不同浸润性聚苯胺微/纳米结构的合成及防腐蚀性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
导电聚合物因其结构多样化、独特的掺杂机制、可调的电导率、环境稳定性以及可加工性等特点,已广泛地应用于各种领域:导电材料、电极材料、防腐涂料、电磁屏蔽材料、微波吸收材料以及非线性光学器件等。其中,将聚苯胺用于防腐涂料已有较长的历史,科研工作者将聚苯胺溶解涂覆、电化学聚合成膜或做成涂料涂于金属表面来研究聚苯胺的防腐蚀效果和机理。另外,近年来超疏水材料的迅速发展使其在腐蚀与防护领域的应用越来越多,由于超疏水的表面能够有效地抑制腐蚀性物质向电极表面扩散,也能抑制腐蚀产物向溶液中扩散,因此,超疏水表面能够提高对基体金属的保护效率。本论文在导电聚合物和超疏水性材料在防腐蚀领域应用的基础上,结合超疏水材料的超疏水性能和导电聚合物优异性的防腐蚀性能,将超疏水性的导电聚合物用于碳钢电极的防护,围绕导电聚合物的浸润性对防腐蚀性能的影响展开研究,并取得了以下主要成果:
     1.借助“无模板”法,通过改变掺杂剂,实现了从亲水性到超疏水性聚苯胺微/纳米结构的可控制备。例如,当掺杂剂为十二酸(LA)和乙酸(AA)时,聚苯胺为亲水性的,当掺杂剂为全氟辛酸(PFOA)时,制备的聚苯胺为超疏水性的。采用Tafel极化曲线和电化学阻抗(EIS)研究了具有不同浸润性的聚苯胺微/纳米结构在0.1mol/L H2SO4溶液中对碳钢的腐蚀防护作用,探讨了聚苯胺微/纳米结构的表面浸润性对腐蚀防护性能的影响。研究结果表明,随着聚苯胺微/纳米结构疏水性的增强,其对碳钢电极的腐蚀防护作用增强,当掺杂剂为PFOA时所制备的超疏水聚苯胺微/纳米结构表现出最佳的防腐蚀性能(η=94.70%)。
     2.采用“无模板”法,通过苯胺与苯胺衍生物的共聚制备了不同浸润性的苯胺共聚物,研究了苯胺衍生物对共聚物浸润性的影响,探讨了苯胺共聚物的防腐蚀性能与浸润性的关系。首先以苯胺和3-氨基苯磺酸为单体,在共聚物主链上引入亲水性的-SO3H,发现-SO3H的引入不利于其防腐蚀性能的提高;然后以苯胺和2-乙基苯胺为单体,在共聚物的主链上引入不同含量的-C2H5,制备了不同浸润性的共聚物微/纳米结构,电化学测试结果表明,共聚物疏水性的增强有利于防腐蚀性能的提高,防腐蚀效率与接触角的关系为:=132.04–128.62exp (-/137);最后选用四种苯胺衍生物,使其与苯胺单体比为1:1时,在共聚物的主链上引入不同的疏水性基团,结果表明,疏水性基团的引入有利于共聚物疏水性的提高和防腐蚀性能的提高。对共聚物的防腐蚀效率与接触角的关系进行拟合得到:=102.22–102.78exp (-/84)。
     3.分别通过不同用量的全氟辛酸(PFOA)和十二烷基磺酸钠(SDS)对已制备的聚苯胺微/纳米纤维进行再掺杂,成功地制备了形貌基本一致,浸润性不同的聚苯胺,并得到超疏水性的聚苯胺。Tafel极化曲线和电化学阻抗(EIS)的结果表明:聚苯胺的疏水性越强,其防腐蚀效率越高。PFOA和SDS再掺杂聚苯胺的防腐蚀效率与接触角的关系为:=234.32–205.31exp (-/442)和=5.971–7.10exp (-/84)。
Conductive polyaniline has a wide range of applications because of its specificproperties, such as highly conjugated molecular structure, controllable conductivity,environmental stability, easy synthesis, low cost and so on. One of the applications iscorrosion protection. In order to obtain information on the inhibition mechanism ofpolyaniline, the polyaniline were usually coated on metal surface as solution-castpolymer coating, electrodeposited coating and additives of resins coating. Recently,considerable interest has been given to the development of superhydrophobic films asanticorrosion coatings. Water serves as a medium for the diffusion of corrosivechemicals from reaching the metal-coating interface, so increasing the water repellantproperty of the coating increases its ability to protect the underlying substrate fromcorroding. On the basis of using conductive polyaniline and superhydrophobic filmsas protective coatings, our research of this thesis was focused on the correlationbetween the contact angle (θ) of the polyaniline micro/nanostructures coatings and thecorrosion protection efficiency (η) of the polyaniline micro/nanostructures. The mainresults are summarized as follows:
     1. A “template-free” method was used to prepare the polyanilinemicro/nanostructures with different wettability by changing the dopant. The corrosionprotection performance of the PANI with different wettability was evaluated in0.1mol/L H2SO4using the potentiodynamic polarization curves and electrochemicalimpedance spectroscopy (EIS). The effect of the wettability on the anticorrosionperformance was investigated. Superhydrophobic PANI micro/nano structures showgood anticorrosion properties. This is due to the superhydrophobic conducting PANIcoating not only inhibited water from being absorbed by the coating, thus preventingthe corrosive chemicals and corrosion products from diffusing through the coating,but also promoting a thin oxide film on the electrode surface.
     2. Firstly, sulfonic acid groups (-SO3H) which were strongly hydrophilic substituent group were introduced into the polyaniline molecular structure by thecopolymerization of aniline (ANI) and3-aminobenzenesulfonic acid (metanilic acid,MA). The anti-corrosion behavior of PANIMA coated carbon steel electrodes wasinvestigated in1mol/L H2SO4solutions by the potentiodynamic polarizationtechnique and electrochemical impedance spectroscopy (EIS). Results show that lowsulfur content in the PANIMA coatings afforded the best protection, though theperformance of all PANIMA coatings was inferior to PANI itself under the appliedtesting conditions. Secondly, a hydrophobic group, ethyl groups (-C2H5) wereintroduced into the polyaniline molecular structure by the copolymerization of aniline(ANI) and o-ethylaniline (OEA). The results of potentiodynamic polarization curvesand electrochemical impedance spectroscopy (EIS) indicate that corrosion protectionefficiency depends on the water repellent property of the PANIOEA copolymersmicro/nanostructures. And there is a well-fitting correlation between the contact angle() of the PANIOEA copolymers micro/nanostructures coatings and the corrosionefficiency () of the PANIOEA copolymers micro/nanostructures coatings which canbe expressed as=132.04–128.62exp (-/137). The POEA polymer showed thelargest static water contact angle (CA=145°) and the most effective protection withinhibition efficiency of87.29%. Lastly, a series of polyaniline (PANI) copolymersmicro/nanostructures were prepared by copolymerization of aniline (ANI) and3-aminobenzenesulfonic acid,3-aminobenzoic acid,3-toluidine and2-ethylaniline.The corrosion protection of PANI or PANI copolymers increased with increasingwater repellent property of the PANI or PANI copolymers micro/nanostructures. Awell-fitting correlation between the contact angle () of the PANI or PANIcopolymers micro/nanostructures coatings and the corrosion protection efficiency ()of the PANI or PANI copolymers micro/nanostructures coatings was found and can beexpressed as=102.22–102.78exp (-/84). The PANI copolymer with thehydrophobic-C2H5group (PANI-C2H5) showed the largest static water contact angle(CA=125°) and the most effective protection with an inhibition efficiency of78.98%.
