不同生境下麻栎和刺槐幼苗整株及叶性状的表型可塑性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于全球气候变化的影响已逐渐接近并有可能超出地球系统的正常承载阈值,加之过于频繁的人类活动使森林生态系统遭到了严重破坏,生态功能退化严重。对植物的影响主要是引起植物原先所适应的环境梯度的变化,引起包括空间环境梯度和时间环境梯度的改变,而其中极端气候所导致的干旱胁迫日益严重以及生境破碎化下的光环境异质性加剧成为了近年来植物研究较为关注的问题。植物体通过整株以及叶片的各种性状表现出对于变化环境的适应,各种性状在不同环境下以表型可塑性和异速生长的方式响应诸多压力和约束,进行植物与环境之间相互关系及基本机制的研究成为现代植物生理生态学研究的重要内容。本论文以麻栎和刺槐这两种山东省暖温带常见落叶阔叶共生树种为对象,利用现代生理生态学分析方法和测量手段,研究了两者在不同的水分和光照环境下整株形态生长、生物量积累和分配、叶片的形态、光合特性、生理生化反应、叶运动特性等方面,研究结果将丰富全球环境变化的研究内容,对植物水分生理生态、抗逆生理机制、光合生理生态等领域的研究具有重要意义,将有助于理解共生物种的适应及生态位分化机制、气候变化与植物抗逆性关系,为丰富区域植被-气候关系数据库、指导植被恢复重建、制定区域生态环境可持续发展等方面提供科学数据和理论依据。
     通过模拟夏季持续干旱及随后的降雨,研究了麻栎和刺槐这两种不同根系统结构物种在不同生境下其光合能力对干旱和降雨的敏感性反应。结果表明,面对夏季持续的干旱,深根系的麻栎受干旱胁迫的影响程度与浅根系的刺槐相比较低。林缘麻栎幼苗的净光合速率、气孔导度、光系统Ⅱ表观量子效率在午间降低较小,傍晚恢复较好,蒸腾速率在全天相对较高;雨后各项光合指标都有所恢复,林缘幼苗由于所经受的胁迫强度大于林下,受胁迫的植物在恢复过程中存在一定程度的后效应,林下刺槐光合各参数日均值的增幅均大于麻栎,麻栎午间仍存在明显的光合午休。说明麻栎作为深根植物耐旱性相对较强,干旱期间光合能力有一定程度的维持,但在雨后恢复较慢;而刺槐作为浅根植物耐旱性相对较差,干旱期间光合受影响较大,但能快速利用降雨进行光合恢复。
     通过整盆称重法设置4个土壤水分处理,研究麻栎和刺槐幼苗形态结构、光合特性、生物量积累及其分配对水分胁迫的可塑性响应。结果表明,随水分胁迫程度的增强,麻栎和刺槐幼苗的株高、基径、总叶面积、冠面积、叶面积指数和总叶数等形态指标均逐渐降低;净光合速率和蒸腾速率逐渐减少,日变化曲线由单峰型向双峰型转变,光合限制因素由气孔限制为主逐渐转变为非气孔限制为主,光系统的保护机制减弱,光抑制程度加剧,水分利用效率在中度水分胁迫下最高;各器官的生物量积累降低,光合产物向地下部分尤其是侧根迁移,使根冠比增大和叶面积比率减少;叶绿素含量变化差异不明显。水分胁迫改变了形态的异速生长曲线,可塑性指数分析表明幼苗主要通过调节形态和光合能力来适应水分环境的变化,生物量积累和分配的差异可能存在异速生长的影响。麻栎和刺槐由于幼苗生长方式的不同,水分胁迫的影响效果存在差异,麻栎主要是影响光合能力,刺槐主要是影响地上形态和生物量。
     通过搭建遮阳棚设置3个光照强度,研究麻栎和刺槐幼苗形态结构、光合特性、生物量积累及其分配对不同光照强度的可塑性响应。结果表明,极度弱光环境限制了幼苗的株高、基径、总叶面积、冠面积、叶面积指数和总叶数等形态指标的增加,但适度遮荫有利于幼苗的形态生长,光照对形态的异速生长曲线影响较小,刺槐较麻栎的变化更明显一些;随遮荫程度的增加,麻栎幼苗的净光合速率曲线由双峰型逐渐变为单峰型,刺槐幼苗由于叶运动的保护机制基本维持单峰型,麻栎各光合参数逐渐降低,刺槐则在适度遮荫下最大,光能利用效率均显著增大;随光照强度的减弱,麻栎各器官的生物量积累降低,叶面积比率的增加和根冠比的减少有利于增加光能的捕获,而刺槐的生物量积累和分配则在适度遮荫下达到最优;各叶绿素含量均显著上升,而叶绿素a/b则逐渐下降。麻栎和刺槐显示出不同的生存策略和光利用策略,在一定程度上可以揭示它们在阔叶林群落中不同的演替地位。
     通过测量叶片角度在不同环境下的变化以及相应的叶绿素荧光参数,研究叶运动的特点及其保护效应。结果表明,麻栎叶片不存在明显的叶片运动,刺槐叶片具有明显的中脉角和叶柄角的变化,两者在不同环境下的变化存在着一种协同互作关系。光照是引起叶片运动的主要因素,低光下叶片下垂,常光下叶片竖起。刺槐中脉角的节律性运动在长期遮荫处理下丧失,但在短期胁迫和恢复期仍然存在,表现出在光—暗转换的滞后与暗—光转换的迅速恢复。不论是在胁迫初期、末期还是恢复初期,干旱环境下的叶片上翘的程度更大。通过叶绿素荧光响应曲线、恢复曲线和叶绿素含量的测量,也可以看出在常光环境下叶片增加了过量光能的耗散能力,低光下则增加光能捕获的能力,干旱条件下叶运动的增强能有效降低叶片光抑制的程度,从而有效的保护光合机构避免光伤害。叶片通过日变化和不同环境下的中脉角的角度差异所体现出来的避光性运动,以及通过不同方位叶片中脉角和叶柄角的角度差异所体现出来的趋光性运动,反映叶片快速的适应性运动与整个冠层长期缓慢的适应性策略协调作用保障了植物的正常生长以及对胁迫更好的适应。
     通过测量野外和控制实验中幼苗的叶形态指标,研究环境对叶形态的影响程度及规律。结果表明,在野外和模拟试验中,大部分叶形态参数都发生了显著的变化,并且具有较高的一致性。光照是导致叶形态可塑性的主要因素,由干旱引起的形态变化主要归结于异速生长。由于水光供应的缺乏,叶面积、叶干重、叶长和叶宽都变小,协方差分析表明叶长和叶宽仅受叶面积的影响。叶柄在遮荫下并未明显延长,可能是由于存在叶片与叶柄、主脉与侧脉之间在功能组织和支撑结构间的权衡关系。干旱胁迫引起叶子变窄,遮荫胁迫引起叶子变宽,叶长/叶宽未能完全反映出叶形的这种变化,而通过对麻栎叶片三部分的比例(通过叶膨大和最宽部位划分)的测量起到补充效果,叶形的改变在资源获取和保护中寻求平衡。胁迫下叶侧脉密度增加以加强胁迫下的机械支撑和水分供应,叶齿数的增多能通过更活跃的光合活性保证遮荫下幼苗的生存和生长,然而由于齿数增多会导致高蒸腾的原因限制了干旱胁迫下叶齿数。复叶与单叶的叶形态差异主要是由于小叶既是一个独立的单元,又是复叶整体的一部分,小叶叶形态的变化需要同时考虑整个复叶的影响。
     总之,本研究认为,麻栎和刺槐幼苗在不同的生境条件下通过整株以及叶片性状的表型可塑性和异速生长响应环境的变化,反映了两者通过多方面的适应调节,保证了幼苗在不同生境下的正常生长和生存,并使其能够适应未来较大程度的环境变化,因此也成为了鲁中山区进行植被恢复的理想树种。
Because of global climate changes and frequently anthropization by which the effects will reach the threshold of carrying capacity of the earth system,forest ecosystems suffer from severe destroy going with serious degradation of ecological functions.The main effects on plants are causing the changes of environmental gradients to which the plants are used to adapt.It includes the changes of spatial or temporal environmental gradients.In recent years,more and more researches are focused on the severe drought caused by extreme climate events and light heterogeneity in habitat fragmentation.The traits of whole plant and organisms respond to environmental variation on various timescales.Phenotypic plasticity enables a given genotype to produce a range of trait values across environmental gradients and within the lifetime of an individual organism.By contrast,variation in selection pressures along environmental gradients gives rise to heritable differences between populations or species,through the intergenerational process of evolution. There is often strong similarity between the plastic and allometry responses of quantitative traits to environmental gradients.It has became a hot point in modern plant ecophysiological researches.In this study,we chose Quercus acutissima Carr. and Robinia pseudoacacia L.as the research objects.The two plant species are normal deciduous broadleaf species and usually form the mixed forests in north China.We used modern ecophysiological equipments and measurements to study whole plant growth,architectures,biomass accumulation and allocation,leaf morphology,leaf movements,photosynthesis,biophysiology and biochemistry in the seedlings of these two species under different light and water conditions.The results will enrich the research contents of global climate changes,plant hydro,stress and photosynthetic ecophysiology,help to understand the mechanisms of adaptation and niche differentiation of coexisting species,and correlate the relationships between climate and plant tolerance.It may also provide evidences for building the database of vegetation and climate,supervising the reforestation and establishing the blueprints for local ecological environment and sustainable development.
     Different responses of deep and shallow root system of Q.acutissima and R. pseudoacacia to a precipitation pulse event after a prolong drought period in summer was studied to analyze the photosynthetic sensitivity of these two species.The results indicated that the deep root system species could tolerate more serious drought stress than the shallow root system one when facing to the summer drought. When compared with R.pseudoacacia in the simulated forest edge,the photosynthetic rate,stomatal conductance and effective quantum yield of PSII became less depressed for Q.acutissima in the simulated forest edge.Besides the lower degree of noon inhibition,these parameters could recover to a better extent in the evening.And the transpiration rate maintained higher values during the whole day.All parameters had a certain recovery after the precipitation,and the degrees of recovery were time lag for the seedlings in the simulated forest edge because of the higher press levels.The increased extents of photosynthesis were larger for R. pseudoacacia in the simulated understory.Midday depressions of photosynthesis were still obvious for Q.acutissima.The deep root system species have a higher drought tolerance.They can maintain the photosynthesis during the drought periods but can recover slowly after the rainfall.The shallow root system species are just diametrically opposite.
