新型阴极结构铝电解槽多物理场数值仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝电解槽的物理场对铝电解槽的电流效率和槽寿命等技术指标影响显著,因此,铝电解槽多物理场的模拟研究对铝电解槽物理场的优化设计和新槽型的开发都具有十分重要的意义,本论文采用计算机仿真技术,以大型有限元软件ANSYS为平台,以160kA原阴极铝电解槽和东北大学冯乃祥所研发的新型阴极结构铝电解槽为研究对象,对原阴极铝电解槽和新型阴极结构铝电解槽的多物理场进行模拟计算。
     原阴极铝电解槽和新型阴极结构铝电解槽三维电场和磁场的计算结果表明:新型阴极结构铝电解槽与原阴极铝电解槽铝液和电解质中的电流分布规律基本相似,不同的是,新型阴极结构铝电解槽中铝液Z向垂直电流减小,阴极凸台表面上部的铝液中X向(长轴)水平电流增加,此外,新型阴极结构铝电解槽的电解质电压降比原阴极铝电解槽的电解质电压降降低0.38V,说明新型阴极结构铝电解槽更加节能;
     新型阴极结构铝电解槽和原阴极铝电解槽铝液与电解质中磁场分布规律相似,磁场值相差也不大,其磁力线基本上可以看做一个绕Z轴顺时针的大旋涡,其计算结果与测量结果基本吻合;
     新型阴极结构铝电解槽与原阴极铝电解槽铝液和电解质中的电磁力分布趋势不同,但其值大小差别不大,原阴极铝电解槽铝液中的总电磁力离阴极上表面越近其值越大,而新型阴极结构铝电解槽的总电磁力矢量和则是先减小,至阴极凹槽内升高,原阴极铝电解槽电解质中的总电磁力离阴极上表面越远其值越大,至阳极问隙时达到最高,而新型阴极结构铝电解槽的总电磁力在阳极底掌下变化不大,分布均匀,至阳极间隙时降低。
     原阴极铝电解槽和新型阴极结构铝电解槽三维流场的计算结果表明:新型阴极结构铝电解槽铝液与电解质的速度都要小于原阴极铝电解槽铝液与电解质的速度,且存在更大面积的零速度区域,在铝液与电解质交界面上,铝液与电解质的Z向垂直速度低于原阴极铝电解槽铝液与电解质的Z向垂直速度,且具有较多的小峰值,取代了原阴极铝电解槽铝液与电解质交界面上稀疏的高峰值,从而可以推断在铝液与电解质交界面上,新型阴极结构铝电解槽的波动幅度小而光滑,因此将比原阴极铝电解槽更为稳定。
     原阴极铝电解槽和新型阴极结构铝电解槽三维温度场的计算结果表明:其计算结果与测量结果基本吻合,采用新型阴极结构后,底部保温不足,导致新型阴极结构铝电解槽过冷,重新设计后整个新型阴极结构铝电解槽的底部保温效果良好,符合电解槽热设计原则。
     原阴极铝电解槽和新型阴极结构铝电解槽三维热应力场的计算结果表明:新型阴极的应力集中区出现阴极凸起与阴极表面的连接处,原阴极的应力集中区出现在长轴两端,新型阴极与原阴极相比,其正应力最大值差别不大,XZ面的应力集中虽然有所增强,但缓解了XY面与YZ面的应力集中。
     综上所述,本研究为新型阴极结构铝电解槽各物理场提供了有效的分析手段,从而为大型新型阴极结构铝电解槽的物理场优化设计以及对工业生产槽的工程分析与诊断都将有重要的参考价值。
The multi-fields of aluminum reduction cell have significant influenced on the current efficiency and the cell life, so the numerical simulation of the multi-fields in aluminum reduction cells is very important to optimize the conventional cells and the design the new model cells. The mathematical model of electromagnetic field, flow field, temperature field and thermal-stress field was established in the paper. The multi-field of the 160kA conventional and new model cathode (invented by Feng Naixiang of Northeast University) cells was numerically calculated with commercial software ANSYS.
     The calculated results of the 3D electromagnetic field show that:the current distribution of the conventional cells is similar to those of the new model cathode cells, but in aluminum of the new model cathode cells, the Z Current density decreased, while the X (long axes) Current density of aluminum that is up from the surface of convex cathode increased, in additional, the voltage drop in electrolyte of the new model cathode cells reduces 0.38V, which proves that the new model cathode cells is advantageous in energy conservation;
     The magnetic distribution of the conventional cells and new model cathode cells is similar, the magnetic line forms a clockwise swirl, and the measured data was consistent with the simulated results.
     The Lorentz force distribution of the conventional cells and new model cathode cells is differ, but the value is similar, the Lorentz force in aluminum of the conventional cell become higher near the surface of the cathode, while the Lorentz force in aluminum of the new model cathode cells decreased at first, then increased at the concave of cathode, the Lorentz force in electrolyte of the conventional cell become higher away from the surface of the cathode, while the Lorentz force in electrolyte under the anode bottom of the new model cathode cells is evenly distributed, then decreased in gap of the anode.
