀形工艺设计方法研究
     影响管件液压成形可制造性的因素有模具、材料性能、零件自身的几何特征等。本文针对管件的液压胀形工艺相关的问题展开研究,提出了液压成形模具的设计方法;并基于零件的缺陷预测模型,提出了零件关键几何尺寸的设计方法。论文最后对几个典型的试验零件进行液压胀形工艺设计和试验,试验结果很好的证明了该方法的有效性。
The lightweight of auto-body is more and more important with the demand for savingcosts of fuel and raw material, and with the strict restrict of automobile exhausts from thecodes for environmental protection of many countries. To ensure safety of running, it shouldnot reduce the safety of auto bodies while reducing the weight of auto-body parts. Except forusing light materials, another important way is to apply hollow and multi-sectional parts inplace of traditional structural parts. Tube hydroforming is an advanced technology tomanufacture such hollow and light-weight parts. Compared with the parts manufacturedthrough stamping and welding, the structural parts of auto-body manufactured through tubehydroforming has many advantages, such as lighter weight, higher rigidity and strength,higher impact strength, and saving material and space, reducing manufacturing processes andso on. All these advantages cater to the demand of light weighting for auto bodies very well.Tube hydroforming has played an important role in the light weighting of auto bodies, and hasdrawn most auto manufactures’ attention. It can be foreseen that this technology will propelthe advancement and improvement of auto-body manufacturing. Some subjects on tubehydroforming are studied in the present dissertation. It is a very important work for promotingthe localization process of automobile industry of China.
     Researchers have made efforts on the process design of tube hydroforming, defectprediction and related subjects, and great achievements have been obtained. But there are stillmany aspects on tube hydroforming to study, for example, the product design, process design,the formability evaluation of hydroformed parts and so on. There are many difficulties in theapplication of tube hydroforming on automobiles. The first one is the modification of parts, i.e.modifying parts manufactured through stamping and welding processes to hydroformed parts.This is a key step for the design of hydroformed parts. There are still absent of necessarytheoretical bases for the design of key geometries of hydroformed parts. The second difficulty is in testing the properties of tube blanks. To test the properties of the materials correctly is thebasis for selecting material and for process design. There are still not effective ways to test thematerial properties applied to tube hydroforming. The third difficulty is designing reasonablehydroforming process according to the geometries of the part and the material properties,which can avoid any defects occurring on the hydroformed parts. The existing models fordefect prediction do not apply to complex hydoroforming conditions.
     In this dissertation, some subjects on the formability evaluation of hydroformed parts arestudied through experiments and theoretical analyses. At the beginning, the testing method forthe properties of tube blanks are studied, including the testing methods of the anisotropycoefficient, the strain-stress relationships of tube materials and the forming limit diagram(FLD). Then, the prediction model for bursting and wrinkling are established for circular andnon-circular parts, according to the main defects and the main geometric characteristics ofparts applied on automobiles. In the end of the dissertation, the design methods for tubehydroforming process are studied. It provides good theoretical bases for the formabilityevaluation and the design of key geometric dimensions to hydroformed parts.
     The main contents and the main innovations of the present dissertation are as follows.
     1. Formability evaluation for tube blanks
     The main properties that affect the hydro-formability of tubes include the anisotropy andthe strain-hardening property. A method to test the anisotropy through hydroforming alongwith tensile tests of standard samples is put forward. And a method for testing the stress-strainproperty of tubes through hydroforming with the aid of several advanced tools is put forward,too. Compared with the method of uni-axial tension, these methods are more suitable for tubehydroforming, because the effects of the manufacturing processes are considered.
     2. Evaluation of the forming limit of tubes
     Based on the requirements for establishing forming limit diagrams (FLD), testingdevices of FLDs for tubes suitable for different strain states are invented. A method to designthe loading paths for FLD tests is put forward. Then a complete test scheme is put forwardbased on all these works.