     3. Polyaniline micro/nano fibers with different wettability was obtained byre-doping with Sodium Dodecyl Sulfonate (SDS) and perfluoro caprylic acid (PFOA). It was found that the wettability of the polyaniline micro/nano fibers was controlledby the content of SDS and PFOA. Standard electrochemical measurements revealedthat the corrosion protection of PANI increased with increasing the water repellentproperty of the PANI micro/nano fibers. And there are well-fitting correlationsbetween the contact angle () of the PANI micro/nano fibers coatings and thecorrosion efficiency () of the PANI micro/nano fibers coatings which can beexpressed as=234.32–205.31exp (-/442)(re-doped with PFOA) and=5.971–7.10exp (-/84)(re-doped with SDS).
引文
[1]王庆璋.海洋腐蚀与防护技术.青岛:青岛海洋大学出版社,2001
    [2]侯保荣.海洋腐蚀环境研究及防护对策:海洋腐蚀与防护技术.北京:海洋出版社,1998
    [3]侯保荣.海洋腐蚀与防护.北京:科学出版社,1997
    [4] Yu.I. Kuznetsov. Current state of the theory of metal corrosion inhibition. Protection of metals,2002,38(2):103~111
    [5]刘新等.防腐涂料与涂装应用.北京:化学工业出版社,2008
    [6]王受谦,杨淑珍,防腐涂料与涂装技术.北京:化学工业出版社,2003
    [7] M.A. Hernández, F. Galliano, D. Landolt. Mechanism of cathodic delamination control ofzinc–aluminum phosphate pigment in waterborne coatings. Corrosion Science,2004,46(9):2281~2300
    [8] G. Grundmeier, B. Rossenbeck, K.J. Roschmann, P. Ebbinghaus, M. Stratmann. Corrosionprotection of Zn-phosphate containing water borne dispersion coatings Part2: Investigationsof the corrosive de-adhesion of model latex coatings on iron. Corrosion Science,2006,48(11):3716~3730
    [9] H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger. Synthesis ofElectrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene,(CH)x.Journal of the Chemical Society, Chemical Communications,1977,16,578~580
    [10] K. Soga, S. Kawakami, S. Ikeda. Hydrogenation of polyacetylene. A potential method ofmolecular weight determination. Macromolecular Rapid Communications,1980,1(8):523~526
    [11] P.J. Nigrey, A.G. MacDiarmid, A.J. Heeger. Electrochemistry of polyacetylene (CH)x:Electrochemical doping of (CH)x films to the metallic state. Journal of the Chemical Society,Chemical Communications,1979,14:594~595
    [12] N. Basecu, Z. X. Liu, D. Moses, A. J. Heeger, H. Naarmann, N. Theophilou. High electricalconductivity in doped polyacetylene. Nature,1987,327(6121):403~405
    [13] L. Abell, P.N. Adams, A.P. Monkman. Electrical conductivity enhancement of predopedpolyaniline by stretch orientation. Polymer,1996,37(16):5927~5931
    [14] A. Laforgue, P. Simon, C. Sarrazin, J.F. Fauvarque. Polythiophene-based supercapacitors.Journal of Power Sources,1999,80(1-2):142~148
    [15] M. Delamar, P.C. Lacaze, J.Y. Dumousseau, J. E. Dubois. Electrochemical oxidation ofbenzene and biphenyl in liquid sulfur dioxide: formation of conductive deposits.Electrochimica Acta,1982,27(1):61~65
    [16] M. Ichiki, O. Toshihiro, N. Takanobu, H. Masaaki. Highly conducting poly(p-phenylenevinylene) prepared from a sulfonium salt. Polymer communications,1984,25(11):327~329
    [17] Y. Takakazu, S. Kenichi, Y. Akio. Preparation of thermostable and electric-conducting poly(2,5-thienylene). Journal of Polymer Science, Polymer Letters Edition,1980,18(1):9~12
    [18] B. Norden. The Nobel Prize in Chemistry,2000: conductive polymer, Eva Krutmeijer. PressOffice, the Royal Swedish Academy of Sciences,2000
    [19] Roth, S.“One-Dimensional Metals” Weinheim VCH,1995
    [20](日)雀部博之编.曹镛等译.导电高分子材料.1989,北京,科学出版社
    [21] A.G. Macdiarmid, J.C. Chiang, A.F. Richter, A.J. Epstein. Polyaniline: a new concept inconducting polymers. Synthetic Metals,1987,18(1-3):285~290
    [22] W.S. Huang, B.D. Humphrey, A.G. MacDiarmid. Polyaniline, a novel conductingpolymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes.Journal of the Chemical Society, Faraday Transactions1: Physical Chemistry in CondensedPhases,1986,82(8):2385~2400
    [23] M.X. Wan. Absorption spectra of thin film of polyaniline. Journal of Polymer Science, Part A:Polymer Chemistry,1992,30(4):543~549
    [24] T. Osa, A. Yildiz, T. Kuwana. Electrooxidation of benzene. Journal of the American ChemicalSociety,1969,91(14):3994~3995
    [25] T. Ito, H. Shirakawa, S. Ikeda. Simultaneous polymerization and formation of polyacetylenefilm on the surface of a concentrated soluble Ziegler-type catalyst solution. Journal ofPolymer Science: Polymer Chemistry Edition,1974,12(1):11~20
    [26] J.C. Chiang, C. Jin, A.G. MacDiarmid.'Polyaniline': protonic acid doping of the emeraldineform to the metallic regime. Synthetic Metals,1986,13(1-3):193~205
    [27] A. Bingham, B. Ellis. Polymerization of aromatic amines with ferric chloride to producethermally stable polymers. Journal of Polymer Science, Part A-1: Polymer Chemistry,1969,7(11):3229~3244
    [28] W.R. Salaneck, B. Liedberg, O. Inganaes, R. Erlandsson, I. Lundstroem, A. G. MacDiarmid,M. Halpern, N.L.D. Somasiri. Physical characterization of some polyaniline,(N)x.Molecular Crystals and Liquid Crystals,1985,121(1-4):191~194
    [29] H. Shirakawa. Nobel lecture: the discovery of polyacetylene film-the dawning of an era ofconducting polymers. Reviews of Modern Physics,2001,73(3):713~718
    [30]何曼君,陈维孝,董西侠.高分子物理.复旦大学出版社,1990,p395
    [31] R.L. Hand, R.F. Nelson. The anodic decomposition pathways of ortho-and meta-substitutedanilines. Journal of the Electrochemical Society,1978,125(7):1059~1069
    [32] H. Yan, N. Toshima. Chemical preparation of polyaniline and its derivatives by usingcerium(IV) sulfate. Synthetic Metals,1995,69(1-3):151~152
    [33] P. Kovacic, F.W. Koch. Coupling of naphthalene nuclei by Lewis acid catalyst-oxidant.Journal of Organic Chemistry,1965,30(9):3176~3180
    [34] C.K. Chiang, C.R.Jr. Fincher, Y.W. Park, A.J. Heeger, H. Shirakawa, E.J. Louis, S.C. Gau,A.G. MacDiarmid. Electrical conductivity in doped polyacetylene. Physical Review Letters,1977,39(17):1098~1101