     A water gradient experiment with four different water supply levels was conducted by artificial water control in the rainout shelters to study the plasticity of morphological architecture,photosynthetic characters,biomass accumulation and allocation in Q.acutissima and R.pseudoacacia seedlings in response to diverse water stress.The results showed that morphological variables of height,stem diameter,total leaf area,crown area,leaf area index and total leaf number decreased with increased in water stress.Consistent with the increasing leaf water saturation deficit in water stress,net photosynthetic rate and transpiration rate also decreased. The diurnal course changed from single-peak to two-peaks patterns.Factors that limited photosynthesis shifted from stomatal limitation to non-stomatal limitation. Reduced light use efficiency,as well as weak photoprotective effect in photosystem, caused more serious photoinhibition.Water use efficiency can be improved under moderate water stress.Biomass accumulations to each organ were restricted by the deficit of soil water content.Under water stress,more photosynthetic products were transferred to belowground biomass,especially to the lateral roots.As a result, carbon allocation patterns were altered by increased in root mass ratio at the expense of decreased leaf mass ratio,and it therefore led to higher root to shoot ratio,lower leaf area ratio and lower specific leaf area.The contents of chlorophyll were not significantly different under water stress.Allometric trajectories of morphology were changes in different water treatments.Plasticity index analysis indicated that the seedlings could adapt to diverse water stress through plastic responses in morphology and photosynthesis,whereas the differences of biomass accumulation and allocation might be partly affected by the allometry.The effects of water stress on seedlings of Q.acutissima and R.pseudoacacia showed some differences for the different grow patterns.The former was sensitive in photosynthesis,but the latter was affected in morphology and biomass of aboveground.
     A light control treatment with three light gradients was conducted in shade shelters covered by plastic films or woven black nylon nets to study the plasticity of morphological architecture,photosynthetic characters,biomass accumulation and allocation in Q.acutissima and R.pseudoacacia seedlings in response to diverse gradients of light.The results showed that morphological variables of height,stem diameter,total leaf area,crown area,leaf area index and total leaf number were totally inhibited under serious shade conditions.Whilst,growth of seedlings had some advantages under moderate shade treatments.Effects of light on allometric trajectories of morphology were smaller in compared with the water effects,and the changes in R.pseudoacacia were more obvious than Q.acutissima.The diurnal course of photosynthetic rate changed from two-peaks to single-peak patterns in Q. acutissima with the light decreasing,and photosynthetic parameters and biomass accumulation were also decreased.But R.pseudoacacia could maintain the curves for its leaf movement,and the maximum of photosynthetic parameters and biomass accumulation occurred under moderate shade treatments.Higher leaf area index and lower root to shoot ratio could increase the capacity of light capture.Meanwhile,the contents of chlorophyll were increased and Chl a/b were decreased.The different strategies of light utilization can reveal the status of tree species in succession to a certain extent.
     Leaf inclination,physiological and biochemical parameters of Q.acutissima and R.pseudoacacia seedlings were studied under different stress conditions to find out the features of leaf movement and its protective functions.The results showed there was no significant leaf movement in Q.acutissima.Co-operation of midrib and petiole angles caused significant leaflet movement in R.pseudoacacia under different water and light conditions.Leaf inclination was affected mainly by light;a low level of irradiance caused leaves to be arranged horizontally.Diurnal rhythmicity was lost after the long-term stress,but resumed,in part,in the recovery period.It reflected the hysteresis in the light-dark transformation and rapid recovery in the dark-light transformation.Drought stress caused leaves to tilt more obviously during the whole periods and decreased damage to the photosystem.It could be reflected by changes of chlorophyll fluorescence and chlorophyll content.Significant physiological changes occurred under different conditions of light.Increased energy dissipation and light capture were the main responses to high and low level of irradiance,respectively.Sun tracking movement in a single leaf and sun avoiding movement in the whole plant coexisted,which reflected the rapid leaf protective movements and the tardive adaptation in the whole canopy harmoniously guaranteed that the seedlings could show better response to the stress and normally growth.
     Habitat effects on leaf morphology and the underlying regulations were studied by a field measurement and simulated experiments with interactive treatments and different gradients of water and light availability.The morphological parameters we investigated include leaf size,shape and venation pattern which can be easily measured in the field.The results indicated that leaf morphology variations occurred over most of the parameters,and the causes were consistent between the field study and lab experiments.Light was the main factor inducing leaf morphological plasticity.The variations caused by drought were due mainly to the allometry.The leaf size,including leaf area,leaf mass,leaf length and width,became smaller with a short supply of resources.Leaf length and width were only affected by leaf area using analysis of covariance.The leaf petiole did not lengthen under shade stress, suggesting a trade-off relationship between functional tissues and support structures in leaf lamina and leaf petiole.Meanwhile,trade-offs between investments in support and functional structures also optimized the venation pattern of major and minor veins.Leaf shape became narrower in drought and broader in the shade,as reflected in changes in leaf elongation and three leaf fractions of Q.acutissima in supplement.Leaf elongation and fractions of the lamina area altered to enhance resources acquisition and conservation.Higher vein density played a part in enhancement of mechanical support and water supply under stress conditions. Leaves with more teeth show more active photosynthesis for better survival and growth,but are disadvantageous in xeric environments because of higher transpiration.Leaflets of R.pseudoacacia partially played a role such as leaf teeth, for they are not only individual units,but also a part of the compound leaf.The variations of leaflet morphology should consider the benefits of whole compound leaf.
     In conclusion,this research shows that the seedlings of Q.acutissima and R. pseudoacacia under different habitats can respond and adapt to environmental changes via phenotypic plasticity and allometry of whole plant and leaf traits.It reflects that there are many adaptive mechanisms,by which these two species assure their seedlings can normally grow and survive under different habitats,and may adapt to more fluctuant climate changes in the future.All of these may be important reasons for Q.acutissima and R.pseudoacacia to be the ideal species for ecological reconstruction in the center of Shandong mountain areas.
引文
1. Aarssen L W, Jordan C Y. Between-species patterns of covariation in plant size,seed size and fecundity in monocarpic herbs. Ecoscience, 2001, 8: 471-477.
    