     3. Study on the defect prediction model for hydroformed part
     The mechanics of all defects that may occur on the parts in hydroforming processes areanalyzed. Based on the theory of plastic stability of stiffened thin shells, the law of energyconservation, the theory of plastic forming and the theory of tube hydroforming, theprediction model for bursting and wrinkling are established. All these models provide atheoretical basis for the design of hydroformed products and hydroforming processes.
     4. Design methods for tube hydroforming processes
     The factors that may affect the hydro-formability of tubes involve dies, properties of thematerial, the geometries of parts, et al. Some issues related to the tube hydroforming processare studied in this dissertation. The method for the design of hydroforming dies and for thedesign of key geometries of parts are put forward based on the prediction model that areestablished in this dissertation. At the end of the dissertation, the design of hydroformingprocesses for several typical parts are studied, and experiments are performed. Theexperimental results verify the methods provided in this dissertation very well.
引文
[1]苑世剑,郎利辉,王仲仁.内高压成形技术研究与应用进展.哈尔滨工业大学学报.2000,32(5):60-63.
    [2]韩英淳,于多年,马若丁.汽车轻量化中的管材液压成形技术.汽车工艺与材料.2003,8:23-27.
    [3] F. Dohmann, Ch Hartl. Tube hydroforming-research and practical application. Journal ofMaterials Processing Technology.1997,71(1):174-186.
    [4] L H Lang, Z R Wang, D C Kang, et al. Hydroforming highlights: sheet hydroforming andtube hydroforming. Journal of Materials Processing Technology.2004,151(1-3):165-177.
    [5] Ch Hartl. Research and advances in fundamentals and industrial applications ofhydroforming. Journal of Materials Processing Technology.2005,167(2-3):383-392.
    [6] Nader Asnafia, Tomas Nilsson, Gunnar Lassl. Tubular hydroforming of automotive sidemembers with extruded aluminium profiles. Journal of Materials Processing Technology.2003,142:93–101.
    [7] H.-U.Lucke, Ch Hartl, T Abbey. Hydoforming. Journal of Maternals Process Technology.2001,115:87-91.
    [8] Soo-Ik Oh, Byung-Hee Jeon, Hyun-Yong Kim. Recent developments in hydroformingtechnology. Journal of Materials Processing Technology.2000,98:251-258.
    [9]杨兵.管件液压成形的加载路径理论与试验研究[博士论文].上海:上海交通大学.2006.
    [10]吴玉光,高曙明,陈子辰.产品可制造性逐步评价方法.中国机械工程.2001,12(2):208-212.
    [11]王润孝,盛义军,姜小鹏,高琳.产品可制造性评价方法研究.中国制造业信息化.2006,35(3):31-34.
    [12]刘红军,莫蓉,范庆明,常智勇,万能.并行工程下基于特征的零件可制造性研究.中国机械工程.2006,17(8):805-808.
    [13]梁炳文,陈孝戴,王志恒.板金成形性能.北京:机械工业出版社.1999:23-24.
    [14] M Koc, Y Aue-u-lan, T Altan. On the characteristics of tubular materials forHydroforming: experimentation and analysis. International Journal of Machine Tools&Manufacture.2001,41:761-772.
    [15] S. Fuchizawa, M marazaki, H Yuk. Bulge test for determining stress-straincharacteristics of thin tubes. Advanced Technology of Plasticity.1993,1:488–493.
    [16] T Sokolowski, K Gerke, M Ahmetoglu. Evaluation of tube formability and materialcharacteristics: hydraulic bulge testing of tubes. Journal of Materials ProcessingTechnology.2000,98:34–40.
    [17] M Strano, T Altan. An inverse energy approach to determine the flow stress of tubularmaterials for hydroforming applications. Journal of Materials Processing Technology.2004,146:92–96.
    [18] Yeong-Maw Hwang, Yi-Kai Lin, Taylan Altan. Evaluation of tubular materials by ahydraulic bulge test. International Journal of Machine Tools&Manufacture.2007,47:343-351.
    [19] P Bortot, E Ceretti, C Giardini. The determination of flow stress of tubular material forhydroforming applications. Journal of Materials Processing Technology.2008,203:381-388.