    [35] L.W. Shacklette, R.R. Chance, D.M. Ivory, G.G. Miller, R.H. Baughman. Electrical andoptical properties of highly conducting charge-transfer complexes of poly(p-phenylene).Synthetic Metals,1980,1(3):307~320
    [36] S.P. Armers, M. Aldissi. Potassium iodate oxidation route to polyaniline: an optimizationstudy. Polymer,1991,32(11):2043~2048
    [37] Y. Cao, A. Andreatta, A.J. Heeger, P. Smith. Influence of chemical polymerization conditionson the properties of polyaniline. Polymer,1989,30(12):2305~2311
    [38]万梅香.微纳米结构的导电聚合物.北京:清华大学出版社,2008
    [39] A.G. MacDiarmid, J.C. Chiang, M. Halpern, W.S. Huang, S.L. Mu, N.L.D. Somasiri, W. Wu,S.I. Yaniger. Polyaniline: Interconversion of metallic and insulating forms.Molecular Crystals and Liquid Crystals,1985,121(1-4):173~180
    [40] N. Kuramoto, A. Tomita. Chemical oxidative polymerization of dodecylbenzenesulfonic acidaniline salt in chloroform. Synthetic Metals,1997,88(2):147~151
    [41] W.A.J. Gazotti, M.A. DePaoli. High yield preparation of a soluble polyaniline derivative.Synthetic Metals,1996,80(3):263~269
    [42] E. Erdem, M. Sacak, M. Karakisla. Synthesis and properties of oxalic acid-doped polyaniline.Polymer International,1996,39(2):153~159
    [43] M. Karakisla, M. Sacak, E. Erdem, U. Akbulut. Synthesis and characterization of malonicacid-doped polyaniline. Journal of Applied Electrochemistry,1997,27(3):309~316
    [44] J. Stejskal, A. Riede, D. Hlavatá, J. Proke, M. Helmstedt, P. Holler. The effect ofpolymerization temperature on molecular weight, crystallinity, and elec trical conductivity ofpolyaniline. Synthetic Metals,1998,96(1):55~61
    [45] L.T. Yu, M.S. Borredon, M. Jozefowicz, G. Belorgey, R. Buvet. Experimental study of thedirect current conductivity of macromolecular compounds. Journal of Polymer Science,Polymer Symposia,1967,16(5):2931~2942
    [46] L.H.C. Mattoso, A.G. MacDiarmid, A.J. Epstein. Controlled synthesis of high molecularweight polyaniline and poly(o-methoxyaniline). Synthetic Metals,1994,68(1):1~11
    [47] A.F. Diaz, J.A. Logan. Electroactive polyaniline films. Journal of ElectroanalyticalChemistry and Interfacial Electrochemistry,1980,111(1):111~114
    [48] T. Kobayashi, H. Yoneyama, H. Tamura. Polyaniline film-coated electrodes as electrochromicdisplay devices. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1984,161(2):419~423
    [49] T. Ohsaka, Y. Ohnuki, N. Oyama, G. Katagiri, K. Kamisako. IR absorption spectroscopicidentification of electroactive and electroinactive polyaniline films prepared by theelectrochemical polymerization of aniline. Journal of Electroanalytical Chemistry andInterfacial Electrochemistry,1984,161(2):399~405
    [50] A. Volkov, G. Tourillon, P.C. Lacaze,J.E. Dubois. Electrochemical polymerization ofaromatic amines. IR, XPS and PMT study of thin film formation on a platinum electrode.Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1980,115(2):279~291
    [51] A. Thyssen, A. Hochfeld, R. Kessel, A. Meyer, J.W. Schulzte. Anodic polymerization ofaniline and methyl-substituted derivatives: ortho and para coupling. Synthetic Metals,1989,29(1):357~362
    [52] D.M. Mohilner, R.N. Adams, W.J.J. Argersinger. Investigation of the kinetics and mechanismof the anodic oxidation of aniline in aqueous sulfuric acid solution at a platinum electrode.Journal of the American Chemical Society,1962,84:3618~3622
    [53] E.M. Genies, C. Tsintavis. Redox mechanism and electrochemical behaviour or polyanilinedeposits. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1985,195(1):109~128
    [54] B. Wang, J. Tang, F. Wang. The effect of anions of supporting electrolyte on theelectrochemical polymerization of aniline and the properties of polyaniline. Synthetic Metals,1986,13(4):329~334
    [55] G. Mengoli, M.T. Munani, C. Folonari. Anodic formation of polynitroanilide films ontocopper. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1981,124(1-2):237~246
    [56] E.W. Paul, A.J. Ricco, M.S. Wrighton. Resistance of polyaniline films as a function ofelectrochemical potential and the fabrication of polyaniline-based microelectronic devices.The Journal of Physical Chemistry,1981,89(8):1441~1447
    [57] R. Noufi, A.J. Nozik, J. White, L.F. Warren. Enhanced stability of photoelectrodes withelectrogenerated polyaniline films. Journal of The Electrochemical Society,1982,129(10):2261~2265
    [58] B. Aurian-blajeni, I. Taniguchi, J.O'M. Bockris. Photoelectrochemical reduction of carbondioxide using polyaniline-coated silicon. Journal of Electroanalytical Chemistry andInterfacial Electrochemistry,1983,149(1-2):291~293
    [59] S.F. Patil, A.G. Bedekar, C.M. Agashe. Effect of electrode conductivity on electrochemicalpolymerization of polyaniline. Journal of Materials Science Letters,1993,12(17):1354~1356
    [60] C.M. Carlin, L.J. Kepley, A.J. Bard. Polymer films on electrodes. XVI. In situ ellipsometricmeasurements of polybipyrazine, polyaniline, and poly(vinylferrocene) films. Journal of TheElectrochemical Society,1985,132(2):353~359
    [61] N. Oyama. Y. Ohnuki, K. Chiba, T. Ohsaka. Selectivity of poly (aniline) film-coated electrodefor redox reactions of species in solution. Chemistry Letters,1983,11:1759~1762
    [62] G. Mengoli, M.T. Munari, P. Bianco, M.M. Musiani. Anodic synthesis of polyaniline coatingsonto iron sheets. Journal of Applied Polymer Science,1981,26(12):4247~4257
    [63] M.M. Munsani, G. Mengoli, F. Furlanetto. Improved polyaniline coatings by in situelectropolymerization. Journal of Applied Polymer Science,1984,29(12):4433~4438
    [64] D.W. DeBerry. Modification of the electrochemical and corrosion behavior of stainless steelswith an electroactive coating. Journal of The Electrochemical Society,1985,132(5):1022~1026
    [65] M. Sacak, M. Karakis la, U. Akbulut. A316steel electrode coated with polycarbonate forelectropolymerization of aniline. Journal of Applied Polymer Science,1997,65(6):1103~1111