     The calculated results of the 3D flow field show that:in the new model cathode cells, the velocity of the aluminum and electrolyte is smaller than the one of the conventional cell, and there is wider zero velocity region; at the interface of aluminum and electrolyte of the new model cathode cells, the peak of Z velocity is smaller and denser, replace the larger and sparser peak of Z velocity at the interface of aluminum and electrolyte of the conventional cells, so it can conclude that the fluctuation of the new model cathode cells is smoother, therefore, the new model cathode cells is steadier.
     The calculated results of the 3D temperature field show that:the measured data was consistent with the simulated results, the new model cathode cells is cooler because of the bad insulation work of the bottom carbon block, and after designed, the bottom temperature of the new model cathode cells is hearth.
     The calculated results of the 3D thermal-stress field show that:the stress concentration is at the joints of the convex and the surface of cathode in the new model cathode cells, while the stress concentration is at the ends of long axis of cathode in the conventional cells; in the new model cathode cells, the XZ shear stress concentration is enhanced, but the XY and YZ shear stress concentration is released.
     In conclusion, the numerical simulations provide an exact and high efficiency method for the multi-field of the new model cathode cells, and have the important references values for project analysis and diagnose.
引文
1. 田应甫.大型预焙铝电解槽生产实践[M],长沙:中南工业大学出版社,1997,15.
    2.张勇,马思聪,董远霞.浅谈中国铝电解技术发展与进步[J],世界有色金属,2008,(1):22-25.
    3.赵匡华.107种元素的发现[M],北京:北京出版社,1983,95.
    4. 吕森宝.浅析我国铝电解工业集中度[J],轻金属,2006,1(4):32.
    5.李梅娃.开展清洁生产促进电解铝工业发展[J],辽宁城乡环境科,2003,23(3):1-2.
    6.贾新武,李章存.我国大型预焙阳极铝电解生产与国际先进水平的差距[J],轻金属,2007,(5),24-26.
    7.霍庆发.电解铝工业技术与装备[M].沈阳:辽海出版,2002,10.
    8. 张树朝.国内外铝用碳素材料检测方法标准比较[J],轻金属,2004,(7):47.
    9. 吕定雄,干益人,毛继红,叶中桂.我国开发大容量预焙铝电解槽技术进展及今后努力方向[J],有色设备,2001,(1):15-17.
    10.张家增.中国铝工业的发展历程与发展趋势[J],矿业研究与开发,2003,(1):40-43.
    11. C. Manvoern, P. Homsi, J. L. Basuqin, T. Behregarya. AP50:The pechiney 500kA cell[J], Light Meatls, 2001,221-226.
    12.康义.中国电解铝工业发展战略的几点思考[J],世界有色金属,2001,(10):4-7.
    13.伍进伟.我国电解铝工业国际竞争力的分析[J],有色金属设计,2003,30(3):7-10.
    14.刘希烈,许凝.世界及中国铝工业发展趋势[J],世界有色金属,2001,(12):15-17.
    15.叶周宏.关铝公司进一步扩大电解铝规模的思考[J],有色冶炼,2002,(6):16-18.
    16.孟杰.我国铝冶炼技术现状及发展趋势[J],有色金属(冶炼部分),2002,(2):26-28.
    17.梁学民,于家谋等.九十年代我国铝电解技术新进展[J],轻金属,2000,(2):33-38.
    18.邱竹贤.世界铝工业与新技术发展趋势[J],有色冶炼,2000,29(2):1-6.
    19.冯乃祥,田福泉等.我国铝工业现状和与国外先进技术水平的差距[J],轻金属,2000,(7):29-33.
    20.干益人.我国大型预焙铝电解槽发展中的若干问题探讨[J],世界有色金属,2001,(3):4-8.
    21. G. D. Brown, G. J. Hardie, E. W. Shaw. TiB2 coated aluminum reduction cells:status and future direction of coated in comalco [A]. Proc.6th Aust. Al smelting Workshop[C],1998,499-508.
    22. T. Palmer. Changing Trends in aluminum production [J]. Proc.6th Aust. Al smelting Workshop[C], 1998:1-2.
    23. H. A. Oye, B. J. Welch. Cathode performance:The influence of design, oprations and operating conditions [J]. JOM,1998,50(2):18-23.
    24.周乃君.导流型铝电解槽技术进展与应用基础研究[J],轻金属,2000,(9):29-31.
    25.郭兴.德国联合铝业公司铝电解工艺技术[J],轻金属,1996,(12):31-35.
    26.龚涛,熊焱.自焙槽电解铝厂技改方案探讨[J],有色金属(冶炼部分),2001,(1):20-22.
    27.曾健.电解铝生产中优化磷生铁配方的试验研究[J],有色冶金节能,2006,(3):21-32.
    28.靳文军,任必军,李贺松,蔡祺风.伊川铝厂阳极组装新型磷生铁配方的研究[J],轻金属,2008,(10):30-23.