    [20]谢英.复杂加载路径板料成形极限应变图和极限应力图研究[硕士论文].北京:北京航空航天大学.2004.
    [21] Keeler S P. Determination of forming limits in automotive stampings. Sheet MetalIndustry.1965,9:683-691.
    [22] Goodwin G M. Application of strain analysis to sheet metal forming problems in thepress shop. IDDRG.1968,8:767-774.
    [23] Hecker S S. Simple technique for determining forming limit curves. Sheet MetalIndustries.1975,11:671-676.
    [24] Hill R. A theory of the yielding and plastic flow of anisotropic metals. Proceedings ofRoyal Society of London. Series A.193(1033):281-297.
    [25] Hill R. Theoretical plasticity of textured aggregates. Mathematical Proceedings CambPhilosophical Society.1979,85:179-180.
    [26] Hill R. A user-friendly theory of orthotropic plasticity in sheet metals. InternationalJournal of Mechanical Sciences.1993,35:18-19.
    [27] Hosford W F. On yield localisation of anisotropic cubic metals. Proceedings of the7thAmerican Metalworking Research Conference.1979:191-195.
    [28] Bralat F, Lian J. Plastic behaviour and stretchability of sheet metals, Part I: A yieldfunction for orthotropic sheet under plane stress conditions. International Journal ofPlasticity.1989,5(1):51-66.
    [29] Barlat F, Kge D J, Brem J C. A six-component yield function for anisotropic materials.International Journal of Plasticity.1991,7(7):693-712.
    [30] Barlat F, Becker R C. Yielding description for solution strengthened aluminum alloyssheets. International Journal of Plasticity.1997,13(4):385-401.
    [31] Barlat F, Maeda Y, Chung K. Yield function development for aluminum alloy sheets.Journal of the Mechanics and Physics of Solids.1997,45:1727-176.
    [32] Gotoh M. A theory of plastic anisotropy based on a yield function of fourth order (planestress state). International Journal of Mechanical Sciences.1977,19:505-520.
    [33] Hill R. On discontinuous plastic states with special reference to localized necking in thinsheets. Journal of the Mechanics and Physics of Solids.1952,1:19-30.
    [34] Swift H W. Plastic instability under plane stress. Journal of the Mechanics and Physics ofSolids.1952,1:1-18.
    [35] Marciniak Z, Kuczynski K. Limit strains in the processes of stretch forming sheet metal.International Journal of Mechanical Sciences.1967,9:609-620.
    [36] Marciniak Z, Kuczynski K, Pokora T. Influence of the plastic properties of material onthe forming limit diagram for sheet metal in tension. International Journal of MechanicalSciences.1973,15:789-805.
    [37] Storen S, Rice J R. Localized neck in thin sheets. Journal of the Mechanics and Physicsof Solids.1975,23(6):421-441.
    [38] Rich Davies, Glenn Grant, Darrell Herling,Mark Smith, Bob Evert, Steve Nykerk, JeffShoup. Formability investigation of aluminum extrusions under hydroforming conditions.SAE Technical paper.2000-01-2675.
    [39] N Siva Prasad Varma, R Narasimhan, Alan A Luo, A K Sachdev. An analysis oflocalized necking in aluminium alloy tubes during hydroforming using a continuumdamage model. Joural of Materials Processing and Technology.2007,49:200-209.
    [40] Nader Asnafi, Anders Skogsgardh. Theoretical and experimental analysis ofstroke-controlled tube hydroforming. Materials Science and Engineering.2000, A279:95-110.
    [41] Muammer Koc, Taylan Altan. An overall review of the tube hydroforming (THF)technology. Journal of Materials Processing Technology.2001,108:384-393.
    [42] F Dohmann, Ch Hartl. Hydroforming-a method to manufacture light-weight parts.Journal of materials processing technology.1996,60:669-676.
    [43] Z C Xia, Bursting for Tubular Hydroforming. Society of Automotive engineers Inc.2000-01-0770.
    [44] C L Chow. Bursting for fixed tubular and restrained hydroforming Journal of materialsprocessing thechnology.2002,130-131:107-114.