    [66] J.L. Camalet, J.C. Lacroix, S. Aeiyach, K. Chane-Ching, P.C. Lacaze. Electrosynthesis ofadherent polyaniline films on iron and mild steel in aqueous oxalic acid medium. SyntheticMetals.1998,93(2):133~142
    [67] M.X. Wan. The influence of polymerization method and temperature on the absorptionspectra and morphology of polyaniline. Synthetic Metals,1989,31(1):51~59
    [68] R.V. Gregory, W.C. Kimbrell, H.H. Kuhn. Conductive textiles. Synthetic Metals,1989,28(1-2):823~835
    [69] F. Wudl, R.O. Angus, F.L. Lu, P.M. Allemand, D.Vachon, M.Nowak, Z.X. Liu, H. Schaffer, A.J. Heeger. Poly-p-phenyleneamineimine: synthesis and comparison to polyaniline. Journal ofthe American Chemical Society,1987,109(12):3677~3684
    [70] F.L. Lu, F. Wudl, M. Nowak, A.J. Heeger. Phenyl-capped octaaniline (COA): an excellentmodel for polyaniline. Journal of the American Chemical Society,1986,108(26):8311~8313
    [71] S. Stafstrom, J.L. Bredas, A.J. Epstein, H.S. Woo, D.B. Tanner, W.S. Huang, A.G.MacDiarmid. Polaron lattice in highly conducting polyaniline: Theoretical and opticalstudies. Physical Review Letters,1987,59(13):1464~1467
    [72] M. Angelopoulos, A. Ray, A.G. MacDiarmid, A.J. Epstein. Polyaniline: Processability fromaqueous solutions and effect of water vapor on conductivity. Synthetic Metals,1987,21(1):21~30
    [73] F. Wang, J. Tang, L. Wang, H. Zhang, Z. Mo. Study on the Crystallinity of Polyaniline.Molecular Crystals and Liquid Crystals,1988,160:175~184
    [74] J.M. Ginder, A.J. Epstein, A.G. MacDiarmid. Electronic phenomena in polyaniline. SyntheticMetals,1989,29(1):395~400
    [75] M. Nechtschein, F. Genoud, C. Menardo, K. Mizoguchi, J.P. Travers, B. Villeret. On thenature of the conducting state of polyaniline. Synthetic Metals,1989,29(1):211~218
    [76] P. Novak, K. Mueller, K.S.V. Santhanam, O. Haas. Electrochemically Active Polymers forRechargeable Batteries. Chemical Society Reviews,1997,97(1):207~281
    [77] D.C. Trivedi, S.K. Dhawan. Shielding of electromagnetic interference using polyaniline.Synthetic Metals,1993,59(2):267~272
    [78] A.J. Epstein, A.G. MacDiarmid. Polyanilines: from solitons to polymer metal, from chemicalcuriosity to technology. Synthetic Metals,1994,69(1-3):179~182
    [79] K. Hyodo. Electrochromism of conducting polymers. Electrochimica Acta,1994,39(2):265~272
    [80] A. Kitani, J. Yano, K. Sasaki. ECD materials for the three primary colors developed bypolyanilines. Journal of Electroanalytical Chemistry, l986,209(1):227~232
    [81] B.P. Jelle, G. Hagen, S. Noedland. Transmission spectra of an electrochromic windowconsisting of polyaniline, Prussian blue and tungsten oxide. Electrochimica Acta, l993,38(11):1497~1500
    [82] E.A.R. Duek, M.A. De Paoli, M. Mastragostino. A solid-state electrochromic device based onpolyaniline, Prussian Blue and an elastomeric electrolyte. Advanced Materials, l993,5(9),650~652
    [83] F. Louwet, B. Groenendaal. Process for preparing an aqueous or non-aqueous solution ordispersion of a polythiophene copolymer. WO03/048227,2003
    [84] S.S. Wang. High contrast, moisture resistant antistatic/antireflective coating for CRT displayscreen. US20030029357,2003
    [85] L. Frank. Aqueous dispersions containing3,4-alkylenedioxythiophene copolymers andpolyanions. EP1323763,2003.
    [86] F. Louwet, L. Groenendaal, J. Dhaen, J. Manca, J. Van Luppen, E. Verdonck, L. Leenders.PEDOT/PSS synthesis, characterization, properties and applications. Synthetic Metals,2003,135-136:115~117
    [87] M. Hasik, A. Pron, I. Kulszewicz-Bajer, J. Pozniczek, A. Bielanski, Z. Piwowarska, R.Dziembaj. Polyaniline doped with heteropolyanions: spectroscopic and catalytic properties.Synthetic Metals, l993,55(2-3):972~976
    [88] M. Hasik, J. Pozniczek, Z. Piwowarska, R. Dziembaj, A. Bielanski, A. Pron. Catalyticconversion of ethyl alcohol on polyaniline protonated with12-tungstosilicic acid. Journal ofMolecular Catalysis, l994,89(3):329~344
    [89] M. Hasik, A. Pron, J. Pozniczek, A. Bielanski, Z. Piwowarska, K. Kruczala, R. Dziembaj.Physicochemical and catalytic properties of polyaniline protonated with12-molybdophosphoric acid. Journal of the Chemical Society, Faraday Transactions, l994,90(14):2099~2106
    [90] M.R. Anderson, B.R. Mattes, H. Reiss, R.B. Kaner. Conjugated polymer films for gasseparations. Science,1991,252(5011):1412~1415
    [91] E.J. Samuelsen, J. Mardalen, P.H. Carlsen, P. Le Guennec, J.P. Travers, E. Ressouche. Poly(3-hexylthiophenes) studied by neutron scattering. Synthetic Metals, l993,55(1):365~369
    [92] L. Rebattet, M. Escoubes, E.Genies, M. Pineri. Effect of doping treatment on gas transportproperties and on separation factors of polyaniline membranes. Journal of Applied PolymerScience, l995,57(13): l595~1604
    [93] K. Kaneto, M. Kaneko, Y. Min, A.G. MacDiarmid. Artificial muscle: electromechanicalactuators using polyaniline films. Synthetic Metals, l995,71(1-3):2211~2212
    [94] D.A. Wrobleski, B.C. Benicewicz, K.G. Thompson, C.J. Bryan. Corrosion resistant coatingsfrom conducting polymers. Polymer Preprint,1994,35(1):265~266
    [95] T.P. McAndrew. Corrosion prevention with electrically conductive polymers. Trends inPolymer Science,1997,5(1):7~11
    [96] J.L. Camalet, J.C. Lacroix, S. Aeiyach, K.I. Chane Ching, P.C. Lacaze. Electrodeposition ofpolyaniline on mild steel in a two step process. Synthetic Metals,1999,102(1-3):1386~1387
    [97] A. Talo, P. Passiniemi, O. Forsen, S. Ylaesaari. Polyaniline/epoxy coatings with goodanti-corrosion properties. Synthetic Metals,1997,85(1-3):1333~1334
    [98] T. Schauer, A. Joos, L. Dulog, C.D. Eisenbach. Protection of iron against corrosion withpolyaniline primers. Progress in Organic Coatings,1998,33(1):20~27
    [99] V. Brusic, M. Angelopoulos, T. Graham. Use of polyaniline and its derivatives in corrosionprotection of copper and silver. Journal of The Electrochemical Society,1997,95(16):40~54