    2. Abrams M D. Adaptations and responses to drought in Quercus species of North America. Tree Physiology, 1990, 7: 227-238.
    
    3. Ackerly D D. Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance. Ecological Monographs, 2004, 74: 25-44.
    
    4. Ackerly D D, Bazzaz F A. Leaf dynamics, self-shading and carbon gain in seedlings of a tropical pioneer tree. Oecologia, 1995,101: 289-298.
    
    5. Barbaroux C, Breda N, Dufr(?)ne E. Distribution of above-ground and below-ground carbohydrate reserves in adult trees of two contrasting broad-leaved species (Quercus petraea and Fagus sylvatica). New Phytologist,2003, 157: 605-615.
    
    6. Barker D H, Adams W W III. The xanthophyll cycle and energy dissipation in differently oriented faces of the cactus Opuntia macrorhiza. Oecologia, 1997, 109:353-361.
    
    7. Barkoulas M, Galinha C, Grigg S P, et al. From genes to shape: regulatory interactions in leaf development. Current Opinion in Plant Biology, 2007, 10:660-666.
    
    8. Becker P, Meinzer F C, Wullschleger S D. Hydraulic limitation of tree height: a critique. Functional Ecology, 2000,14: 4-11.
    
    9. Behera N, Nanjundiah V. Phenotypic plasticity can potentiate rapid evolutionary change. Journal of Theoretical Biology, 2004,226: 177-184.
    
    10. Bertamini M, Grando M S, Muthuchelian K, et al. Effect of phytoplasmal infection on photosystem II efficiency and thylakoid membrane protein changes in field grown apple (Malus pumila) leaves. Physiological and Molecular Plant Pathology, 2002,61: 349-356.
    
    11. Berz G A. Global warming and the insurance industry. Interdisciplinary Science Review, 1993,18: 120-125.
    
    12. Black K, Davis P, McGrath J, et al. Interactive effects of irradiance and water availability on the photosynthetic performance of Picea sitchensis seedlings:implications for seedling establishment under different management practices. Annals of Forest Science, 2005, 62: 413-422.
    
    13. Bloom A J, Chapin F S, Mooney H A. Resource limitation in plants: an economic analogy. Annual Reviews of Ecology and Systematics, 1985, 16: 363-392.
    
    14. Blue M P, Jensen R J. Positional and seasonal variation in oak (Quercus;Fagaceae) leaf morphology. American Journal of Botany, 1988, 75: 939-947.
    
    15. Bonan G B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 2008, 320: 1444-1449.
    
    16. Brearley F Q, Press M C, Scholes J D. Nutrients obtained from leaf litter can improve the growth of dipterocarp seedlings. New Phytologist, 2003, 160:101-110.
    
    17. Buckley T N. The control of stomata by water balance. New Phytologist, 2005,168:275-292.
    
    18. Caldwell M M, Dawson T E, Richards J H. Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia, 1998,113: 151-161.
    
    19. Camphell G S. Extinction coefficients for radiation in plant canopies calculated using an ellipsoidal inclination angle distribution. Agricultural and Forest Meteorology, 1986, 36: 317-321.
    