    29.黄涌波,袁朝晖,程祥,蔡祺风.铝电解用磷生铁组成研究[J],轻金属,1998,(2):37-39.
    30.姜有伟,王醒钟,周政,吴举.论铝电解自焙槽改预焙槽的可行性[J],世界有色金属,1998(10):14-17.
    31.邱竹贤.预焙槽炼铝[M],北京:冶金工业出版社,1980,25-30.
    32.高子忠.轻金属冶金学[M],北京:冶金工业出版社,1993,66.
    33. Buiza, J. Imery. Electromagnetic optimization of the V-350 cell [J]. Light Metals.1989:211-214.
    34. Yao ShiHuan, He Zhihui. Selection of bus bar optimum section in high amperage reduction cells [J], Light Metals,1990,453-458.
    35. A. Moraru, I. Panaitescu, A. Panaitescu, D. Mocanu, Al. M. Morega. On the current in the aluminum reduction cell [J],Rev. Roum. Sci. Tech.-Electrotech. Energ.,1998,473-484.
    36.曹国法.阳极电压降的三维数值计算[J],铝镁通讯,1991,(3):1.
    37.曾水平.铝电解槽内电磁场计算及电流效率连续监测的研究[D],长沙中南工业大学,1996.
    38.曾水平,刘业翔,蔡祺风,梅炽.铝电解槽中三维电流分布的数值模拟[J],有色金属,1996,48(3):88-93.
    39.杜水荣,毛宗源.用VC++实现铝电解槽电流分布的计算和仿真[J],华南理工大学学报,2001,29(9),65-69.
    40. Haupin We. Calculating thickness of containing walls frozen from melt [J], Light Metals. 1971,188-194.
    41.有田池内.铝电解槽中电解质与金属对流图像及其界面形状的数值计算[J],轻金属(日),1983,(11):101.
    42. E. D. Tarapore. The Effcet of operating variables on flow in aluminum reduction cells [J], Light Metals. 1982,34(2):541.
    43. M.C. Richard. A new approach for comparing the impact on magnetic fields from pot design alterations [J],Light Metals,1976,(1):109.
    44.陈世玉等.采用相对电参量计算铝电解槽的电流场[A],铝电解槽“三场”研究论文集[C],1986:55-58.
    45.贺志辉,陶先绪,陈世玉.电解槽槽膛内形对电流分布的影响[J],轻金属,1987,(6):28-30.
    46.陶先绪,陈世玉.应用耦合法计算大型铝电解槽的电流场[J],华中工学院学报,1987,(6):93-100.
    47.李德祥,郭天立.贵州铝厂160kA铝电解槽电场计算[J],轻金属,1991,(3):31-35.
    48. A. Furman. A systematic approach to cathodes current [J], Light Metals,1978,87-106.
    49.陆家榆等.利用边界元法计算大型铝电解槽的电流场[A],铝电解槽“三场”研究论文集[C],1986(9):73-81.
    50.孙敏等.铝电解槽磁场计算的数学模型及其误差分析[A],铝电解槽“三场”研究论文集[C],1986,(9):65-70.
    51. J. W. Evans, Y. Zundelevich, D. Sharma. A mathematical model for prediction of currents, magnetic fields, melt velocities, melt topography and current efficiency in Hall-Heroult cells[J],Metallurgical Transactions B,1981,12B:353-369.
    52. K. J. Fraser, D. Billinghurst,K. L. Chen, J. T. Keniry, Some application of mathematical modeling of electric current distributions in Hall-Herroult cells[J],Light Metals.1989:218-226.
    53. J. Zorie, I. Rousar, Z. Kuang. Current distribution in aluminum electrolysis cells with soderberg anodes. Part Ⅱ:Mathematical Modeling [J], Journal of Applied electro-chemistry,1996,26(8):795-802.
    54. J. Zorie,I. Rousar, Z. Kuang. Mathematical modeling of industrial aluminum cells with prebaked anodes. Part Ⅰ:Current distribution and anode shape [J]. Journal of Applied Electrochemistry.1997, 27(8):916-927.
    55. P. Z. Donald. Current distribution modeling for novel alumna electrolysis[J],Light Metals.1991, 363-374.
    56. P. Z. Donald, L. Robert, Kozarek. Hall-Herroult cell magnetic measurements and comparison with calculations [J], Light Metals.1991,381-391.
    57. W. E. Wahnsiedley, D. Vogelsang. Effeet of steel parts on magnetic fields in aluminum reduction cells [J], Light Metals.1991,393-398.
    58. M. DuPuis. Computation of accurate horizontal current density on metal Pad using a full quarter cell thermo-electric model[J], Light Metals.2001:3-11.
    59. A. Moraru, L. Panaitescu, A. Panaitescu. On the current field in the aluminum reduction cell[J]. Rev. Roum. Sci. Techn., Electrotechn. et al Energ.,1999,43(3):281-297.