    [100] A.J. Epstein, J.A.O. Smallfield, H. Guan, M. Fahlman. Corrosion Protection of Aluminumand Aluminum Alloys by Polyanilines: A Potentiodynamic and Photoelectron SpectroscopyStudy. Synthetic Metals,1999,102(1-3):1374~1376
    [101]蒋永锋,郭兴伍,翟春泉,丁文江.聚苯胺膜在AZ91镁合金表面的制备.表面技术,2003,32(1):43~45
    [102] P. Li, T.C. Tan, J.Y. Lee. Corrosion protection of mild steel by electroactive polyanilinecoatings. Synthetic Metals,1997,88(3):237~242
    [103] B. Yao, G.C. Wang, J.K. Ye, X.W. Li. Corrosion inhibition of carbon steel by polyanilinenanofibers. Materials Letters,2008,62(12-13):1775~1778
    [104] M. Shabani-Nooshabadi, S.M. Ghoreishi, M. Behpour. Electropolymerized polyanilinecoatings on aluminum alloy3004and their corrosionprotection performance. ElectrochimicaActa,2009,54(27):6989~6995
    [105] Y. Wei, J.M. Yeh, J. Wang, X. Jia, C. Yang, D. Jin. Corrosion protection effects of coatingsof the aniline oligomers and their epoxy resin-cured derivatives. Polymeric MaterialsScience and Engineering Spring Meeting,1996,74:202~203
    [106] Y. Wei, J. Wang, X. Jia, J.M. Yeh, P. Spellane. Electrochemical studies of corrosioninhibiting effect of polyaniline coatings. Polymeric Materials Science and EngineeringSpring Meeting,1995,72:563~564
    [107] F. Beck, V. Haase, M. Schroetz. Polyheteroaromatic layers on commodity metals(CIPL)-passivation, corrosion protection. AIP Conference Proceedings,1996,354:115~136
    [108] B. Wessling, J. Posdorfer. Corrosion Prevention with an Organic Metal (Polyaniline):Corrosion Test Results. Electrochimica Acta,1999,44(12):2139~2147
    [109] J. Posdorfer, B. Wessling. Oxidation of copper in the presence of the organic metalpolyaniline. Synthetic Metals,2001,119(1-3):363~364
    [110] M. Fahlman, S. Jasty, A.J. Epstein. Corrosion protection of iron/steel by emeraldine basepolyaniline: an X-ray photoelectron spectroscopy study. Synthetic Metals,1997,85(1-3):1323~1326
    [111] S. Sathiyanarayanan, S.K. Dhawan, D.C. Trivedi, K. Balakrishnan. Soluble conducting polyethoxy aniline as an inhibitor for iron in HCl. Corrosion Science,1992,33(12):1831~1841
    [112] M. Fahlman, J.A.O. Smallfield, A.J. Epstein. Corrosion protection of iron/steel bypolyanilines: a photoelectron spectroscopy study.55th Annual Technical Conference–Society of Plastics Engineers,1997,55(2):1330~1333
    [113] J. Robertson. The mechanism of high temperature aqueous corrosion of steel. CorrosionScience,1989,29(11-12):1275~1291
    [114] W.K. Lu, R.L. Elsebaumer, B. Wessling. Corrosion protection of mild steel by coatingcontaining polyaniline. Synthetic Metals,1995,71(1-3):2163~2166
    [115] A.A. Pud, G.S. Shapoval, P. Kamarchik, N.A. Ogurtsov, V.F. Gromovaya, I.E. Myronyuk,Yu.V. Kontsur. Electrochemical behavior of mild steel coated by polyaniline doped withorganic sulfonic acids. Synthetic Metals,1999,107(2):111~115
    [116] A. Talo, O. Forsén, S. Yl saari. Corrosion protective polyaniline epoxy blend coating onmild steel. Synthetic Metals,1999,102(1-3):1394~1395
    [117] D.O.H. Teare, C.G. Spanos, P. Ridley, E.J. Kinmond, V. Roucoules, J.P.S. Badyal, S.A.Brewer, S. Coulson, C. Willis. Pulsed Plasma Deposition of Super-HydrophobicNanospheres. Chemistry of Materials,2002,14(11):4566~4571
    [118] A.F. Thuenemann. Complexes of Polyethyleneimine with Perfluorinated Carboxylic Acids:Wettability of Lamellar Structured Mesophases. Langmuir,2000,16(2):824~828
    [119] H. Tada, H. Nagayama. Chemical Vapor Surface Modification of Porous Glass withFluoroalkyl-Functionalized Silanes.2. Resistance to Water. Langmuir,1995,11(1):136~142
    [120] J.H. Wu, C.M. Mate. Contact Angle Measurements of Lubricated Silicon Wafers andHydrogenated Carbon Overcoats. Langmuir,1998,14(17):4929~4934
    [121] N.L. Abbott, J.P. Folkers, G.M. Whitesides. Manipulation of the wettability of surfaces onthe0.1-to1-micrometer scale through micromachining and molecular self-assembly.Science,1992,257(5075):1380~1382
    [122] J.S. Rossier, P. Bercier. A. Schwarz, S. Loridant, H.H. Girault. Topography, Crystallinity andWettability of Photoablated PET Surfaces. Langmuir,1999,15(15):5173~5178
    [123] M.H. Hui, M.J. Blunt. Effects of Wettability on Three-Phase Flow in Porous Media. TheJournal of Physical Chemistry B,2000,104(16):3833~3845
    [124] H. Fukushima, S. Seki, T. Nishikawa, H. Takiguchi, K. Tamada, K. Abe, Jr. R.Colorado, M.Graupe, O.E. Shmakova, T.R. Lee. Microstructure, Wettability and Thermal Stability ofSemifluorinated Self-Assembled Monolayers (SAMs) on Gold. The Journal ofPhysical Chemistry B,2000,104(31):7417~7423
    [125] H. Sasaki, M. Shouji. Control of hydrophobic character of super-water-repellent surface byUV irradiation. Chemistry Letters,1998,4:293~294
    [126] M. Vallet, B. Berge, L. Vovelle. Electrowetting of water and aqueous solutions onpoly(ethylene terephthalate) insulating films. Polymer,1996,37(12):2465~2470
    [127] N.L. Abbott, G. M. Whitesides. Potential-Dependent Wetting of Aqueous Solutions on Self-Assembled Monolayers Formed from15-(Ferrocenylcarbonyl) pentadecanethiol on Gold.Langmuir,1994,10(5):1493~1497
    [128] M. Schneemilch, W.J.J. Welters, R.A. Hayes, J. Ralston. Electrically Induced Changes inDynamic Wettability. Langmuir,2000,16(6):2924~2927
    [129] H.J.J. Verheijen, M.W.J. Prins. Reversible electrowetting and trapping of charge. Model andExperiments. Langmuir,1999,15(20):6616~6620
    [130] C.B. Gorman, H.A. Biebuyck, G.M. Whitesides. Control of the Shape of Liquid Lenses on aModified Gold Surface Using an Applied Electrical Potential across a Self-AssembledMonolayer. Langmuir,1995,11(6):2242~2246
    [131] T. Yakushiji, K. Sakai, A. Kikuchi, T. Aoyagi, Y. Sakurai, T. Okano. Graft ArchitecturalEffects on Thermoresponsive Wettability Changes of Poly(N-isopropylacrylamide)-Modified Surfaces. Langmuir,1998,14(16):4657~4662