    20. Canham C D, Berkowitz A R, Kelly V R, et al. Biomass allocation and multiple resource limitation in tree seedlings. Canadian Journal of Forest Research, 1996,26:1521-1530.
    
    21. Centritto M, Loreto F. Photosynthesis in a changing world: photosynthesis and abiotic stresses. Agriculture, Ecosystems and Environment, 2005,106: 115-117.
    
    22. Cescatti A, Zorer R. Structural acclimation and radiation regime of silver fir (Abies alba Mill.) shoots along a light gradient. Plant, Cell and Environment,2003, 26: 429-442.
    
    23. Clarka B, Bullock S. Shedding light on plant competition: modelling the influence of plant morphology on light capture (and vice versa). Journal of Theoretical Biology, 2007, 244: 208-217.
    
    24. Codarin S, Galopin G, Chasseriaux G Effect of air humidity on the growth and morphology of Hydrangea macrophylla L. Scientia Horticulturae, 2006, 108:303-309.
    
    25. Corner E. The Durian theory, or the origin of the modern tree. Annals of Botany,1949,13:368-414.
    
    26. Cox P M, Betts R A, Jones C D, et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 2000,408: 184-187.
    
    27. Cui X Y, Niu H S, Wu J, et al. Response of chlorophyll fluorescence to dynamic light in three alpine species differing in plant architecture. Environmental and Experimental Botany, 2006, 58: 149-157.
    
    28. Dale V H, Joyce L A, Mcnulty S, et al. Climate change and forest disturbance.Bioscience, 2001, 51: 723-734.
    
    29. Davi H, Barbaroux C, Dufr(?)ne E, et al. Modelling leaf mass per area in forest canopy as affected by prevailing radiation conditions. Ecological Modelling,2008,211:339-349.
    
    30. de Dorlodot S, Forster B, Pages L, et al Root system architecture: opportunities and constraints for genetic improvement of crops. Trends in Plant Science, 2007,12:474-481.
    
    31. de Jesus W C, do Vale F X R, Coelho R R, et al. Comparison of two methods for estimating leaf area index on common bean. Agronomy Journal, 2001, 93:989-991.
    
    32. Demmig-Adams B, Adams W W III. Capacity for energy dissipation in the pigment bed in leaves with different xanthophyll cycle pools. Australian Journal of Plant Physiology, 1994,21: 575-588.
    
    33. Demmig-Adams B, Adams W W III. Photoprotection and other responses of plants to high light stress. Annual Review of Plant Physiology and Plant Molecular Biology, 1992,43: 599-626.
    
    34. Dengler N, Kang J. Vascular patterning and leaf shape. Current Opinion in Plant Biology, 2001,4: 50-56.
    
    35. Diaz S, Hodgson J G, Thompson K, et al. The plant traits that drive ecosystems: evidence from three continents. Journal of Vegetation Science, 2004, 15:295-304.
    
    36. Diffenbaugh N S, Pal J S, Trapp R J, et al. Fine-scale processes regulate the response of extreme events to global climate change. Proceedings of the National Academy of Sciences, USA, 2005,102: 15774-15778.
    
    37. Du J X, Wang X F, Zhang G J. Leaf shape based plant species recognition.Applied Mathematics and Computation, 2007,185: 883-893.
    
    38. Dupuy L, Fourcaud T, Stokes A, et al. A density-based approach for the modelling of root architecture: application to Maritime pine (Pinus pinaster Ait.) root systems. Journal of Theoretical Biology, 2005,236: 323-334.
    39. Ehleringer J, Forseth I. Solar tracking by plants. Science, 1980, 210: 1094-1098.
    
    40. Evans R D, Black R A, Link S O. Reproductive growth during drought in Artemisia tridentata Nutt. Functional Ecology, 1991, 5: 676-683.
    
    41. Falster D S, Westoby M. Tradeoffs between height growth rate, stem persistence and maximum height among plant species in a post-fire succession. Oikos, 2005,111:57-66.
    
    42. Farquhar G D. Models of integrated photosynthesis of cells and leaves.Philosophical Transactions of the Royal Society of London, 1989, 323: 357-367.
    
    43. Farquhar G D, Caemmerer S, Berry J A. A biochemical model of photosynthetic CO_2 assimilation in leaves of C_3 species. Planta, 1980,149: 78-90.
    
    44. Farris M A. Leaf size and shape variation associated with drought stress in Rumex acetosella L. (Polygonaceae). American Midland Naturalist, 1984, 111: 358-363.
    
    45. Feng Y L, Wang J F, Sang W G. Biomass allocation, morphology and photosynthesis of invasive and noninvasive exotic species grown at four irradiance levels. Acta Oecologica, 2007, 31: 40-47.
    
    46. Flanagan L B, Wever L A, Carlson P J. Seasonal and interannual variation in carbon dioxide exchange and carbon balance in a northern temperature grassland.Global Change Biology, 2002, 8: 599-615.
    
    47. Flexas J, Medrano H. Drought-inhibition of photosynthesis in C_3 plants: stomatal and non-stomatal limitations revisited. Annals of Botany, 2002, 89: 183-189.
    
    48. Fondeville J C, Borthwick H A, Hendricks S B. Leaflet movement of Mimosa pudica L. Indicative of phytochrome action. Planta, 1966, 69: 357-364.
    
    49. Fonseca C R, Overton J M, Collins B, et al. Shifts in trait combinations along rainfall and phosphorus gradients. Journal of Ecology, 2000, 88: 964-977.
    
    50. Franks N R, Britton N F. The possible role of reaction-diffusion in leaf shape.Proceedings of the Royal Society B, 2000,267: 1295-1300.
    
    51. Frasier G W, Cox J R. Water-balance in a pure stand of Lehmann's lovegrass.Journal of Range Management, 1994,47: 373-378.
    
    52. Funk J L, Vitousek P M. Resource-use efficiency and plant invasion in low-resource systems. Nature, 2007,446: 1079-1081.
    
    53. Gamier E, Cortez J, Bill(?)s G, et al. Plant functional markers capture ecosystem properties during secondary succession. Ecology, 2004, 85: 2630-2637.
    
    54. Gebauer R L E, Ehleringer J R. Water and nitrogen uptake patterns following moisture pulses in a cold desert community. Ecology, 2000, 81: 1415-1424.
    55. Gebauer R L E, Schwinning S, Ehleringer J R. Interspecific competition and resource pulse utilization in a cold desert community. Ecology, 2002, 83:2602-2616.
    