    60. A. Moraru, L. Panaitescu A. Panaitescu. An approach to the electro-kinetic problem in the aluminum cell[A],8th International IGTE symposium on Numerical Field Calculation in Electrical Engineering[C].1998,512-518.
    61.冯乃祥.铝电解[M]北京:化学工业出版社,2006:349-360.
    62.K.格罗泰姆,B.威尔奇.邱竹贤等译.铝电解厂技术[M],沈阳:《轻金属》编辑部,1997:25.
    63. K. Grjotheim, H. Kvande. Understanding the Hall-Heroult process for production of aluminum[M], Dusseldorf:Aluminum-Verlag Press,1986:36.
    64.邱竹贤.预焙槽炼铝[M],北京:冶金工业出版社,1980:20.
    65. K. Grjotheim, B. Kvands. Introduction to aluminum electrolysis [M]. Dusseldorf:Aluminium-Verlag Press,1993:11.
    66. G.E. Da Mota, G.J. de Andrade. Magnetic compensation project ALBRAS smelter[J], Light Metals, 2001:413-417.
    67.梁学民.论现代大型铝电解槽的母线设计[J],轻金属,1990,(1):20-26.
    68.姚世焕.200kA预焙槽的设计构思[J],轻金属,1998,(5):27-29.
    69.张瑞祥,范玉华.大型预焙阳极铝电解槽母线配置及磁场的分析[J],轻金属,1985,(3):24-28.
    70.胡友秋,程福臻,刘之景.电磁学[M],北京:高等教育出版社,1994,25.
    71. N. Urata, Y. Arita, H. Ikeuchi. Magnetic Field and flow pattern of liquid aluminum [J]. Light Metals, 1975, (1):233-250.
    72. G. A. Solinas. Advanced mathematical models for the calculation of magnetic fields in aluminum reduction cells[J], Light Metals,1978, (1):15-24.
    73.冯乃祥.铝电解[M],北京:化学工业出版社,2006,366.
    74.武丽阳,潘阳生.电解槽磁场计算方法及计算程序[J],轻金属,1984,(8):23-26.
    75.干益人,宋垣温.对《电解槽磁场计算方法及计算程序》一文中若干问题的商榷[J],轻金属,1985,(5):28-30.
    76. E. D. Tarapore. Magnetic fields in aluminum reduction cells and their influence on metal pad circulation[J],Light Metals,1979, (1):541-550.
    77.贺志辉,陈世玉.电解槽熔体磁场计算的误差分析[J],轻金属,1987,(7):27-29.
    78.陈世玉.矩形母线磁场的计算公式[J],华中工学院学报,1985,13(2):53-58.
    79. R. F. Robl. Influence by shell steel on magnetic fields within Hall-Heroult cells[J], Light Metals,1978, (1):1-14.
    80. T. H. Sele. Computer model for magnetic fields in electrolytic cells including the effect of shell Parts[J], Light Metals,1973, (1):119-132.
    81. T. H. Sele. Computer model for magnetic fields in electrolytic cells including the effect of steel Parts[J], Metallurgical Transactions,1974,(5):2145-2150.
    82. I. Sief, A. Meregalli. Evaluation of the effect of steel parts on magnetic induction in aluminum reduction Cells[J],Light Metals,1977,1:35-47.
    83. E. Guancial, S. DasGupta. Three-dimensional finite element program for magnetic field problems[J], IEEE Transactions of Magnetics,1977,13:1012-1015.
    84. J. H. Hwang, W. Lord. Finite element analysis of the magnetic field distribution inside a rotating ferromagnetic bar[J], IEEE Transactions of magnetics,1974,10:1113-1118.
    85. W. Kamminga. Finite-element solutions for devices with permanent magnets[J], Applied Physics, 1975,8(7):841-855.
    86. C. J. Holzinger. Computation of magnetic fields within yhree-dimensional highly nonlinear media[J], IEEE Transactions of Magnetics,1970,6(1):60.
    87. KOZAKOFF DJ; SIMONS JR FO. Three-dimensional nonlinear magnetic field boundary value problem and its numerical solution [J], IEEE Transactions of Magnetics,1970,6(4):828-833.
    88. M. Segatz, D. Vogelsang. Effect of steel parts on magnetic fields in aluminum reduction cells [J], Light Metals,1991:393-398.
    89.崔凌华.铁磁物质对电解槽磁场的影响[J],轻金属,1985,(5):35-36.
    90. G. Degan. Use of Iron Shields for Correcting local disturbances of magnetic fields in the electrolytic Pots [J]. Light Metals.1986:551-554.
    91. E. D. Tarapore. Calculation of the Magnetic field distribution in aluminum electrolyze [J], Light Metals. 1981:341-351.
    92. Alexander Kaluminom. Application of integral methods for computation of 3D magnetic fields in aluminum electrolyzes [A]. The 11th Conference on the computation of electromagnetic fields[C],1997: 85-86.
    93.冯之鑫.三维非线性静电场及静磁场问题的积分方程法[J],电工技术学报,1981(1):101-110.