    [132] M. Maman, V. Ponsinet. Wettability of Magnetically Susceptible Surfaces. Langmuir,1999,15(1),259~265
    [133] S. Abbott, J. Ralston, G. Reynolds, R. Hayes. Reversible Wettability of PhotoresponsivePyrimidine-Coated Surfaces. Langmuir,1999,15(26):8923~8928
    [134] R.D. Sun, A. Nakajima, A. Fujishima, T. Watanabe, K. Hashimoto. Photoinduced SurfaceWettability Conversion of ZnO and TiO2Thin Films. The Journal of Physical Chemistry B,2001,105(10):1984~1990
    [135] T. Young. Trans Roy Soc London,1805,95,65
    [136] R.N. Wenzel. Resistance of solid surfaces to wetting by water. Industrial&EngineeringChemistry Research,1936,28:988~994
    [137] A.B.D. Cassie, S. Baxter. Wettability of porous surfaces. Transactions of the Faraday Society,1944,40:546~551
    [138] B. Wang, J. Feng, C.Y. Gao. Surface wettability of compressed polyelec-trolytemultilayers. Colloids and Surfaces A: Physicochem. Eng. Aspects,2005,259(1-3):1~5
    [139] J.Y. Shiu, C.W. Kuo, P.L. Chen, C.Y. Mou. Fabrication of tunable superhydrophobicsurfaces by nanosphere lithography. Chemistry of Materials,2004,16(4):561~564
    [140]马英,马永梅,江雷等.超疏水性塑料薄膜简易制备方法研究.塑料,2006,35(5):39~42
    [141] W. Chen, A.Y. Fadeev, M.C. Hsieh, D. Oener, J. Yongblood, T.J. McCarthy.Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples. Langmuir,1999,15(10):3395~3399
    [142] D. ener, T.J. McCarthy. Ultrahydrophobic Surfaces. Effects of Topography Length Scaleson Wettability. Langmuir,2000,16(20):7777~7782
    [143] M.H. Jin, X.J. Feng, L. Feng, T.L. Sun, J. Zhai, T.J. Li, L. Jiang. Superhydrophobic AlignedPolystyrene Nanotube Films with High Adhes ive Force. Advanced Materials,2005,17(16):1977~1981
    [144] C.W. Guo, L. Feng, J. Zhai, G.J. Wang, Y.L. Song, L. Jiang, D.B. Zhu. Large-areafabrication of a nanostructure-induced hydrophobic surface from a hydrophilic polymer.ChemPhysChem,2004,5(5):750~753
    [145] Q.D. Xie, J. Xu, L. Feng, L. Jiang, W.H. Tang, X.D. Luo, C.C. Han. Facile creation of asuper-amphiphobic coating surface with bionic microstructure. Advanced Materials,2004,16(4):302~305
    [146] M. Nicolas, F. Guittard, S. Géribaldi. Synthesis of stable super water-and oil-repellentpolythiophene films. Angewandte Chemie International Edition,2006,45(14):2251~2254
    [147] Y. Tian, H.Q. Liu, Z.F. Deng. Electrochemical growth of gold pyramidal nanostructures:Toward super-amphiphobic surfaces. Chemistry of Materials,2006,18(25):5820~5822
    [148] L. Jiang, Y. Zhao, J. Zhai. Superhydrophobic surface: A lotus-leaf-like superhydrophobicsurface: A porous microsphere/nanofiber composite film prepared by electrohydrodynamics.Angewandte Chemie International Edition,2004,116(33):4438~4441
    [149] S.T. Wang, L. Feng, L. Jiang. One-step solution-immersing process towards bionicsuperhydrophobic surfaces. Advanced Materials,2006,18(6):767~770
    [150] A.V. Rao, M.M. Kulkarni, S.D. Bhagat. Transport of liquids using superhydrophobicAerogels. Journal of Colloid and Interface Science,2005,285(1):413~418
    [151] H.J. Li, X.B. Wang, Y.L. Song, Y.Q. Liu, Q.S. Li, L. Jiang, D.B. Zhu. Super-“amphiphobic”aligned carbon nanotube films. Angewandte Chemie International Edition,2001,40(9):1743~1746
    [152] K. Teshima, H. Sugmura, Y.S. Inoue, T.K. Osamu T.K. Atsushi. Ultra-repellent poly(ethylene terephthalate) substrates. Langmuir,2003,19(25):10624~10627
    [153] W.H. Jiang, G.J. Wang, Y.N. He, X.G. Wang, Y.L. An, L. Jiang. Photo-switched wettabilityon an electrostatic self-assembly azobenzene monolayer. Chemical Communications,2005(28):3550~3552
    [154] H.Y. Erbil, A.L. Demirel, Y. Avci, O. Mert. Transformation of a simple plastic into asuperhydrophobic surface. Science,2003,299(5611):1377~1380
    [155] Y. Zhu, D. Hu, M.X. Wan, L. Jiang, Y. Wei. Conducting and superhydrophobic rambutan-like hollow spheres of polyaniline. Advanced Materials,2007,19(16):2092~2096
    [156] H. Yan, K. Kurogi, H. Mayama, K. Tsujii. Environmentally Stable Super Water-RepellentPoly(alkylpyrrole) Films. Angewandte Chemie International Edition,2005,44(22):3453~3456
    [157] Y. Zhu, J. Li, M.X. Wan, L. Jiang.3D-boxlike polyaniline microstructures withsuper-hydrophobic and high-crystalline properties. Polymer,2008,49(16):3419~3423
    [158]王亮,丁春梅,朱英,万梅香,江雷.超疏水导电聚苯胺的界面聚合.高等学校化学学报,2012,33(6):1355~1359
    [159] M. Wolfs, T. Darmanin, F. Guittard. Superhydrophobic nanofiber arrays and flower-likestructures of electrodeposited conducting polymers. Soft Matter,2012,8(35):9110~9114
    [160] T. Darmanin, E. Taffin de Givenchy, S. Amigoni, G. Frederic. Hydrocarbon versusFluorocarbon in the Electrodeposition of Superhydrophobic Polymer Films. Langmuir,2010,26(22):17596~17602
    [161] L.B. Xu, W. Chen, A. Mulchandani, Y.S. Yan. Reversible Conversion of ConductingPolymerFilms from Superhydrophobic to Superhydrophilic. Angewandte ChemieInternational Edition,2005,44(37):6009~6012
    [162] Y. Zhu, J.M. Li, H.Y. He, M.X. Wan, L. Jiang. Reversible Wettability Switching ofPolyaniline-Coated Fabric, Triggered by Ammonia Gas Macromol. Macromolecular RapidCommunications,2007,28(23):2230~2236
    [163]朱英,张敬畅,郑咏梅,翟锦,江雷.浸润性可调的导电聚苯胺/聚丙烯腈同轴纳米纤维.高等学校化学学报,2006,27(1):196~198
    [164]贾毅,岳仁亮,刘刚,倪勇,杨洁,刘海弟,陈运法.铝合金表面超疏水涂层的火焰喷雾热解法制备及其耐蚀性能.功能材料,2012,43(9):1113~1117
    [165]李松梅,周思卓,刘建华.铝合金表面原位自组装超疏水膜层的制备及耐蚀性能.物理化学学报,2009,25(12):2581~2589
    [166] T. Liu, Y.S. Yin, S.G. Chen, X.T. Chang, S. Cheng. Super-hydrophobic surfaces improvecorrosion resistance of copper in seawater. Electrochimica Acta,2007,52(11):3709~3713
    [167] A.C.C. de Leon, R.B. Pernites, C. Rigoberto. Superhydrophobic Colloidally TexturedPolythiophene Film as Superior Anticorrosion Coating. Applied Materials&Interfaces,2012,4(6):3169~3176
    [168]曹楚南.腐蚀电化学.北京:化学工业出版社,2004
    [169]邢翠娟,于良民,张志明.超疏水性聚苯胺微/纳米结构的合成及防腐蚀性能.高等学校化学学报,2013,34(8):1999~2004
