锌电解槽内电解液的水力学及数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在锌的生产工序中,电解沉积是能耗最高的工序,因此,降低电积的能耗对提高企业效益,使企业在竞争中占有一席之地意义重大。
     本课题主要研究的是电解槽内的流体流场,及改善流场的措施。依据某公司的锌电解槽,分别进行了水力学试验和数值模拟研究,以进一步观察其内部规律。水力学试验方面,依据相似原理,按照1:5的相似比采用有机玻璃制作电解槽水模型试验装置,采用水模拟电解液。利用测电导率法来获得平均停留时间(RTD),利用观察法和照相法来获取电解槽内部的流场信息。数值模拟方面,采用专业CFD商业软件Fluent对所建立的水模型进行数值模拟。并将模拟结果与水模型试验结果进行对比,来证明模拟方法的准确性和可靠性。并在该数值模型的基础上对实际工业生产上电解槽内部的电解液流场和温度场信息进行模拟预测。
     研究结果表明:现行生产条件下的最佳流量为2.33L/min。原水口管型在不同浸入深度和不同流量下的最佳条件是:2.33L/min,7cm。当分别使用设计制作的另外6种进液管水口管型时,从1#至6#管型,不同流量和不同深度的最佳条件分别为:2.33L/min,7cm;2.98L/min,7cm;3.58L/min,9cm;2.98L/min, 7cm;2.33L/min,9cm;2.33L/min,3cm。经综合比较后认为采用4#水口管型,控制流量为2.98L/min,浸入深度为7cm,溶液在该最佳条件下要比现行生产条件下的平均停留时间多273s。
     采用Fluent软件对锌电解槽的流场和温度场进行了数值模拟初步研究,结果显示:电解槽中的流体运动规律与水力学实验结果基本一直。同时预测了工业电解槽中流场和温度场,为进一步改善和优化电解槽结构、增大电解槽容量提供了合理的理论依据。
The electrolytic deposition process is the highest energy consumption step in the zinc production process. Therefore, reducing the energy consumption of it to improve enterprise efficiency places an important significance in the competitive supermarket.
     This paper mainly focused on the flow and the flow field in electrolytic cell and measures of improving the flow field. Mechanics experiments and numerical simulation were carried out according to electrolytic tank in a company to further study their internal rules. In terms of mechanics experiment, electrolytic cell water model tester was used with PMMA of similar ratio of 1:5 and water modeling electrolyte based on similarity principles. Conductivity measurements were used to RTD, observation and photography were taken to obtain the flow field information within the cell. In aspect of numerical simulation, a professional commercial software CFD Fluent was used for numerical simulation to the built water model and experimental results were compared to ones of water model so as to prove the accuracy and reliability of simulation. Based on the numerical model, the author also made prediction about electrolyte flow field and temperature field within the cell in the actual industrial production.
     The results showed that the best flow under the existing conditions of production was 2.33L/min. The best conditions for the original outlet tube were immersion depth 7cm and flow 2.33L/min. There were 6 different kinds of designed outlet tubular from 1 # to 6 # tube, the optimal conditions of different flow and different depth separately were:2.33L/min,7cm; 2.98L/min,7cm; 3.58L/min,9cm; 2.98L/min,7cm; 2.33L/min,9cm; 2.33L/min,3cm. After comprehensive,4 # was proved to be the proper one which could stay 273s longer than the average length in the current production condition.
     Fluent software was used preliminarily to simulate the flow field and temperature field of zinc electrolytic cell in the study, the results showed that the fluid movement in the cell was consistent with the mechanics experiment and also forecast the flow field and temperature field in industrial electrolytic cell which provided a reasonable theoretical basis for further improving and optimizing the cell structure and increasing the cell capacity.