    94. D. P. Zeigler, R.L. Kozarek. Hall-Herroult cell magnetic measurements and comparison with calculations[J],TMS Light,1991,381-391.
    95. S.K. Banerjee, J.W. Evans. Further results from a physical model of a Hall-Herroult cell[J], Light Metals,1987,321-326.
    96.邱捷,钱秀英.铝电解槽非线性磁场的计算[J],有色金属,1992,44(3):55-58.
    97. M. Segatz, D. Vogelsang, C. Droste, P. Baekler, Modeling of transient magneto-hydrodynamic phenomena in Hall-Herroult cells [J],Light Metals,1993,361-368.
    98. D. Vogelsang, M. SegatZ. Simulation tools for the development of high-amperage reduction cells [J], Light Metals,1991,375.
    99. M. Segatz, C. Droste. Analysis of mageto hydrodynamic Instabilities in aluminum reduction cells[J], Light Metals,1994,313-322.
    100. M. Chiampi, M.Repetto, V. Chechurin, A. Kalimov, L. Leboucher. Magnetic modeling and magneto-hydroynamie simulations of an aluminum production electrolytic cell[J], The International Journal for Computation and Mathematics in Electrical and Electronic Engineering,1999,18(3): 528-538.
    101. A. Kalimov, V. Krukovski, L. Minevich. Application of the SPatial Integral equation method for analysis three dimensional magnetic fields of pots[A], The 14th International Conference on Magneto-hydrodynamics[C],1996:124-130.
    102. O. Bottauseio, M. Chiampi, M. Repetto.3D BEM formulation for shielding problems[A], Process of 7th IGTE Symposium[C],1996,482-487.
    103.张丽燕,胡青春.计算铝电解槽内磁场分布的方法研究[J],青岛大学学报,1996,9(4):82-88.
    104. Li Guohua, Li Dexiang, Li Dianfeng. Further studies on calculation method of magnetic field in aluminum reduction cell[J], Light Metals,1996,389-396.
    105. Li Guohua, Li Dexiang. New method for calculation of magnetic field in aluminum reduction cell[J], Light Metals,1995:301-303.
    106.曾水平,蔡祺风,梅炽,刘业翔.铝电解槽内磁场的三维数值分析[J],中南工业大学学报,1995,26(5):618-622.
    107.刘业翔,梅炽,曾水平.801A上插式自焙铝电解槽熔体中电磁力场的计算与分析[J],中国有色金属学报,1996,6(1):27-31.
    108.曾水平,蔡祺风,梅炽,刘业翔.铝电解槽熔体中电磁力场的计算机仿真[J],北京科技大学学报(冶金反应工程专辑),1995,S1(12):65-70.
    109. S. Thorleif. Computer model for magnetic fields in electrolytic cells including the effect of steel palts [J],Metallurgical Transactions.1974(5):145-215.
    110.蔡晖.铝电解槽的磁场计算及研究[D],长沙:中南工业大学,1992.
    111.储璇雯,谢志行.电磁场及电离子光学系统数值分析[M],杭州:浙江大学出版社,1991,66.
    112.李瑞遐.有限元法与边界元法[M],上海:上海科技教育出版社,1993,165.
    113.樊明武,颜威利.电磁场积分方程法[M],北京:机械工业出版社,1988,68.
    114.许永兴.电磁场理论及计算[M],上海:同济大学出版社,1994,33.
    115.史乃.电磁场问题的有限元解法[M],北京:科学出版社,1985,62.
    116.樊明武,杜兴军.三维分布电流场量的积分解法[J],哈尔滨电工学院学报,1984,7(2):1-9.
    117. A. G. Armstrong, C. J. Collie, J. Simkin, C.W. Trowbridge. The solution of 3D magnetostatic problems using scalar potentials[J], Compumag Communications Proceedings,1978:1-10
    118.冯亚伯.电磁场理论[M],成都:电子科技大学出版社,1995:23.
    119.马信山,张济世,王平.电磁场基础[M],北京:清华大学出版社,1995:34.
    120.李承祖,赵凤章.电动力学教程[M],北京:国防科技大学出版社,1994:81.
    121.孙阳,冯乃祥,崔建忠.186kA大型预焙阳极铝电解槽磁场的三维数值计算[J],金属学报,2001,37(3):332-336.
    122.孙阳,冯乃祥,崔建忠.电流分布对160kA预焙阳极铝电解槽磁场影响的数值计算[J],轻金属,2001(2):30-33.
    123.冯乃祥,孙阳,冷正旭,石崇光,张玉,谢青松.贵州铝厂160kA大型预焙阳极铝电解槽磁场测量与计算[J],轻金属,2001,(11):43-47.
    124. Sun yang. Magnetic field measurement and calculation for 160kA prebake cells in the Guizhou aluminum smelter[J], Light Metals,2001(1):433-437.
    125.孔祥谦.有限单元法在传热学中的应用[M],北京:科学出版社,1986:65.
