HFCVD系统温度场和流场的仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在热丝化学气相沉积(Hot Filament Chemical Vapor Deposition,简称HFCVD)金刚石膜的系统中,系统温度场和流场的分布直接决定着金刚石膜的形核密度和生长速率。本文对影响系统温度场和流场的相关工艺参数进行了系统的模拟计算,确定了生长大面积优质金刚石膜的工艺参数优化值,主要工作如下:
     1.选取氢气作为HFCVD系统中流场的主要研究对象,经计算该流场的雷诺数Re=979.3,马赫数Ma=0.05,最终确定流场的流态为层流、不可压缩流体的低速流动,为热-流耦合分析奠定了理论基础。
     2.采用K型热电偶对Φ80mm的平面衬底沿径向距中心不同距离处的温度进行了多点测量,得到了衬底表面温度分布曲线。在ANSYS中建立热丝和Φ80mm平面衬底的三维有限元模型,对多种沉积参数影响下的衬底温度规律进行了详细地仿真计算。结果表明,考虑衬底三维热传导以及热丝温度的不均匀分布条件下衬底温度场与纯热辐射相比更加接近实验结果。
     3.在FLOTRAN CFD中建立了热丝、衬底和氢气的二维热-流耦合模型,仿真计算了不同沉积参数影响下的系统温度场和流场分布,同时分析了热丝阵列附近气体“热绕流”的成因及其对金刚石膜生长的影响。
     4.根据仿真结果优化出生长Φ80mm金刚石膜的工艺参数:热丝根数n=14,热丝-衬底距离Hf=5mm,热丝间距df=6mm,热丝半径Rf=0.3mm,气体进口速度Vin=2.36m/s,进气口数Nin=1。采用优化工艺参数进行了金刚石膜的沉积实验,结果表明,金刚石膜总体质量较高,中心呈(100)晶面,边缘呈(111)面,生长速率在4~6μm/h之间,中心的生长速率略低于边缘的生长速率,与仿真结果是一致的。
     5.将HFCVD系统热丝和平面衬底的三维温度场计算模型推广到大面积曲面衬底及拉丝模的应用上,从温度场的角度,对在球面衬底和拉丝模上沉积金刚石膜的可行性进行了研究。
Temperature distribution and flow field of the system, to a great extent, significantly affect the nucleation density and growth velocity of diamond film over large area by Hot Filament Chemical Vapor Deposition (HFCVD). In this paper, the influence of various deposition parameters on the temperature and flow field is investigated. Then the parameters are optimized for the growth of diamond film over large area. The main works are as follows:
     1. H_2 is chosen as the main research object of fluid in HFCVD system. It is calculated that the Reynolds number is 979.3 and the Mach number is 0.05. Therefore, the flow regime is laminar, incompressible and low-speed flow.
     2. Multipoint temperature of the planar substrate with the diameter of 80 millimeter is measured by the K-thermocouple. And the temperature distribution curve of the substrate surface is attained. Then using the 3D finite element (FE) model of filaments and substrate in ANSYS, the influence of the hot filaments parameters and thermal contact resistance on substrate temperature is simulated in detail. According to the results, when the effect of 3D-substrate heat conduction and the nonuniform filament temperature distribution are considered, the substrate temperature field is more uniform than in pure heat radiation system.
     3. Using the 2D thermal-flow coupled model of the hot filaments, substrate and H2 in FLOTRAN CFD, the effect of different deposition parameters on the system temperature and flow field is simulated. The results reveal that the high temperature of hot filament array leads to thermal round-flow of gas which can’t be ignored in the growth of diamond film.
     4. The optimized deposition parameters based on the simulation results are: the number of the hot filaments is 14, the radius of the hot filaments is 0.3 millimeter, the distance between the hot filaments and substrate is 5 millimeter, the distance between the hot filaments is 6 millimeter, the velocity of the gas inlet is 2.36 meter per second, and the number of the gas inlets is 1. The high quality diamond film of 80 millimeter diameter deposited in HFCVD system is obtained using the optimized deposition parameters. The polycrystalline diamond film presents the (100) facets in the center and (111) facets in the fringe. And the growth rate of the diamond film in the center is lower than that in the fringe, which is consist with the simulation result.