引文
[1]冶金常识编写组编.十种常用有色金属铅与锌[M].第1版.北京:冶金工业出版社,1972
    [2]梅光贵,王德润,周敬元等.湿法炼锌学[M].第1版.长沙:中南大学出版社,2001
    [3]徐采栋,林蓉,汪大成.锌冶金物理化学[M].第1版.上海:上海科学技术出版社,1979
    [4]彭容秋,锌冶金[M].第1版.长沙:中南大学出版社,2005
    [5]东北工学院有色重金属冶炼教研室.锌冶金[M].第1版.北京:冶金工业出版社,1978
    [6]邓昕.铅锌市场分析和展望[硕士学位论文].北京邮电大学,2008.6.10
    [7]奚牲.世界铅锌资源开发现状及其利用[J].矿产.中国金属通报,2009(37):32-33
    [8]王军.锌市场分析[J].矿冶,2008,17(4):47-50
    [9]郭学益,田庆华编著.有色金属资源循环理论与方法[M].长沙:中南大学出版社,2008
    [10]肖松文,肖骁,刘建辉等.二次锌资源回收利用现状及发展对策[J].中国资源综合利用,19-23
    [11]Doug Rourke. Galvanized Steel:Recycling the Zinc Coating.The International Conference Steel in Green Building Construction. Orland USA,1998
    [12]王成彦,邱定蕃,江培海.东亚二次资源回收现状及对我国二次资源再生回收的启示[J].中国资源综合利用,2002(2):41-43
    [13]Ukitsu Hoh. Manufacture and Commercial Production of Chemical——Grade Zinc oxide from Steel Making Dust Metallingical Review of MMIJ,1996,2(13):1-13
    [14]Yasuji Matsushige, Kenji Hagimori. Electrolytic Zinc Production at Annaka Refinery [J]日本金属会志,1997,1122(705):105-108
    [15]Takazumi SATO.Recovery of Zinc Oxide from Steelmaking Dust at Onahama Plant of Ryoho Recycle eo.ltd.[J]日本金属会志,1997,808:206-208
    [16]尚辉良,阮海峰.我国再生锌产业现状及预测[J].市场分析,2006(5):24—25
    [17]梁学民.铝电解槽阴极侧部可压缩结构研究[J].轻金属,2010(6):30-32
    [18]彭建平,田应甫,冯乃祥.新型阴极结构电解槽铝电解试验[J].材料与冶金学 报.2009,8(3):165-167,171
    [19]刘长松.大中型预焙铝电解槽的开发与应用[J].有色金属设计2009,36(1):13-18
    [20]梁鲁清,邬建辉.铝电解槽扩容槽结构的改进与优化[J].青海科技,2008(6):68-70
    [21]王辉,杜永峰,聂文斌.铜电解项目电解槽结构性能试验浅析[J].甘肃科技,2008,24(14):51-52,112
    [22]陈永晖.铝电解槽阴极内衬材料及结构的改进[J].中国有色冶金2008,(5):41-43
    [23]石富.稀土电解槽的研究现状及发展趋势[J].中国稀土学报,2007,25(增刊):70-76
    [24]包丽明,刘坤,吕国成.180t转炉底吹气体与熔池相互作用的水模型实验[J].特殊钢,2008,29(2):18-20
    [25]幸伟,倪红卫,沈巧珍.130t钢包底吹氩喷嘴布置模式优化的水模型试验[J].特殊钢,2007,28(4):13-15
    [26]王军文,顾汉新,吴伟民.1号RH真空槽冶金反应器类型水模型研究[J].宝钢技术,1999(1):37-39
    [27]N. Tsukamoto,K.Ichikawa,E.Iida et al. Improvement of Submerged Nozzle Design Based of Water Model Examination of Tundish Slide Gate[A].Steelmaking Conference Proceedings[C],1991:803-808
    [28]曹雄,张胤,韩翠珍.中间包结构优化的水模型正交试验[J].特殊钢,2009,30(4):39-41
    [29]王一成,韩金玉,刘大方.五流T型非对称中间包内控流装置优化水模型[J].钢铁研究学报,2007,19(10):21-24
    [30]杨树峰,李京社,唐海燕.水平连铸中间包内钢水流动的水模型研究[J].特殊钢,2009,30(4):22-23
    [31]高锦国,李京社,唐海燕.连铸中间包结构优化及夹杂物去除的水模拟研究[J].特殊钢,2009,30(1):13-15
    [32]彭世恒,王建军,张兴中.广钢中间包流动控制的等温和非等温水模型[J].化工冶金,2000.21(1):80-83
    [33]程乃良,冷祥贵,朱苗勇.吹氩连铸中间包内钢液流动特性的水模型实验 研究[J].材料与冶金学报,2006,5(4):258-262
    [34]Fady M.Naijat,B GThomas, Donald E. Hershey. Numerical Study of Steady Turbulence Flow through Bifurcated Nozzles in Continuous Casting[J].Metallurgical and Matermls Transactions B,1995,26(6):749-765
    [35]唐继山,谢长川,于学斌.六流连铸中间包的物理模拟[J].炼钢,2002,18(1):52-54
    [36]陈远清,文光华,祝明妹.四流大方坯连铸中间包的物理模拟研究[J].钢铁钒钛,2006,27(2):33-37
    [37]郑淑国,朱苗勇,王颖.六流方坯连铸中间包结构优化水模实验[J].钢铁研究学报,2008,20(11):10-14