    126.张纪刚.有限元法的应用与实现[M],北京:科学出版社,1992:17.
    127.李瑞遐.有限元法与边界元法[M],上海:上海科技教育出版社,1993:39.
    128.颜威利.电磁系统磁场的有限元计算方法[J],河北工学院学报,1980,(1):53-66.
    129. M. DuPuis, I.Tabsh. Thermo-Electro-Magnetic modeling of a Hall-Herroult cell [J],Proceeding of the ANSYS Magnetic Symposium.1994:3-13.
    130. A.T. Tabereaux, R. B. Hester. Metal pad velocity measurements in prebake and soderberg reduction cells [J], Light Metals.1984:519-539.
    131. A. Pant, A. Langille, R. Roy. Measurement of liquid metal flow velocities in clectrolytic cells:Test of the iron rod method[J], Light Metals,1986:541-550.
    132. F. Laroche, R.T. Bui, R. Boivin. Experimental study of the bath-metal interface waves in an electrolytic cell[A]. Proc. Int. Symposium on Reduction and Casting of Aluminum[C],1988:169-187.
    133. A. Panaitescu, A. Moraru, L. Panaitescu. Visualization of the metal pad waves in the aluminum reduction Cell with Prebaked AnodeslJ], Light Metals,2000:393-313.
    134.蔡棋风,沈洪远,梅炽.铁棒法测定铝液流速的标定实验与工业槽实测[J],轻金属,1993(9):29-32.
    135.黄兆林.铝电解槽内湍流流动与界面波动的数值模拟[J].计算物理,1994,11(2):179-185.
    136. T. Muller, K. Solberg. Numerical calculation of mass convection patterns in an aluminum reduction cell [J], Light Metals,1973(1):152-158.
    137. V. Kravtsov, A. Saltykovakii. Study of Magnetic Hydrodynamics in the Aluminum Reduction Cell[J], Tsvetynye Metally,1973(16):10-16.
    138. K. Mori, K. Shiota, N. Urata, H. Ikeuchi. Surface osciliation of liquid metal in aluminum reduction cells [J], Metall Soc. of AIME.1976,1:77-95.
    139. M. Echelini, O. Cobo. Expansion of a pot line with the aid of mathematical modeling [J], Light Metal, 1988:557-566.
    140. Y. Aritta, H. Ikeuchi. Numerical calculation of bath and metal convection patterns and their interface profile in aluminum reduetion cells[J], Light Metals.1981:357-371.
    141.陈庭贵.工业铝电解槽流场的数值研究[D].长沙:中南工业大学,1989.
    142.孙儒,梅炽.铝电解槽内金属循环的数值模拟[J],中南矿冶学院学报,1989,20(6):6-8.
    143. M.Chiampi, M. Repetto,V. Chechurin, A. Kalimov, L. Leboucher, Magnetic modelling and magnetohydrodynamic simulations of an aluminium production electrolytic cell[J], COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering,1999, 18(2):528-538.
    144. M. M. Bilek, W. D. Zhang, F. J. Stevens. Modeling of electrolyte flow and its related transport processes in aluminum reduction cells[J],Light Metals,1994:323-331.
    145. T. Sele. Instabilities of the metal surface in electrolytic cells [J], Light Metals,1977,7-24.
    146. R. Moreau, D. Ziegler. Stability of aluminum cells-A new approach [J], Light Metals,1986:359-364.
    147. V. Potocnik. Modeling of Metal-Bath interface waves in Hall-Heroult cells using ESTER/PHOENICS[J], Light Metals,1989:227-235.
    148. S. Cherchi, G. Degan. Oscillation of liquid aluminum in industrial reduction cells:an Experimental study[J], Light Metals,1983:457-467.
    149. K. Ai. The hydrodynamics of the hall-Heroult cell [J], Light Metals,1985:593-607.
    150. P. A. Davidson, R. I. Lindsay. A new model of interfacial waves in Aluminum reduction cells [J], Light Metals,1997,437-442.
    151. D. P. Ziegler, R. L. Kozarek. Hall-Heroult cell Magnetics measurements and comparison with calculations [J], Light Metals,1991:381-391.
    152. W. E. Wahnsiedler. Hydrodynamic modeling of commercial Hall-Heroult cells[J], Light Metals, 1987,269-287.
    153. L. Leboucher, K. Pericleous, I. Panaitescu, M. Repetto,. A Finite volume shallow layer method for the MHD instabilities in an aluminum production cell [A],2th International Conference on CFD in the Minerals and Process Industries[C],1999:335-328.
    154. M.M. Bilek, W. D. Zhang, F.J. Stevens. Modeling of electrolyte row and its related transport processes in aluminum reduetion cells [J], Light Metals,1994:323-331.
    155. N. Urata. Magnetics and metal pad instability [J], Light Metals,1985,581-591.
    156.岳林,梅炽.现代铝电解槽的电磁流动[J],中南矿冶学院学报,1991,22(6):636-643.