     5. Based on the research of the temperature distribution of the planar substrate, the simulations of spherical substrate and wire drawing die HFCVD system are developed. According to the temperature field, it is feasible to deposit diamond films on the spherical substrate and wire drawing die.
引文
[1] Dieter M. Gruen. Nanocrystalline Diamond Films [J], Annu Rev. Mater. Sci.1999, 29:211~59
    [2] Seal M. The current status of CVD diamond applications and prospects for the future (A). Proc. 3rd Int. Conf. on Appl of Diamond Films and Related Materials [C]. US Government Printing Office, 1995:1
    [3] A. R. Badzian, R .C .Devries, Crystallization of diamond from the gas phase [J]; Part1, Mat. Res. Bull, 1988(23):385~400
    [4] 戴达煌, 周克菘. 金刚石薄膜沉积制备工艺与应用[M]. 北京:冶金工业出版社, 2001
    [5] 王季陶. 非平衡定态相图-人造金刚石的低压气相生长热力学[M]. 北京:科学出版社, 2000
    [6] Yarbrough, W. A. and Messier, R. Current issues and problems in the chemical vapor deposition of diamond [J], Science, 1990, 247(2): 688~696
    [7] 戚学贵, 陈则韶. 热丝 CVD 系统内衬底温度分布的数值研究[J]. 材料科学与工程. 2001,19 (3):29~33
    [8] 曹振中. 纳米金刚石膜生长机理及工艺研究. 南京航空航天大学硕士学位论文, 2005
    [9] E. J. Corat, D. G. Goodwin, Temperature dependence of species concentrations near the substrate during diamond chemical vapor deposition [J], J. Appl. Ph ys., 1993(74):20 21~202
    [10] P. K. Bachmann, D. Leers, H. Lydtin, Towards a general concept of diamond chemical vapor deposition [J], Diam. Relat. Mater., 1991(1):1~12
    [11] Y. Matsui, H. Yabe, Y. Hirose, The numerical simulation of diamond synthesis from acetylene flames[J], Diamond and Related Materials, 1993(2):7~13
    [12] T. Debroy, K.Tankala, W.A .Yarbrough, R.Messier, Role of heat transfer and fluid flow in the chemical vapor deposition of diamond [J]. Appl. Phys., 1990(68):2424~2432
    [13] C. Wolden, S. Mitra, K. K. Gleason, Radiative heat transfer in hot-filament chemical vapor deposition diamond reactors [J]. Appl. Phys., 1992(72):3750~3758
    [14] 宋胜利, 左敦稳, 王珉. 大面积HFCVD系统衬底温度场建模与分析[J]. 应用科学学报. 2003, 21(4):423~426
    [15] 宋胜利, 大面积 HFCVD 金刚石制备的温度控制及其应用技术研究, 南京航空航天大学博士论文, 南京, 2004.09
    [16] 汪爱英, 纪爱玲, 邹友生, 等. 管道热丝 CVD 金刚石膜反应器温度场的模拟计算[J]. 人工晶体学报, 2002( 12): 576~579
    [17] 汪爱英. 热丝化学气相生长金刚石薄膜的模拟计算和动力学机制研究. 中国科学院金属研究所博士学位论文, 2003.06
    [18] 汪爱英, 孙超, 纪爱玲, 等. 热丝CVD金刚石薄膜中气体状态参数的二维模拟计算[J]. 材料研究学报, 2003,17(4): 345~352
    [19] 陈岩, 黄荣芳, 闻立时, 等. 温度场对热丝化学气相沉积大面积生长金刚石膜的影响[J]. 材料研究学报, 1995,9(3):245~248
    [20] 程新红, 管道热丝化学气相沉积金刚石的辐射场及流场模拟计算,中国科学院金属研究所硕士学位论文, 1997.6
    [21] Song G H, Sun C, Wang B, et al. Mater Lett,2001,48:8
    [22] G .H .Song, C .Sun, R .F Huang, L .S .Wen, Simulation of the influence of the filament arrangement on the gas phase during hot filament chemical vapor deposition of diamond films [J]. Vac. Sci. Technol. A , 2000(18):860~863