    [38]鱼洋洋,唐萍,周亮.重钢85t复吹转炉的水模型试验[J].特殊钢,2006,27(2):31-33
    [39]N.A.Macpherson.Continuous Cast Clean Steel[A].SteelmakiIlg Conference Proceedings[C],1985:13-25
    [40]胡皓,赵和明,张炯明.结晶器液面波动的水模型研究[J].钢铁钒钛,2005,26(1):10-15
    [41]R.D.Morales,J.Palafox-ramos,L.Garcia-demedices and R. Sanchez-perez. ADP[V study of liquid steel flow in a wide thin slab caster using four ports Submerged Entry Nozzles[J].ISIJ international,2004,44(8),1384-1392
    [42]S.YOKOYA.Control of Immersion Nozzle Outlet Flow of Swirling Flow in Continuous Casting Pattern through the Use of swirlillg Flow in Continuous Casting[J].ISIJ international,1994,34(11):883-888
    [43]S.YOKOYA.Numerical Study of Immersion Nozzle Outlet Flow Pattern with Swirling Flow in Continuous Casting[J].ISLI international.1994,34(11):889-895
    [44]Shinichiro YOKOY,Sigeo TAKAGI,Manabu IGUCHI.Swirling effect in immersion nozzle Oil flow and heat transport in Billet Continuous Casting mold[J].ISLI international,1998,38(8):827-833
    [45]S.YOKOYA.Swirling Flow Effect in Immersion Nozzle Off Flow in Slab Continuous Casting Mold[J].ISIJ international,2000,40(6):578-583
    [46]S.YOKOYA.Development of Swirling Flow Generator in Immersion Nozzle[J].ISIJ International,2000,40(6):584-588
    [41]白晋钢,刘洁.太钢结晶器梯形水口不同工况的水模型试验研究[J].铸造设备研究,2008(4):26-28
    [48]朱志强,于学斌,高文芳.带旋流导向装置浸入式水口的水模型研究[J].钢铁研究,2006,34(5):6-9
    [49]张鹤楠,李冰,孙泽等.镁电解槽的冷模试验与数值模拟研究[J].轻金属.2009(5):47-51
    [50]姚成军,徐明厚FLUENT软件在焙烧炉设计中的应用[J].工业加热,2007,36(5):11-13
    [51]Thomas B QMike L J,Najjar F M. Simulation of Fluid Flow Inside a Continuous Slab Casting Machine[J].Metallurgical Material Transaction B,1990,21 (6):387
    [52]沈强,王文勇,杨晶Fluent软件在布袋除尘中的应用[J].工业安全与环保,2007,33(7):25-26
    [53]刘利平,黄万年FLUENT软件模拟管壳式换热器壳程三维流场[J].化工装备技术[J].2006,27(3):54-57
    [54]曹娜,朱苗勇.吹氩板坯连铸结晶器内钢/渣界面行为的数值模拟[J].金属学报.2008,44(1):79—84
    [55]S.Hintikka, J.KOnttinen.K.Leiviska. "Optimization of Molten Steel Flow in Continuous Casting Mold",Steelmaking Conference Proceedings,1992:887-891
    [56]樊勇保,李晓桥,李玲.基于Fluent的高炉风口流场和温度场的模拟[J].特种铸造及有色合金,2009,29(4):324-326
    [57]段文广.基于FLUENT的搅拌机械内部流场模拟研究[J].设计与研究,2009(1):33-34
    [58]栾春华,王晓静.基于FLUENT的混流式风机整机流场数值模拟[J].机械设计与制造,2008(2):178-188
    [59]ZeSun.Numerical simulation and experimental study for flow field of magnesium electrolytic cell, Proceedings of 2008 Joint Symposiumon Moken Sahs.2008.219-224
    [60]张起祥,李朝阳,张晓英.基于FLUENT的燃煤器燃烧模拟及结构改进[J].铸造设备与工艺,2009(3):3-5,23
    [61]李文.锌电解节能途径的探讨[J].湖南有色金属,2005,21(1):17—20
    [62]吴巧艳.锌电解降低直流电耗生产实践[J].湖南有色金属,2001(增刊):21—22
    [63]王钧扬.锌电积的节电探讨[J].湖南冶金,2003,31(2):45—48
    [64]单维林.锌电解能耗分析及节能对策[J].有色金属(冶炼部分).1989,(6):29—32
    [65]蒋传辉,论锌电积工序的节能[J].重有色冶炼,1988,(6):30—32
    [76]赵宏,张满丽.电积锌直流电耗偏高的原因分析及对策[J].甘肃有色金属,2002,17(2):28—30
    [67]郑翼,刘铁茵,刘向东.电解锌厂利用峰谷分时电价的探讨[J].甘肃有色金属,1999(3-4):27—29