    157. C. H. Droste, M. Segatz, D. Vogelsang. Improved 2-Dimensional model for Magneto-Hydrodynamic stability analysis in reduction cells [J], Light Metals,1998:419-428.
    158. Vinko Potocnik, Frederic Laroche. Comparison of measurement and calculation metal pad velocities for different rrebake cell designs [J], Light Metals,2001:419-425.
    159.周萍.铝电解槽内电磁流动模型及铝液流动数值仿真的研究[D],长沙:中南大学,2002
    160. A. Tabereaux. Prebake Cell Technology:A Global Review [J]. JOM,2000:22-28.
    161. J. Antille, M. Flueck, M. V. Romerio. Steady velocity field in aluminum reduction cells derived from measurements of the anodic current fluctuations [J], Light Metals,1994:305-312.
    162. W. E. Haupin. Calculating thickness of walls frozen from melt [J], Light metal,1971,305.
    163. G. Peac, G.W. Medlin. Cell sidewall studies at Noranda aluminum [J], Light metal,1973:85.
    164. A. Ekor, G. E. Fladmark. Simulation of thermal, electrical and chemical behavior of an aluminum cell on a digital computer [J], Metall Soc of AIME,1973,85-104.
    165. DuPuis M. Computation of aluminum reduction energy balance using Analysis finite element models [J], Light Metals,1998,409.
    166. M. Dupuis, V. Potocnik. Computation of thermo-electric Half anode model [J], Light Metals,1986: 374-377.
    167. M. Dupuis. Tri-dimensional model of computation thermo-electric cathode [J], Light Metals,1987: 354-359.
    168. M. DuPuis. Computation of aluminum reduction cell energy balance using ANSYS Finite Element Models [J], Light Metals,1998:409-427.
    169. M. DuPuis. Development of a 3D Transient thermo-electric cathode panel rrosion model of an aluminum reduction cell[J], Light Metals,2000:169-178.
    170. D. Mocanu, M. Alexandru. Current flow and geat rransfer processes in the aluminum electrolysis cells [J], Light Metals,1999:377-384.
    171. S. A. Shcherbinin, V. V. Pingin, V. K.Frizorger.3-D mathematical model for studying changes in self bakes anode power regime [J], Light Metals,2001:511-517.
    172. M. Dupuis, I. Tabsh. Thermo-Electric analysis of aluminum reduction cells [J], Light Metals,1992: 55-62.
    173. D. J. Patrish. ANSYS in the aluminum Industry [J], Light Metals,1993,13-16.
    174. Dupuis M, Asadi G, Read C. Thermal study of the coke preheating for Hall-Herroult cell [J], Light Metals,1993:93-100.
    175. M. Dupuis, I. Tabsh. Evaluation of thermal stresses due to coke preheats of a Hall-Herroult cell [A], proceeding of the ANSYS 6th international conference[C],1994(1):315-323.
    176. M. Dupuis. Usage of a Full 3D Transient Thermo-electric FEM. model to study the thermal gradient generated in the lining during a coke preheat [J], Light Metals,2001:757-761.
    177. H.A. Ahmed, F.A. Elrefaie, M. F. EL Demerdash. Development of a thermal model for prebaked aluminum reduction at the aluminum company of Egypt[J], Light Metals,1993:375
    178. K.J. Fraser, D. Billinghurst, K. L. Chen. Some applications of mathematical modeling of electric current distributions in Hall Heroult cells [J], Light Metals,1989:219.
    179.游旺.大型预焙铝电解槽槽膛内形在线动态仿真研究[D],长沙:中南工业大学,1997.
    180.罗海岩,陆继东,吴君棋,黄来,沈凯.铝电解槽电热场解析技术的发展[J],轻金属,2002,(1):30-32.
    181.梅炽,汤洪清,孟柏庭.铝电解槽电、热解析数学模型及数值仿真试验[J],中南矿冶学院学报,1986,52(6):29.
    182.梅炽,王前普,彭小奇.有色冶金炉窑的仿真与优化[J],中国有色金属学报,1996,6(4):19.
    183.周萍,梅炽.铝电解槽槽膛内形的连续监测[J],轻金属,1992,(4):19.
    184.梅炽,游旺,王前普.铝电解槽槽膛内形在线显示仿真软件的研究与开发[J],中南工业大学学报,1997,28(2):138.
    185.游旺,王前普.铝电解槽槽膛内形在线仿真理论研究[J],中国有色金属学报,1998,8(4):695.
    186.梁芳慧,冯乃祥,孙阳.利用槽膛形状的计算机仿真技术确定160KA预焙槽最佳铝液高度[J],轻金属,2000,(1):33.
    187. J. Zorie, I.Rousar, J. Thonstad. Mathematical modeling of current distribution and anode shape in industrial aluminum cells with pre-baked anodes [J], Light Metals,1997:449.
    188.韦涵光,张大有.铝电解槽阳极的温度及其应力[J],轻金属,1985,(12):26.
    189.梅炽,王前普.铝电解槽热场研究[J],轻金属,1992,(1):29.