    [45] Muammer Koc. Prediction of forming limits and parameters in the tube hydroformingprocess. International Journal of Machine Tools&Manufacture.2002,42:123–138.
    [46] N Boudeau, A. Lejeune. Influence of material and process parameters on thedevelopment of necking and bursting in flange and tube hydroforming. Journal ofMaterials Processing Technology.2002,125–126:849–855.
    [47] G Nefussi, A Combescure. Coupled buckling and plastic instability for tubehydroforming. International Journal of Mechnical Science.2002,44:899-914.
    [48] H L Xing, A Makinouchi. Numerical analysis and design for tubular hydroforming.International Journal of Mechanical Science.2001,43:1009-102.
    [49] Mikael Jansson, Larsgunnar Nilsson, Jell Simonsson. On strain localisztion in tubehydroforming of aluminium extrusions. Journal of Materials Processing Technology.2008,195:3-14.
    [50] Nishant Jain, Jyhwen Wang. Plastic instability in dual-pressure tube-hydroformingprocess. International Journal of Mechanical Sciences.2005,47:1827-1837.
    [51] Chen Yang, Gracious Ngaile. Analytical model for planar tube hydroforming: predictionof formed shape, corner fill, wall thinning, and forming pressure. International Journal ofMechanical Sciences.2008,50:1263-1279.
    [52] Yannis P Korkolis, Stelios Kyriakides. Inflation and burst of aluminium tubes, Part II: Anadvanced yield function including deformation-induced anisotropy. International Journalof Plasticity.2008,24:1625-1637.
    [53] Yannis P Korkolis, Stelios Kyriakides. Inflation and burst of anisotropic aluminium tubesfor hydroforming applications. International Journal of Plasticity.2008,24:509-543.
    [54] Mikhail Sorine, C Hari Manoj Simha, Isadora Van Riemsdijk, Michal J Worswick.Prediction of necking of high strength steel tubes during hydroforming-multi-axialloading. International Journal of Mechanical Sciences.2008,50:1411-1422.
    [55] E Chu, Yu Xu. Hydroforming of aluminium extrusion tubes for automotive applications,Part I: buckling, wrinkling and bursting analysis of aluminium tubes. InternationalJournal of Mechanical Sciences.2004,46:263-283.
    [56] E Chu, Yu Xu. Hydroforming of aluminium extrusion tubes for automotive applications,Part II: Process window diagram. International Journal of Mechanical Sciences.2004,46:285-297.
    [57]汤泽军,何祝斌,苑世剑.内高压成形过程塑性失稳起皱分析.机械工程学报.2008,44(5):34-38.
    [58]苑世剑,盖秉政.双轴载荷作用下柱壳的塑性屈曲.哈尔滨工业大学学报.2004:36(8):1071-1073.
    [59]吴洪飞,苑世剑,王仲仁.初始缺陷和比例加载路径对圆柱壳弹塑性稳定性的影响.机械工程学报.2003,39(2):53-57.
    [60]吴洪飞,苑世剑,王仲仁.轴压管材弹塑性稳定性分析的通用方程推导.哈尔滨工业大学学报.2002,34(1):35-39.
    [61]吴洪飞,苑世剑,王仲仁.内高压成形塑性屈曲分析.锻压技术.2001,26(5):29-31.
    [62]王小松,苑世剑,王仲仁.内高压成形起皱行为的研究.金属学报.2003,39(12):1276-1280.
    [63]王小松.内高压成形过程起皱行为研究[博士论文].哈尔滨:哈尔滨工业大学.2005.
    [64] A Bohm. Part cost reduction in the hydroforming process. Second InternationalConference on Innovations in Hydroforming Technology.1997,9:15–17.
    [65] S H Zhang. Developments in hydroforming. Journal of Materials Processing Technology.1999,91:236–244.
    [66] Jeony Kim, Sung-Jong Kang, Beom-Soo Kang. A prediction of bursting failure in tubehydroforming processes based on ductile fracture criterion. Intnational Journal ofAdvanced Manufacturing Technology.2003,22:357-363.