    [68]N.A.Macpherso.Continuous Cast Clean Steel[A].Steetmaking Conference Proceedings[C],1985:13-25
    [69]HuaBai,B.G Thomas.Turbulent Flow of Liquid Steel and Argon Bubbles Side-gate Tundish Nozzles:Part Ⅱ Efiect of Operation Conditions and Nozzle Design[J]. Metallurgical andMaterials Transactions B,2001,32(2):269-284
    [70]Shinichiro YOKOA et al..Swirling Flow Effect in Off-center Immersion Nozzle on Bulk Flow in Billet Continous Casting Mold[J].ISIJ,2001,41(10):1215-1220
    [71]Yuji MIKI et al.Internal Defects of Continuous Casting Slabs Caused by Asymmetric Unbalanced Steel FlowinMold[J].ISIJ,2003,43(10):1548-1555
    [72]肖兴国,谢蕴国.冶金反应工程学基础[M].北京:冶金工业出版社,1997
    [73]曲英,刘今.冶金反应工程学导论[M].北京:冶金工业出版社,1988
    [74]Tom Barnes.." " Chemical and Physical International During transfer Operations".Continuous Casting.1983,1,1,ISS-AIME.
    [75]朱必炼,四流T型中间包控流装置的优化研究[硕士学位论文].武汉科技大学,2007
    [76]ZHENG SHU-guo,ZHU Miao-yong,Optimization of Baffles in a Six-Strand Round Bloom Continuous Casting Tundish:a Physical Modeling Study[J].Ironmaking and Steelmaking,2006,33(5):398
    [77]O.Levenspiel,Chemical Reaction Engineering,John Wiley,New York,1972
    [78]C.G.Hill,Jr,An Introduction to Chemical Engineering Kinetics and Reactor Design,John Wiley & Sons,New York,1977
    [79]S. Singh and S. C. Koria. Ironmaking and Steelmaking,1993, (3):221-230
    [80]S.Joo,etc. Metallurgical Transactions B,1993,24B, (10):779-785
    [81]Sarbjit Singh, Satish C. Koria. ISI J,1993, (12):1228-1237
    [82]M.L. lowry etc., Steelmaking Conference Proceedings,1991,505-511
    [83]Chan Darashekhar Damle and Yogeshwar Sahai.ISIJ International,1996 (6):681-689
    [84]Shengets.The International Conference On Modeling and Simulation in Metallurgical Engineering and Materials Science,1996,6,Beijing,326-332
    [85]周智青,董履仁.水模型试验中示踪剂对停留时间测定的影响[J].钢铁研究;1999(2):14-32
    [86]Jong W K, Sun K K.Reduction of depressions on stainless steel CC slabs, Steelmaking Conference Proceedings,1995,78(3):333-339
    [87]Teshima T, Osame M.Improvement of surface property of steel at high casting Speed, Steelmaking Conference Proceedings,1988,71(1):111-119
    [88]Emling W H, Waugaman T A, Feldbauer S L, et al.Subsurface mold slag entrainment in ultra lowcarbon steels[J].Steelmaking Conference Proceedings,1994,77(3):371-379
    [89]T.Honeyands et at.."Prekiminary Molding of Submerged Nozzle Design Based on Water Mould". Steelmaking Conference Proceedings,1992,75:445-453
    [90]刘杰.离心式中间包流动与混合过程的模拟研究[硕士学位论文].东北大学.2006
    [91]S.Hintikka,J,Konttinen,K.Lciviska.Optimization of Molten Steel Flow in cominuous Casting Mold[J].Steelmaking Conference Proceedings,1992:887-891
    [92]B.G.Thonmas et al.Simulation of Fluid Flow inside a Continuous Slab-Casting Machine[J].Metallurgical & Materials TransactionsB,1990,21(2):387-400