    [170] P.M. Carrasco, M. Cortazar, E. Ochoteco, E.Calahorra, J.A. Pomposo. Comparison ofsurface and bulk doping levels in chemical polypyrroles of low medium and highconductivity. Surface and Interface Analysis,2007,39(1):26~32
    [171] E. Roussi, A. Tsetsekou, D. Tsiourvas, A. Karantonis. Novel hybrid organo-silicate corrosionresistant coatings based on hyperbranched polymers. Surface and Coatings Technology,2011,205(10):3235~3244
    [172] J.N. Balaraju, K.S. Rajam. Electroless deposition and characterization of high phosphorusNi-P-Si3N4composite coatings. International Journal of Electrochemical Science,2007,2(10):747~761
    [173] Z.A. Hamid. Electrodeposition of black chromium from environmentally electrolyte basedon trivalent chromium salt. Surface and Coatings Technology,2009,203(22):3442~3449
    [174] A.F. Frau, R.B. Pernites, R.C. Advincula. A Conjugated Polymer Network Approach toAnticorrosion Coatings: Poly(vinylcarbazole) Electrodeposition. Industrial&EngineeringChemistry Research,2010,49(20):9789~9797
    [175] J. Genzer, K. Efimenko. Recent developments in superhydrophobic surfaces and theirrelevance to marine fouling: a review. Biofouling,2006,22(5):339~360
    [176] G.E. Asturias, A.G. MacDiarmid, R.P. McCall, A.J. Epstein. The oxidation state of"emeraldine" base. Synthetic Metals,1989,29(1):157~162
    [177] J. Stejkal, P. Kratochvil. Polyaniline dispersions2. UV-Vis absorption spectra. SyntheticMetals,1993,61(3):225~231
    [178] Y.N. Xia, J.M. Wiesinger, A.G. MacDiarmid, A.J. Epstein. Camphorsulfonic Acid FullyDoped Polyaniline Emeraldine Salt: Conformations in Different Solvents Studied by anUltraviolet/Visible/Near-Infrared Spectroscopic Method. Chemistry of Materials,1995,7(3):443~445
    [179] J.P. Pouget, M.E. Jozefowice, A.J. Epstein, X. Tang, A.G. MacDiarmid. X-ray structure ofpolyaniline. Macromolecules,1991,24(3):779~789
    [180]翁少煌,周剑章,林仲华,林新华.手性聚苯胺纳米纤维的电化学制备.高等学校化学学报,2012,33(11):2501~2508
    [181] E.C. Gomes, M.A.S. Oliviera. Corrosion protection by multilayer coating using layer-by-layer technique. Surface and Coatings Technology,2011,205(8-9):2857~2864
    [182] M.A. Streicher. Pitting corrosion of18Cr-8Ni stainless steel. Journal of The ElectrochemicalSociety,1956,103(7):375~390
    [183] C.J. Weng, C.H. Chang, C.W. Peng, S.W. Chen, J.M. Yeh, C.L. Hsu, Y. Wei. Advancedanticorrosive coatings prepared from the mimicked Xanthosoma sagittifolium-leaf-likeelectroactive epoxy with synergistic effects of superhydrophobicity and redox catalyticcapability. Chemistry of Materials,2011,23(8):2075~2083
    [184] M. Kissi, M. Bouklah, B. Hammouti, M. Benkaddour. Establishment of equivalent circuitsfrom electrochemical impedance spectroscopy study of corrosion inhibition of steel bypyrazine in sulphuric acidic solution. Applied Surface Science,2006,252(12):4190~4197
    [185] P.A. Kilmartin, L. Trier, G.A. Wright. Corrosion inhibition of polyaniline and poly(o-methoxyaniline) on stainless steels. Synthetic Metals,2002,131(1-3)99~109
    [186] D.S. Solange. Smart coating based on polyaniline acrylic blend for corrosion protectionof different metals. Surface and Coatings Technology,2007,201(16-17):7574~7581
    [187] J.E. Pereira da Silva, S.I. Cordoba de Torresi, R.M. Torresi. Polyaniline/poly(methylmethacrylate) blends for corrosion protection: The effect of passivating dopants on different metals.Progress in Organic Coatings,2007,58(1):33~39
    [188] A.G. MacDiarmid. Polyaniline and polypyrrole: where are we headed?. Synthetic Metals,1997,84(1-3):27~34
    [189] T. Tken, B. Yazci, M. Erbil. Polypyrrole/polythiophene coating for copper protection.Progress in Organic Coatings,2005,53(1):38~45
    [190] G.M. Spinks, A.J. Dominis, G.G. Wallace, D.E. Tallman. Electroactive conducting polymersfor corrosion control part2. Ferrous metals. Solid State Electrochem,2002,6(2):85~100
    [191]黄美荣,李新贵,杨海军.水性聚苯胺防腐蚀涂料研究.涂料工业,2005,35(8):1~6
    [192] L.H.C. Mattoso, R.M. Faria, L.O.S. Bulhoes, A.G. MacDiamid. Synthesis, doping, andprocessing of high molecular weight poly(o-methoxyaniline). Journal of Polymer SciencePart A: Polymer Chemistry,1994,32(11):2147~2153
    [193] M.K. Rokovic, K. Kvastek, V. Horvat-Radosevic, L. Duie. Poly(ortho-ethoxyaniline) incorrosion protection of stainless steel. Corrosion Science,2007,49(6):2567~2580
    [194] A. Yagan, N.O. Pekmez, A. Yildiz. Electropolymerization of poly (N-methylaniline) on mildsteel: synthesis, characterization and corrosion protection. Journal of ElectroanalyticalChemistry,2005,578(2):231~238
    [195] K. Shah, J. Iroh. Electrochemical synthesis and corrosion behavior of poly (N-ethylaniline)coatings on Al-2024alloy. Synthetic Metals,2002,132(1):35~41
    [196] V. Shinde, S.R. Sainkar, S.A. Gangal, P.P. Patil. Synthesis of corrosion inhibitive poly(2,5-dimethylaniline) coatings on low carbon steel. Journal of Materials Science,2006,41(10):2851~2858
    [197] E. Hur, G. Bereket, Y. Sahin. Corrosion inhibition of stainless steel by polyaniline, poly(2-chloroaniline), and poly(aniline-co-2-chloroaniline) in HCl. Progress in organic coatings,2006,57(2):149~158
    [198] G. Bereket, E. Hur, Y. Sahin. Electrodeposition of polyaniline, poly(2-iodoaniline), andpoly(aniline-co-2-iodoaniline) on steel surfaces and corrosion protection of steel. AppliedSurface Science,2005,252(5):1233~1244
    [199] E. Hur, G. Bereket, Y. Sahin. Electrochemical synthesis and anti-corrosive properties ofpolyaniline, poly(2-anisidine), and poly(aniline-co-2-anisidine) films on stainless steel.Progress in organic coatings,2005,54(1):63~72
    [200] Z.X. Wei, Z.M. Zhang, M.X. Wan. Formation Mechanism of Self-Assembled PolyanilineMicro/Nanotubes. Langmuir,2002,18(3):917~921
    [201] Z.M. Zhang, Z.X. Wei, M.X. Wan. Nanostructures of polyaniline doped with inorganic acids.Macromolecules,2002,35(15):5937~5942
    [202] M. Harada, M. Adachi. Surfactant-mediated fabrication of silica nanotubes. AdvancedMaterials,2000,12(11):839~841