    56. Geng Y P, Pan X Y, Xu C Y, et al. Phenotypic plasticity of invasive Alternanthera philoxeroides in relation to different water availability, compared to its native congener. Acta Oecologica, 2006, 30: 380-385.
    
    57. Givnish T J. Plant stems: biomechanical adaptation for energy capture and influence on species distributions. In: Gartner B ed. Plant stems: physiology and functional morphology. San Diego, CA: Academic Press, 1995, 3-49.
    
    58. Gonzalez A V, Gianoli E. Morphological plasticity in response to shading in three Convolvulus species of different ecological breadth. Acta Oecologica, 2004, 26:185-190.
    
    59. Gould S J. Allometry and size in ontogeny and phylogeny. Biological Review,1966,41:587-640.
    
    60. Grassi G, Colom M R, Minotta G Effects of nutrient supply on photosynthetic acclimation and photoinhibition of one-year-old foliage of Picea abies.Physiologia Plantarum, 2001, 111: 245-254.
    
    61. Grechi I, Vivin P, Hilbert G, et al. Effect of light and nitrogen supply on internal C:N balance and control of root-to-shoot biomass allocation in grapevine.Environmental and Experimental Botany, 2007, 59: 139-149.
    
    62. Greco S A, Cavagnaro J B. Effects of drought in biomass production and allocation in three varieties of Trichloris crinita P. (Poaceae) a forage grass from the arid Monte region of Argentina. Plant Ecology, 2002,164: 125-135.
    
    63. Greenwood D R, Wilf P, Wing S L, et al. Paleotemperature estimates using leaf margin analysis: is Australia different? Palaios, 2004,19: 129-142.
    
    64. Grime J P, Thompson K, Hunt R, et al. Integrated screening validates primary axes of specialisation in plants. Oikos, 1997, 79: 259-281.
    
    65. Guo W H, Li B, Zhang X S, et al. Architectural plasticity and growth responses of Hippophae rhamnoides and Caragana intermedia seedlings to simulated water stress. Journal of Arid Environments, 2007, 69: 385-399.
    
    66. Gurevitch J, Schuepp P H. Boundary layer properties of highly dissected leaves:an investigation using an electrochemical fluid tunnel. Plant, Cell and Environment, 1990,13: 783-792.
    
    67. Hamerlynck E P, Knapp A K. Leaf-level responses to light and temperature in two co-occurring Quercus (Fagaceae) species: implications for tree distribution patterns. Forest Ecology and Management, 1994, 68: 149-159.
    
    68. Hareven D, Gutfinger T, Parnis A, et al. The making of a compound leaf: genetic manipulation of leaf architecture in tomato. Cell, 1996, 84: 735-744.
    
    69. Haworth M, McElwain J. Hot, dry, wet, cold or toxic? revisiting the ecological significance of leaf and cuticular micromorphology. Palaeogeography,Palaeoclimatology, Palaeoecology, 2008, 262: 79-90.
    
    70. Henery M L, Westoby M. Seed mass and seed nutrient content as predictors of seed output variation between species. Oikos, 2001, 92: 479-490.
    
    71. Holmgren M. Combined effects of shade and drought on tulip popular seedlings: trade-off in tolerance or facilitation? Oikos, 2000,90: 67-78.
    
    72. Hong S S, Xu D Q. Light-induced increase in initial chlorophyll fluorescence F_0 level and the reversible inactivation of PS II reaction centers in soybean leaves.Photosynthesis Research, 1999,61: 269-280.
    
    73. Horton P, Hague A. Studies on the induction of chlorophyll fluorescence in isolated barley protoplasts IV. Resolution of non-photochemical quenching.Biochimica et BiophysicaActa, 1998,932: 107-115.
    
    74. Horton P, Ruban A V, Walters R G Regulation of light harvesting in green plants.Annual Review of Plant Physiology and Plant Molecular Biology, 1996, 47:655-684.
    
    75. Hotta C T, Gardner M J, Hubbard K E, et al., Modulation of environmental responses of plants by circadian clocks. Plant, Cell and Environment, 2007, 30:333-349.
    
    76. Huey B B, Gilchrist G W, Carlson M L, et al. Rapid evolution of a geographic cline in size in an introduced fly. Science, 2000, 287: 308-309.
    
    77. Huff P M, Wilf P, Azumah E J. Digital future for paleoclimate estimation from fossil leaves? preliminary results. Palaios, 2003,18: 266-274.
    
    78. Huxman T E, Snyder K A, Tissue D, et al. Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia, 2004, 141: 254-268.
    
    79. Ignace D D, Huxman T E, Weltzin J F, et al. Leaf gas exchange and water status responses of a native and non-native grass to precipitation across contrasting soil surfaces in the Sonoran Desert. Oecologia, 2007, 152: 401-413.
    
    80. Ikeda T, Matsuda R. Effects of soybean leaflet inclination on some factors related to photosynthesis. Journal of Agricultural Science, 2002,138: 367-373.
    81. IPCC. Summary for policymakers of climate 2007: the physical science basis.Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, UK: Cambridge University Press, 2007.
    
    82. Ishida A, Toma T, Marjenah. Leaf gas exchange and chlorophyll fluorescence in relation to leaf angle, azimuth, and canopy position in the tropical pioneer tree, Macaranga conifera. Tree Physiology, 1999,19: 117-124.
    
    83. Jakobsson A, Eriksson O. A comparative study of seed number, seed size,seedling size and recruitment in grassland plants. Oikos, 2000, 88: 494-502.
    
    84. Jarvis P G, Leverenz J W. Encyclopedia of plant physiology. Berlin:Springer-Verlag, 1983,233-280.
    
    85. Jiang C D, Gao H Y, Zou Q, et al. Leaf orientation, photorespiration and xanthophylls cycle protect young soybean leaves against high irradiance in field.Environmental and Experimental Botany, 2006, 55: 87-96.
    
    86. Johnson G H, Young A J, Scholes J D, et al. The dissipation of excess excitation energy in British plant species. Plant, Cell and Environment, 1993,16: 673-679.
    
    87. Kerr R A. Global warming is changing the world. Science, 2007, 316: 188-190.
    
    88. Kessler S, Sinha N. Shaping up: the genetic control of leaf shape. Current Opinion in Plant Biology, 2004, 7: 65-72.
    
    89. Kikuzawa K. Leaf phenology as an optimal strategy for carbon gain in plants.Canadian Journal of Botany, 1995, 73: 158-163.
    
    90. King J S, Albaugh T J, Allen H L, et al. Below-ground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine. New Phytologist, 2002,154: 389-398.
    
    91. Koch K, Hartmann K D, Schreiber L, et al. Influences of air humidity during the cultivation of plants on wax chemical composition, morphology and leaf surface wettability. Environmental and Experimental Botany, 2006, 56: 1-9.
    