    [93]Huang X.,B.G Thomas,Najjar F.M.Modeling Superheat Removal during Continuous Casting of Steel Slabs[J].Metallurgical&MaterialsTransactionsB, 1992,23(2):339-356
    [94]P.J.Flint.A Three-dimensional Finite Difference Model of Heat Transfer,Fluid Flow and Solidification in the Continuous Slab Caster[A]. Steelmaking Conference Procedings[C],1990:481-490
    [95]Hua bai,B.G.Thomas.Turbulent flow of liquid steel and argon bubble slide-gate tundish nozzles:Part I model development and validation[J].Metallurgical and Materials Transactions B,2001,32(2):253-267
    [96]Hua Bai,B.G.Thomas.Turbulent Flow of liquid steel and Argon Bubbles Slide-Gate Tundish Nozzles:Part Ⅱ Effect of operation conditions and Nozzle Design[J].Metallurgical and Materials Transactions B,2001,32(2):269-284
    [97]M.Reza Aboutalebi,M.Hasan,RI.L.Guthrle.Coupled Turbulent Flow,Heat and solute Transport in continuous casting processes[J].Metallurgical and Materials Transactions B,1995,26(2):731-744
    [98]Sanjib Chakraborty,PhilBedolla,Tom Barnes.Analysis of melt flow and heat transfer in an Asymmetric slab casting mold[A].steeimaking conference proceedings[C],2000:167-174
    [99]P.J.Flim.A Three-Dimensional Finite Differenee model of heat transfer, Fluid and Solidification in the continuous slab caster[A].steeimaking conference proceeding[C],1990:481-489
    [100]Hongliang Yang,Lianggang Zhao,XingzhongZhang.Mathematical simulation on Coupled Flow,Heat and solute Transport in slab continuous casting process [J].Metallurgical and Matedals Transactions B,1998,29(2):1345-1356
    [101]韩占忠Fluent流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004
    [102]江帆,黄鹏Fluent高级应用与实例分析[M].北京:清华大学出版社,2008.
    [103]王瑞金,张凯,王刚FLUENT技术基础与应用实例[M].北京:清华大学出版社.2007
    [104]李宝宽,李东辉.连铸结晶器内钢液涡流现象的水模型观察和数值模拟[J].金属学报,2002,38(3):315—320
    [105]Dupuis M,Tabsh I.Thermo-Electric Analysis of Aluminum Reduction Cells[J].Light Metals,1992:55-62
    [106]Dupui s M.Computation of Aluminum reduction Cell Energy Balance Using ANSYS Finite Element Models [J].Light Metals,1998:409-417
    [107]李贺松,梅炽.铝电解槽热电场的有限元分析[J].中国有色金属学报,2004(5):854-859
    [108]李劫,程迎军,赖延清,等.大型预焙铝电解槽电、热场的有限元计算[J].计算物理,2003(4):351-355
    [109]LI U We I,LI Jie,LAI Ya n-qing,e t al.2D finite element analysis of thermal balance for drained aluminum reduction cells[J].Journal of Central South University of Technology,2007,14(6):783-787
    [110]周乃君,崔大光.铝电解槽电热场1/4槽模型有限元解析方法及应用[J].轻金属.2006(11):37-40
    [111]孙泽,刘天翼,赵昀,路贵民,于建国.无隔板镁电解槽三维电热场耦合分析[J].有色金属(冶炼部分),2010(5):25-28
    [112]北京有色冶金设计研究总院等编.重有色金属冶炼设计手册:铅锌铋卷[M].北京:冶金工业出版社,1995
    [113]郝大卫,李冰,李平,于建国.镁电解槽热场二维有限体积解析方法计算模拟[J].轻金属,2008(3):43-46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700