    190.李景江,邱竹贤.铝电解槽阴极电场的计算机仿真[J],东北工学院学报,1989,10(6):591.
    191.罗英涛,王平甫.铝用炭素材料(续11)[J],炭素技术,2001,(4):45-48.
    192. BjOMar Larsen, Morten s(?)rlie. Stress Analysis of cathode bottom blocks [J], Light Metals,1989: 641-646.
    193.张超英,孟荣光,沈玖珩.大型铝电解槽超静定约束反力、变形及摇兰架刚度的工程测试研究[J],机械,2000,27(1):3-5.
    194. G. Arkhipov, V. Pingin. Investigating thermoelectric fields and cathode bottom integrity during cell Preheating, start-up and initial operating period [J], Light Metals,2002:347-354.
    195. G. Arkhipov, V.Pingin. Investigating cathode strained-stressed state aluminum reduction cell[J], Light Metals,2001:763-769.
    196.邓星球.160Ak预焙阳极铝电解槽阴极内衬电-热-应力计算机仿真研究[D],长沙:中南大学,2004.
    197.张钦松.160kA预焙铝电解槽焦粒焙烧过程电-热-应力场计算机仿真研究[D],长沙:中南大学,2005.
    198.罗海岩,陆继东,黄来,吴君棋.铝电解槽三维电热场的ANSYS分析[J],华中科技大学学报,2002,30(7):4-5.
    199.王国强.实用工程数值模拟技术及其在ANSYS上的实践[M],西安:西北工业大学出版社,1999,34.
    200.龚曙光ANSYS工程应用实例解析[M],北京:机械工业出版社,2003,19.
    201.唐兴伦,范群波,张朝晖,李春阳.ANSYS工程应用教程-热与电磁学篇[M],北京:中国铁道出版社,2003,141-143.
    202.陈材侃.计算流体力学[M],重庆:重庆出版社,1992,121.
    203.顾而祚.流体力学有限差分法基础[M],上海:上海交通大学出版社,1988,42.
    204.刘顺隆,程元龙,姜宗林.粘性不可压缩流体平面流动的有限差分解法[J],哈尔滨船舶工程学院学报,1986,7(8):26-37.
    205. T. J. Chung流体动力学的有限元分析[M],北京:水利电力出版社,1980,52.
    206.J.J.康纳,C.A.勃莱皮埃.流体流动的有限元法[M],北京:科学出版社,1981,81.
    207.陈义良.湍流计算模型[M],合肥:中国科学技术大学出版社,1991,38.
    208.陈汉平.计算流体力学[M],北京:水利电力出版社,1995,76.
    209.张远君校编,王平等译.流体力学大全[M],北京:北京航空航天大学出版社,1991,44.
    210.陶文铨.数值传热学[M],西安:西安交通大学出版社,1988,92.
    211.郭鸿志.传输过程数值模拟[M],北京:冶金工业出版社,1998,138.
    212.孔祥谦,热应力有限元法分析[M],上海:上海交通大学出版社,1999,66-74.
    213.许德刚,材料力学[M],郑州:郑州大学出版社,2007,225-246.
    214.邱竹贤.预焙槽炼铝[M],北京:冶金工业出版社,2005,33.
    215.谢刚.铝电解槽阳极效应的不可逆过程特征[J],昆明理工大学学报,1996,12(8):50-55.
    216.张明杰,邱竹贤,王宏宽.铝电解中的电极过程Ⅰ.阳极过程[J],东北大学学报(自然科学版)2001,22(2):123-126.
    217.田本良.炭素材料的弹性模量、强度和破坏变形率[J],炭素技术,1994(4):1-8.
    218.沈宗斌.高炉冷却壁热应力计算与研究[J],鞍钢技术,1997,(2):10-14.
    219.施士.混凝土的抗剪强度、剪切模量和弹性模量[J],土木工程学报,1993,3(2):48-51.
    220.俞肇元,李艳梅,朱伏先.热处理工艺对建筑用PC钢棒强韧性的影响[J],材料与冶金学报,2002,10(3):212-214.
    221.黄纲华,郝仁官,何穷.1号高炉炉壳的有限元应力分析[J],宝钢技术,1994,(6):53-57.
    222.云斯宁,蒋明学,李勇,刘建龙,唐仕英,王黎.AION陶瓷材料的结构、性质及应用[J],耐火材料,2003,(3):173-176.
    223.冯乃祥,谭亚菊,段学良.铝电解槽阴极碳块钠侵蚀膨胀测定与研究,轻金属,1997,(6):37-39.
    224.王荣滨.热处理电炉热损失及对策,机械制造,1998,(8):26-27.
    225.王杰曾,金宗哲.耐火材料力学—热物理性能的评述[J],硅酸盐通报,1996,(2):41-46.
    226.伍玉云.300kA铝电解槽电热应力及钢膨胀应力的仿真优化研究[D],长沙:中南大学,2007.
    227.席灿明.180预焙槽的开发[J],轻金属,1992,2:28-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700