    92. Kolb A, Alpert P, Enters D, et al. Patterns of invasion within a grassland community. Journal of Ecology, 2002, 90: 871-881.
    
    93. Kosola K R, Eissenstat D M. The fate of surface roots of citrus seedlings in dry soil. Journal of Experimental Botany, 1994,45: 1639-1645.
    
    94. Krause G H, Weis E. Chlorophyll fluorescence and photosynthesis: the basics. Annual Review of Plant Physiology and Plant Molecular Biology, 1991, 42:313-349.
    95. LaBarbera M. Analyzing body size as a factor in ecology and evolution. Annual Review of Ecology and Systematics, 1989,20: 97-117.
    
    96. Lahlou O, Ouattar S, Ledent J F. The effect of drought and cultivar on growth parameters, yield and yield components of potato. Agronomic 2003, 23:257-268.
    
    97. Lange O L, Kappen L, Schulze E D. Water and plant life: problems and modern approaches. Berlin Heidelberg: Springer-Verlag, 1976.
    
    98. Laurance W F, Didham R K, Power M E. Ecological boundaries: a search for synthesis. Trends in Ecology and Evolution, 2001,16: 70-71.
    
    99. Leakey A D B, Press M C, Scholes J D. Patterns of dynamic irradiance affect the photosynthetic capacity and growth of dipterocarp tree seedlings. Oecologia,2003, 135: 184-193.
    