    [67] Jeong Kim, Sung-Jong Kang, Beom-Soo Kang. A comparative study of implicit andexplicit FEM for the wrinkling prediction in the hydroforming process. IntnationalJournal of Advanced Manufacturing Technology.2003,22:547-552.
    [68] J Kim, Y H Kang, H H Choi, S M Hwang, B S Kang. Comparison of implicit and explicitfinite-element methods for the hydroforming process of an automobile lower arm.Intnational Journal of Advanced Manufacturing Technology.2002,20:407-413.
    [69] A Kulkarni, P Biswas, R Narasimhan, Alan A Luo, Raj K Mishra, Thomas B Stoughton,Anil K Sachdev. An experimental and numerical study of necking initiation in aluminiumalloy tubes during hydroforming. International Journal of Mechanical Sciences.2004,46:1727-1746.
    [70] J Kim, B S Kang, S M Hwang, H J Park. Numerical prediction of bursting failure in tubehydroforming by the FEM considering plastic anisotropy. Journal of Materials ProcessingTechnology.2004,153-154:544-549.
    [71] Woo-Jin Song, Sang-Woo Kim, Jeong Kim, Beom-Soo Kang. Analytical and numericalanalysis of bursting failure prediction in tube hydroforming. Journal of MaterialsProcessing Technology.2005,164-165:1618-1623.
    [72] Jeong Kim, Sang-Woo Kim, Woo-Jin Song, Beom-Song Kang. Analytical and numericalapproach to prediction of forming limit in tube hydroforming. International Journal ofMechanical Sciences.2005,47:1023-1037.
    [73] Muammer Koc, Taylan Altan. Application of two dimensional (2D) FEA for the tubehydroforming process. International Journal of Machine Tools&Manufacture.2002,42:1285-1295.
    [74] Jeong Kim, Sung-Jong Kang, Beom-Soo Kang. Computational approach to analysis anddesign of hydroforming process for an automobile lower arm. Computers and Structures.2002,80:1295-1304.
    [75] Jeong Kim, Yong-Wook Kim, Beom-Soo Kang, Sang-Moon Hwang. Finite elementanalysis for bursting failure prediction in bulge forming of a seamed tube. FiniteElements in Analysis and Design.2004,40:953-966.
    [76] Li-Ping Lei, Jeong Kim, Sung-Jong Kang, Beom-Soo Kang. Rigid-plastic finite elementanalysis of hydroforming process and its applications. Journal of Materials ProcessingTechnology.2003,139:187-194.
    [77]雷丽萍,方刚,曾攀,张慧玲.汽车副车架液压胀形预成形工艺设计的数值模拟.塑性工程学报.2002,9(2):76-78.
    [78]雷丽萍,陈森灿,颜永年.汽车后桥壳的液压胀形工艺及模具设计.金属成形工艺.1996,14(2):9-14.
    [79]雷丽萍,方刚,曾攀,张慧玲.汽车后延臂的液压胀形工艺研究.锻压技术.2002,6:26-30.
    [80]雷丽萍,方刚,曾攀.汽车后延臂液压胀形的数值模拟.机械工程学报.2002,38(17):90-94
    [81]李洪洋,苑世剑,王小松,苗启斌.内高压成形三台阶轴过程中内压值影响的有限元分析.塑性工程学报.2005,12(2):38-41.
    [82]林俊峰,苑世剑.空心双拐曲轴内高压成形数值模拟.塑性工程学报.2005,12(5):34-37.
    [83]刘钢,王小松,苑世剑,王仲仁.轿车转向节臂零件内高压成形工艺研究.锻压技术.2004,3:45-48.
    [84]林峻峰,苑世剑,韩笑峰.材料成形性能对空心曲轴内高压成形模拟结果的影响.中国机械工程.2006, S1:55-57.
    [85] Lin Jun-feng, Yuan Shi-jian. Numerical simulation of hydroforming hollow crankshaft.Transactions of Nonferrous Metals Society of China.2005,15(2):32-37.