    [203] B.J. Kim, S.G. Oh, M.G. Han, S.S. Im. Preparation of polyaniline nanoparticles in micellarsolutions as polymerization medium. Langmuir,2000,16(14):5841~5845
    [204] S. Srinivasan, P. Pramanik. Optical properties of chemically prepared polyemeraldine.Synthetic Metals,1994,63(3):199~204
    [205] M.I. Boyer, S. Quillard, E. Rebourt, G. Louarn, J.P. Buisson, A. Monkman, S. Lefrant.Vibrational Analysis of Polyaniline: A Model Compound Approach. The Journal ofPhysical Chemistry. B,1998,102(38):7382~7392
    [206] S. Kim, I.J. Chung. Annealing effect on the electrochemical property of polyanilinecomplexed with various acids. Synthetic Metals,1998,97(2):127~133
    [207] L. Wen, N.M. Kocherginsky. Doping-dependent ion selectivity of polyaniline membranes.Synthetic Metals,1999,106(1):19~27
    [208] S.A. Chen, H.T. Lee. Structure and Properties of Poly(acrylic acid)-Doped Polyaniline.Macromolecules,1995,28(8):2858~2866
    [209] S.G. Kim, J.W. Kim, H.J. Choi, M.S. Suh, M.J. Shin, M.S. Jhon. Synthesis andelectrorheological characterization of emulsion-polymerized dodecylbenzenesulfonic aciddoped polyaniline-based suspensions. Colloid and Polymer Science,2000,278(9):894~898
    [210] I. Sapurina, M. Mokeev, V. Lavrentev, V. Zgonnik, M. Trchova, D. Hlavata, J. Stejskal.Polyaniline complex with fullerene C60. European Polymer Journal,2000,36(11):2321~2326
    [211] R.M. Silverstein, G.C. Bassler, T.C. Morrill. Spectrometric Identification of OrganicCompounds.5th ed. Wiley, New York,1991
    [212] J. Yue, A.J. Epstein, A.G. MacDiarmid. Sulfonic acid ring-substituted polyaniline, a self-doped conducting polymer. Molecular Crystals and Liquid Crystals,1990,189:255~261
    [213] J.S. Tang, X.B. Jing, B.C. Wang, F.S. Wang. Infrared spectra of soluble polyaniline.Synthetic Metals,1988,24(3):231~238
    [214] Stejskal, P. Kratochvíl, N. Radhakrishnan. Polyaniline dispersions.2. UV-Vis absorptionspectra. Synthetic Metals,1993,61(3):225~231
    [215] Y.S. Yang, M. Wan. Chiral nanotubes of polyaniline synthesized by a template-free method.Journal of Materials Chemistry,2002,12(4):897~901
    [216] D. Sazou, C. Georgolios. Formation of conducting polyaniline coatings on iron surfaces byelectropolymerization of aniline in aqueous solutions. Journal of ElectroanalyticalChemistry,1997,429(1-2):81~93
    [217] A. Ya an, N.. Pekmez, A. Yildiz. Investigation of protective effect of poly(N-ethylaniline)coatings on iron in various corrosive solutions. Surface and Coatings Technology,2007,201(16-17):7339~7345
    [218] A. Ya an, N.. Pekmez, A. Yildiz. Corrosion inhibition by poly(N-ethylaniline) coatings ofmild steel in aqueous acidic solutions. Progress in Organic Coatings,2006,57(4):314~318
    [219] X.G. Yang, B. Li, H.Z. Wang, B.R. Hou. Anticorrosion performance of polyanilinenanostructures on mild steel. Progress in Organic Coatings,2010,69(3):267~271
    [220] M. Adachi, T. Harada, M. Harada. Formation processes of silica nanotubes through asurfactant-assisted templating mechanism in laurylamine hydrochloride/tetraethoxysilanesystem. Langmuir,2000,16(5),2376~2384
    [221] Y. Cao, P. Smith, A.J. Heeger. Spectroscopic studies of polyaniline in solution and in spin-cast films. Synthetic Metals,1989,32(3):263~281
    [222] C.R. Martin. Membrane-Based Synthesis of Nanomaterials. Chemistry of Materials,1996,8(8):1739~1946
    [223] S.S. Abd El Rehim, H.H. Hassan, M.A. Amin. Corrosion inhibition study of pure Al andsome of its alloys in1.0M HCl solution by impedance technique. Corrosion Science,2004,46(1):5~25
    [224] H. Ashassi-Sorkhabi, B.Shabani, B.Aligholipour, D.Seifzadeh. The effect of some Schiffbases on the corrosion of aluminum in hydrochloric acid solution. Applied Surface Science,2006,252(12):4039~4047
    [225] M. Gojic, R.Horvat. Corrosion kinetic investigation of iron by impedance spectroscopy andpolarization methods. Annali dell'Universita di Ferrara,1995,10:97~106
    [226] H.J.W. Lenderink, M. van der Linden, J.H.W. de Wit. Corrosion of aluminum in acidic andneutral solutions.1993,38(14):1989~1992
    [227] B. Wessling. Passivation of metals by coating with polyaniline: corrosion potential shift andmorphological changes. Advanced Materials,1994,6(3):226~228
    [228] M.C. Bernard, A. Hugot-Le Goff, S. Joiret, N.N. Dinh, N.N. Toan. Polyaniline layer for ironprotection in sulfate medium. Journal of The Electrochemical Society,1999,146(3):995~998
    [229] S.R. Moraes, D. Huerta-Vilca, A.J. Motheo. Characteristics of polyaniline synthesized inphosphate buffer solution. European Polymer Journal,2004,40(9):2033~2041
    [230] Y. Cao, S.Z. Li, Z.J. Xue, D. Guo. Spectroscopic and electrical characterization of someaniline oligomers and polyaniline. Synthetic Metals,1986,16(3):305~315
    [231] S. Ren, S. Yang, Y. Zhao,T. Yu, X. Xiao. Preparation and characterization of anultrahydrophobic surface based on a stearic acid self-assembled monolayer overpolyethyleneimine thin films. Surface Science,2003,546(2-3):64~74
    [232] J. Bico, C. Marzolin, D. Quere. Pearl drops. Europhysics Letters,1999,47(2):220~226
    [233] Y. Furukawa, F. Ueda, Y. Hyodo, I. Harada, T. Nakajima, T.Kawagoe. Vibrational spectraand structure of polyaniline. Macromolecules,1988,21(5):1297~1305
    [234] X.R. Zeng, T.M. Ko. Structures and properties of chemically reduced polyanilines. Polymer,39(5):1187~1195
    [235] W. Zheng, M. Angelopoulos, A.J. Epstein, A.G. MacDiarmid. Experimental evidence forhydrogen bonding in polyaniline: mechanism of aggregate formation and dependency onoxidation state. Macromolecules,1997,30(10):2953~2955
    [236] H. Tang, K. Prasad, R. Sanilines, P.E. Schmid, F. Levy. Electrical and optical properties ofTiO2anatase thin films. Journal of Applied Physics,1994,75(4):2042~2047

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700