    100.Leishman M R, Wright I J, Moles A T, et al. The evolutionary ecology of seed size. In: Fenner M ed. Seeds: the ecology of regeneration in plant communities.Wallingford, UK: CAB International, 2000, 31-57.
    101.Li P, Zhao Z, Li Z B. Vertical root distribution characters of Robinia pseudoacacia on the Loess Plateau in China. Journal of Forestry Research, 2004,15: 87-92.
    102.Li P M, Jiang C D, Gao H Y, et al. Analysis of the chlorophyll a fluorescence transient and application of the JIP-test in plant physiology. Journal of Plant Physiology and Molecular Biology, 2005, 31: 559-566.
    103.Liao Y, Xu D Q. Novel evidence for a reversible dissociation of light-harvesting complex II from photosystem II reaction center complex induced by saturating light illumination in soybean leaves. Journal of Integrative Plant Biology, 2007,49: 523-530.
    104.Lichtenthaler H K, Wellburn A R. Determination of total carotenoids and chlorophylls a and b of leaf extracts in defferent solvents. Biochemical Society Transactions, 1983,11: 591-592.
    105.Lin M J, Hsu B D. Photosynthetic plasticity of Phalaenopsis in response to different light environments. Journal of Plant Physiology, 2004, 161: 1259-1268.
    106.Lin R C, Xu C C, Li L B, et al. Xanthophyll cycle and its molecular mechanism in photoprotection. Acta Botanica Sinica, 2002,44: 379-383.
    107.Liu C C, Welham C V J, Zhang X Q, et al. Leaflet movement of Robinia pseudoacacia in response to a changing light environment. Journal of Integrative Plant Biology, 2007,49: 419-424.
    108.Liu L X, Xu S M, Woo K C. Influence of leaf angle on photosynthesis and the xanthophyll cycle in the tropical tree species Acacia crassicarpa. Tree Physiology,2003,23:1255-1261.
    109.Loik M E. Sensitivity of water relations and photosynthesis to summer precipitation pulses for Artemisia tridentata and Purshia tridentate. Plant Ecology,2007,191:95-108.
    110.Long S P, Humphries S, Folkowski P G. Photoinhibition of photosynthesis in nature. Annual Review of Plant Physiology and Plant Molecular Biology, 1994,45: 633-662.
    111 .Longstaff B J, Kildea T, Runcie J W, et al. An in situ study of photosynthetic oxygen exchange and electron transport rate in the marine macroalga Ulva lactuca (Chlorophyta). Photosynthesis Research, 2002, 74: 281-293.
    112.L6pez-Serrano F R, Garcia-Morote A, Andre's-Abellan M, et al. Site and weather effects in allometries: a simple approach to climate change effect on pines. Forest Ecology and Management, 2005,215: 251-270.
    113.Lorenzen C J. Determination of chlorophyll and pheo-pigments: spectrophotometric equations. Limnology and Oceanography, 1967,12:343-346.
    114.Lu H Y, Lu C T, Wei M L, et al. Comparison of different models for nondestructive leaf area estimation in taro. Agronomy Journal, 2004, 96:448-453.
    115.Lusk C H, Reich P B, Montgomery R A, et al. Why are evergreen leaves so contrary about shade? Trends in Ecology and Evolution, 2008,23: 299-303.
    116.Lusk C H, Warton D I. Global meta-analysis shows that relationships of leaf mass per area with species shade tolerance depend on leaf habit and ontogeny. New Phytologist, 2007,176: 764-774.
    117.Mainiero R, Kazda M. Depth-related fine root dynamics of Fagus sylvatica during exceptional drought. Forest Ecology and Management, 2006, 237:135-142.
    118.Marshall B, Biscoe P V. A model for C_3 leaves describing the dependence of net photosynthesis on irradiance. Journal of Experimental Botany, 1980,31: 29-39.
    119.Marshall J D, Waring R H. Comparison of methods of estimating leaf-area index in old-growth Douglas-fir. Ecology, 1986, 67: 975-979.
    120.Martin P. Vegetation responses and feedbacks to climate: a review of models and processes. Climate Dynamics, 1993, 8: 201-210.
    121.McIntyre S. The role of plant leaf attributes in linking land use to ecosystem function in temperate grassy vegetation. Agriculture, Ecosystems and Environment, 2008,128: 251-258.
    122.McIntyre S, Lavorel S, Landsberg J, et al. Disturbance response in vegetation:towards a global perspective on functional traits. Journal of Vegetation Science,1999,10: 621-630.
    123.McLellan T. Geographic variation and plasticity of leaf shape and size in Begonia dregei and B. homonyma (Begoniaceae). Botanical Journal of the Linnean Society, 2000,132: 79-95.
    124. McMillen G G, McClendon J H. Leaf angle: an adaptive feature of sun and shade leaves. Botanical Gazette, 1979, 140: 437-442.
    125.Miner B G, Sultan S E, Morgan S G, et al. Ecological consequences of phenotypic plasticity. Trends in Ecology and Evolution, 2005,20: 685-692.
    126.Minoru U, Takanori S, Yoshiyuki S, et al. The biological significance of leaf-movement: an approach using a synthetic inhibitor of leaf-closure.Tetrahedron Letters, 2002,43: 7545-7548.
    127.Moles A T, Ackerly D D, Webb C O, et al. A brief history of seed size. Science,2005, 307: 576-580.
    128.Moles A T, Falster D S, Leishman M R, et al. Small-seeded species produce more seeds per square metre of canopy per year, but not per individual per lifetime.Journal of Ecology, 2004, 92: 384-396.
    129.Moles A T, Westoby M. Seedling survival and seed size: a synthesis of the literature. Journal of Ecology, 2004, 92: 372-383.
    130.Moshelion M, Becker D, Czempinski K, et al. Diurnal and circadian regulation of putative potassium channels in a leaf moving organ. Plant Physiology, 2002, 128:634-642.
    131.M(?)ller I, Schmid B, Weiner J. The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants. Perspectives in Plant Ecology, Evolution and Systematics, 2000, 3: 115-127.
    132.Muraoka H, Takenaka A, Tang YH, et al. Flexible leaf orientations of Arisaema heterophyllum maximize light capture in a forest understorey and avoid excess irradiance at a deforested site. Annals of Botany, 1998, 82: 297-307.
    133.Niinemets (?). Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology, 2001, 82: 453-469.
    134.Niinemets (?), Cescatti A, Rodeghiero M, et al. Complex adjustments of photosynthetic capacity and internal mesophyll conductance to current and previous light availabilities and leaf age in Mediterranean evergreen species Quercus ilex. Plant, Cell and Environment, 2006a, 29: 1159-1178.
    135.Niinemets (?), Fleck S. Petiole mechanics, leaf inclination, morphology, and investment in support in relation to light availability in the canopy of Liriodendron tulipifera. Oecologia, 2002, 132:21-33.
    136.Niinemets (?), Portsmuth A, Tena D, et al. Do we underestimate the importance of leaf size in plant economics? disproportional scaling of support costs within the spectrum of leaf physiognomy. Annals of Botany, 2007a, 100: 283-303.
    137.Niinemets (?), Portsmuth A, Tobias M. Leaf size modifies support biomass distribution between stems, petioles and mid-ribs in temperate plants. New Phytologist, 2006b, 171: 91-104.
    138.Niinemets (?), Portsmuth A, Tobias M. Leaf shape and venation pattern alter the support investments within leaf lamina in temperate species: a neglected source of leaf physiological differentiation? Functional Ecology, 2007b, 21: 28-40.
    139.Nilsen E T. Influence of water relations and temperature on leaf movements of Rhododendron species. Plant Physiology, 1987, 83: 607-612.
    140.Nilsen E T. Seasonal and diurnal leaf movements of Rhododendron maximum L.in contrasting irradiance environments. Oecologia, 1985, 65: 296-302.
    141.Nunes C, Araujo S S, Silva J M, et al. Physiological responses of the legume model Medicago truncatula cv. Jemalong to water deficit. Environmental and Experimental Botany, 2008,63: 289-296.
    142.O'Connor T G, Haines L M, Snyman H A. Influence of precipitation and species composition on phytomass of a semi-arid African grassland. Journal of Ecology,2001, 89:850-860.
    143.Ogle K, Reynolds J F. Plant responses to precipitation in desert ecosystems:integrating functional types, pulses, thresholds, and delays. Oecologia, 2004, 141:282-294.
    144.01iveira G, Pefiuelas J. Comparative protective strategies of Cistus albidus and Quercus ilex facing photoinhibitory winter conditions. Environmental and Experimental Botany, 2002,47: 281-289.
    145.Osmond C B, Grace S C. Perspectives on photoinhibition and photorespiration in the field: quintessential inefficiencies of the light and dark reactions of photosynthesis. Journal of Experimental Botany, 1995,46: 1351-1362.
    146.Pandey S, Nagar P K. Leaf surface wetness and morphological characteristics of Valeriana jatamansi grown under open and shade habitats. Biologia Plantarum,2002, 45: 291-294.