    [86] Shijian Yuan, Xiaosong Wang, Gang Liu, Z R Wang. Control and use of wrinkles in tubehydroforming. Journal of Materials Processing Technology.2007,182:6-11.
    [87] Shijian Yuan, Wenjian Yuan, Xiaosong Wang. Effect of wrinkling behavior onformability and thickness distribution in tube hydroforming. Journal of MaterialsProcessing Technology.2006,177:668-671.
    [88] Li-ping Lei, Jeong Kim, Beom-Soo Kang. Analysis and design of hydroforming processfor automobile rear axle housing by FEM. International Journal of Machine Tools&Maunufacture.2000,40:1691-1708.
    [89] Jae-bong Yang, Byung-hee Jeon, Soo-lk Oh. The tube bending technology of ahydroforming process for an automotive part. Journal of Materials Processing Technology.2002,111:175-181.
    [90] Jeong Kim, Li-Ping Lei, Beom-Soo Kang. Preforming design in hydroforming ofautomobile lower arm by FEM. Journal of Materials Processing Technology.2003,138:58-62.
    [91] Jeong Kim, Li-Ping Lei, Sang-Moon Hwang, Sun-Jong Kang, Beom-Soo Kang.Manufacture of an automobile lower arm by hydroforming. International Journal ofMachine&Manufacutre.2002,42:69-78.
    [92] Soo-Ik Oh, Byung-Hee Jeon, Hyun-Yong Kim, Jae-Bong Yang. Applications ofhydroforming process to automobile parts. Journal of Materials Processing Technology.2006,174:42-55.
    [93] Li-Ping Lei, Jeong Kim, Beom-Soo Kang. Analysis and design of hydroforming processfor automobile rear axle housing by FEM. International Journal of Machine Tools&Manufacture.2000,40:1691-1708.
    [94] J F Lin, S J Yuan. Influence of internal pressure on hydroforming of double handlescrankshaft. Materials Science and Engineering A.2009,499:208-211.
    [95] S J Yuan, G Lin, X R Huang, X S Wang, W C Xie, Z R Wang. Hydroforming of typicalhollow components. Journal of Materials Processing Technology.2004,151:203-207.
    [96] S J Yuan, C Han, X S Wang. Hydroforming of automotive structural components withrectangular-sections. International Journal of Machine Tools&Manufacture.2006,46:1201-1206.
    [97] Kristoffer Trana. Finite element simulation of the tube hydroforming process-bending,performing and hydroforming. Journal of Materials Processing Technology.2002,127:401-408.
    [98] L Gao, M Strano. FEM analysis of tube pre-bending and hydroforming. Journal ofMaterials Processing Technology.2004,151:294-197.
    [99] J H Hollomon. The effect heat treatment and carbon content on the work hardeningcharacteristics of several steels. Transactions of ASM.1994,32:123-133.
    [100]李殿杰. X70管线钢的包辛格效应和加工硬化现象的研究[硕士论文].北京:钢铁研究院.2005.
    [101]余海燕.复杂应变状态下TRIP钢相变诱发塑性行为及其在车身覆盖件中的应用研究[博士论文].上海:上海交通大学.2005.
    [102] Nader Asnafi. Analytical modelling of tube hydroforming. Thin-Walled Structures.1999,34:295–330.
    [103] Woo D M. Determination of Stress/Strain characteristics of Tubular Materials. Journalof Metals.1968,96:357-359.
    [104]单体坤. TRIP钢板成形性能和回弹特性研究[博士论文].上海:上海交通大学.2008.
    [105]田仲可.薄壁结构件塑性成形技术研究[博士论文].西安:西北工业大学.2002.
    [106]胡世光.板料冷压成形原理.北京:国防工业出版社.1989:44-47.
    [107]周承倜.薄壳弹塑性稳定性理论.北京:国防工业出版社.1979:95-97.
    [108] X H Xu, S H Li, W G Zhang, Z Q Lin. Analysis of thickness distribution ofsquare-sectional hydroformed parts. Journal of Materials Processing Technology.2009,209(1),158-165.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700