    [23] 李建国, 刘实, 李依依, 等. 热丝化学气相沉积金刚石薄膜空间场的数值分析[J]. 金属学报, 2005,4(4):437~443
    [24] Janson F, Machonkin M A, Kuhman D E. J Vac Sci Technol A, 1990, 8:3785
    [25] Mark C M, Wen L H, Michacel E C, David S D. J appl Phys, 1994, 76:7567
    [26] 李人宪. 有限元法基础[M]. 北京:国防工业出版社, 2002
    [27] 顾尔祚. 流体力学中的有限差分法基础[M]. 上海:上海交通大学出版社, 1988
    [28] 李人宪. 有限体积法基础[M]. 北京:国防工业出版社, 2005
    [29] Saeed Moaveni. 有限元分析—ANSYS 理论与应用[M]. 北京:电子工业出版社, 2003
    [30] ANSYS INC. ANSYS 计算流体动力学分析指南 [M]. 北京:美国 ANSYS 公司办事处, 2000
    [31] J. P.霍尔曼. Heat Transfer [M]. 北京:机械工业出版社, 2005
    [32] 赵镇南. 传热学[M]. 北京:高等教学出版社, 2002
    [33] 唐兴伦, 范群波, 张朝晖, 等编. ANSYS 工程应用教程—热与电磁学篇[M]. 北京:中国铁道出版社. 2003
    [34] 孔祥谦. 有限单元法在传热学中的应用[M]. 北京:科学出版社. 1998
    [35] 吴永礼. 计算固体力学方法[M]. 北京:科学出版社, 2003: 177~181
    [36] 苏铭德, 黄素逸. 计算流体力学基础[M]. 北京:清华大学出版社, 1997
    [37] ANSYS INC. ANSYS 热分析指南 [M]. 北京:美国 ANSYS 公司办事处, 2000
    [38] 应济, 贾昱, 陈子辰, 等. 粗糙表面接触热阻的理论和实验研究[J]. 浙江大学学报. 1997. 31(1):104~109
    [39] Najib Laraqi, Abderahmane Bairi. New models of thermal resistance at the interface of solids connected by random disk contacts [J]. C. R. Mecanique, 2002, 330:39~43
    [40] 沈军, 马骏, 刘伟强. 一种接触热阻的数值计算方法[J]. 上海航天. 2002,(4):33~36
    [41] ANSYS INC. ANSYS 接触分析指南 [M]. 北京:美国 ANSYS 公司办事处, 2000
    [42] 张学学, 李桂馥编. 热工基础[M]. 北京:高等教育出版社. 2000
    [43] F. Jansen, M. A. Machonkin, D. E. Kuhman, The deposition of diamond films by filaments techniques [J]. Vac. Sci. Technol, 1990(A8):3785~3790
    [44] 叶景风, 刘宁, 殷卫海, 等. 提高硬质合金拉丝模性能的研究进展[J]. 机械工程学报. 2005. 22(3):183~188
    [45] 沈维道, 蒋智敏, 童钧耕著. 工程热力学[M]. 北京:高等教育出版社, 1982: 394~395
    [46] S.V. Patankar, D.B. Spalding, A calculation procedure for heat, mass and momentum transfer in 3-D parabolic flows [J], International Journal of Heat and Mass Transfer, Vol 15, 1972, 1787~1806,
    [47] G. Wang, A fast and robust variant of the SIMPLE algorithm for finite-element simulations of incompressible flows[J], Computational Fluid and Solid Mechanics, 2001, Vol. 2:1014~1016
    [48] 过增元. 热流体学[M]. 北京:清华大学出版社, 1992:145-147
    [49] Spitsyn B. V., Bouilov L. L., Derjaguin B.V., J. Cryst Growth, 1981, 52:219
    [50] J .Yu, R .F .Huang, L .S .Wen, C .X .Shi. Enhancement of the HFCVD diamond gowth process by directed gas flow [J], Mater. Lett., 1997(32):143~146
    [51] J .Yu, R .F .Huang, L .S .Wen, C .X .Shi, Effects of density of gas flow rate on large area diamond growth in hot filament chemical vapor deposition [J]. Mater. Sci. Lett., 1998(17):1011~1013
    [52] 谭建国编. 使用 ANSYS 6.0 进行有限元分析[M]. 北京:北京大学出版社. 2002
    [53] 龚曙光等编. ANSYS 操作命令与参数化编程[M]. 北京:机械工业出版社. 2004
    [54] 博弈创作室编著. APDL 参数有限元分析技术及其应用实例[M]. 北京:中国水利水电出版社. 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700