    147.Parelle J, Roudaut J P, Ducrey M. Light acclimation and photosynthetic response of beech (Fagus sylvatica L.) saplings under artificial shading or natural Mediterranean conditions. Annals of Forest Science, 2006, 63: 257-266.
    148.Park J, Hwang E, Nam Y. Utilizing venation features for efficient leaf image retrieval. The Journal of Systems and Software, 2008, 81: 71-82.
    149.Parker W C, Mohammed G H. Photosynthetic acclimation of shade-grown red pine (Pinus resinosa Ait.) seedlings to high light environment. New Forests, 2000,19:1-11.
    150.Perez-Harguindeguy N, Diaz S, Cornelissen J H C, et al. Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant and Soil, 2000, 218: 21-30.
    151 .Pickup M, Westoby M, Basden A. Dry mass costs of deploying leaf area in relation to leaf size. Functional Ecology, 2005, 19: 88-97.
    152.Pierce L L, Running S W. Rapid estimation of coniferous forest leaf area index using a portable integrating radiometer. Ecology, 1988, 69: 1762-1767.
    153.Platt T, Gallegos C L, Harrison W G. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. Journal of Marine Research, 1980, 38:687-701.
    154.Ponti F, Minotta G, Cantoni L, et al. Fine root dynamics of pedunculate oak and narrow-leaved ash in a mixed-hardwood plantation in clay soils. Plant and Soil,2004,259: 39-49.
    155.Potters G, Pasternak T P, Guisez Y, et al. Stress-induced morphogenic responses:growing out of trouble? Trends in Plant Science, 2007,12: 98-105.
    156.Price C A, Enquist B J. Scaling mass and morphology in leaves: an extension of the WBE model. Ecology, 2007, 88: 1132-1141.
    157.Price C, Rind D. Possible implications of global warming change on global lightning distributions and frequencies. Journal of Geophysical Research, 1994,99: 108-123.
    158.Prioul J L, Chartier P. Partitioning of transfer and carboxylation components of intracellular resistance to photosynthetic CO_2 fixation: a critical analysis of the methods used. Annals of Botany, 1977,41: 789-800.
    159.Proietti P, Palliotti A. Contribution of adaxial and abaxial surfaces of olive leaves to photosynthesis. Photosynthetica, 1997, 33: 63-69.
    160.Pronk T E, During H J, Schieving F. Coexistence by temporal partitioning of the available light in plants with different height and leaf investments. Ecological Modelling, 2007,204: 349-358.
    161 .Quero J L, Villar R, Mara(?)(?)n T, et al. Interactions of drought and shade effects on seedlings of four Quercus species: physiological and structural leaf responses.New Phytologist,2006,170: 819-834.
    162.Quick W P, Stitt M. An examination of factors contributing to non-photochemical quenching of chlorophyll fluorescence in barley leaves. Biochimica et Biophysica Acta, 1989,977:287-296.
    163.Ralph P J, Gademann R. Rapid light curves: a powerful tool to assess photosynthetic activity. Aquatic Botany, 2005, 82: 222-237.
    164.Rasmussen B, Fletcher I R, Brocks J J, et al. Reassessing the first appearance of eukaryotes and cyanobacteria. Nature, 2008,455: 1101-1104.
    165.Reich P B, Uhl C, Walters M B, et al. Leaf demography and phenology in Amazonian rain forest: a census of 40 000 leaves of 23 tree species. Ecological Monographs, 2004, 74: 3-23.
    166.Reich P B, Walters M B, Ellsworth D S. From tropics to tundra: a global convergence in plant functioning. Proceedings of the National Academy of Sciences, USA, 1997,94: 13730-13734.
    167.Reynolds J F, Paul R K, Ogle K, et al. Modifying the 'pulse-reserve' paradigm for deserts of North America: precipitation pulses, soil water, and plant responses.Oecologia, 2004,141: 194-210.
    168.Reynolds J F, Virginia R A, Kemp P R, et al. Impact of drought on desert shrubs: effects of seasonality and degree of resource island development. Ecological Monographs, 1999, 69: 69-106.
    169.Richards R A, Rawson H M, Johnson D A. Glaucousness in wheat: its development and effect on water-use efficiency, gas exchange and photosynthetic tissue temperatures. Australian Journal of Plant Physiology, 1986,13: 465-473.
    170.Rodrigues T M, Machado S R. Pulvinus functional traits in relation to leaf movements: a light and transmission electron microscopy study of the vascular system. Micron, 2008,39: 7-16.
    171.Roe G H, Baker M B. Why is climate sensitivity so unpredictable? Science, 2007,318:629-632.
    172.Royer D L, Wilf P. Why do toothed leaves correlate with cold climates? gas exchange at leaf margins provides new insights into a classic paleotemperature proxy. International Journal of Plant Sciences, 2006,167: 11-18.
    173.Royer D L, Wilf P, Janesko D A, et al. Correlations of climate and plant ecology to leaf size and shape: potential proxies for the fossil record. American Journal of Botany, 2005,92:1141-1151.
    174.Runkle J R. Patterns of disturbance in some old-growth mesic forests of eastern North America. Ecology, 1982, 63: 1533-1546.
    175.Ryan M G, Yoder B J. Hydraulic limits to tree height and tree growth: what keeps trees from growing beyond a certain height? Bioscience, 1997,47: 235-242.
    176.Sack L, Cowan P D, Jaikumar N, et al. The 'hydrology' of leaves: co-ordination of structure and function in temperate woody species. Plant, Cell and Environment, 2003,26: 1343-1356.
    177.Sack L, Frole K. Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees. Ecology, 2006, 87: 483-491.
    178.Satter R L, Galston A W. Mechanisms of control of leaf movements. Annual Review of Plant Physiology and Plant Molecular Biology, 1981, 32: 83-110.
    179.Saxe H, Rajagopal R. Effect of vanadate on bean leaf movement, stomatal conductance, barley leaf unrolling, respiration, and phosphatase activity. Plant Physiology, 1981, 68: 880-884.
    180.Schenk H J, Jackson R B. Mapping the global distribution of deep roots in relation to climate and soil characteristics. Geoderma, 2005, 126: 129-140.
    181.Schenk H J, Jackson R B. Rooting depths, lateral spreads, and below-ground/above-ground allometries of plants in water-limited ecosystems. Journal of Ecology, 2002a, 90:480-494.
    182.Schenk H J, Jackson R B. The global biogeography of roots. Ecological Monographs, 2002b, 72: 311-328.
    183.Scheming S, Sturgis J N, Prima V, et al. Watching the photosynthetic apparatus in native membranes. Proceedings of the National Academy of Sciences, USA, 2004,101: 11293-11297.
    184.Schimel D. Climate change and crop yields: beyond Cassandra. Science, 2006, 312:1889-1890.
    185.Schmalstig J G.Light perception for sun-tracking is on the lamina in Crotalaria pallida(Fabaceae).American Journal of Botany,1997,84:308-314.
    186.Schreiber U,Schliwa U,Bilger W.Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer.Photosynthesis Research,1986,10:51-62.
    187.Schwinning S,Davis K,Richardson L,et al.Deuterium enriched irrigation indicates different forms of rain use in shrub/grass species of the Colorado Plateau.Oecologia,2002,130:345-355.
    188.Schwinning S,Ehleringer J R.Water use trade-offs and optimal adaptations to pulse-driven arid ecosystems.Journal of Ecology,2001,89:464-480.
    189.Semchenko M,Zobel K.The role of leaf lobation in elongation responses to shade in the rosette-forming forb Serratula tinctoria(Asteraceae).Annals of Botany,2007,100:83-90.
    190.Sension R J.Quantum path to photosynthesis.Nature,2007,446:740-741.
    191.Sharma V K,Bardal T K,Johnsson A.Light-dependent changes in the leaflet movement rhythm of the plant Desmodium gyrans.Zeitschrift f(u|¨)r Naturforschung,2003,58:81-86.
    192.Shepherd T,Griffiths D W.The effects of stress on plant cuticular waxes.New Phytologist,2006,171:469-499.
    193.Shipley B,Lechowicz M J,Wright I J,et al.Fundamental trade-offs generating the worldwide leaf economics spectrum.Ecology,2006a,87:535-541.
    194.Shipley B,Vile D,Garnier E.From plant traits to plant communities:a statistical mechanistic approach to biodiversity.Science,2006b,314:812-814.
    195.Silbernagel J,陈吉泉,宋波.边缘效应对原始花旗松林冬季温度的影响.生态学报,2001,21(9):1403-1412.
    196.Simon B,Elaine M T,Christos A,et al.All in good time:the Arabidopsis circadian clock.Trends in Plant Science,2000,5:517-522.
    197.Sinha N.Simple and compound leaves:reduction or multiplication? Trends in Plant Science,1997,2:396-402.
    198.Siso S,Camarero J J,Gil-Pelegrin E.Relationship between hydraulic resistance and leaf morphology in broadleaf Quercus species:a new interpretation of leaf lobation.Trees:Structure and Function,2001,15:341-345.
    199.Smith M, Ullberg D. Effect of Leaf Angle and Orientation on Photosynthesis and Water Relations in Silphium terebinthinaceum. American Journal of Botany, 1989,76: 1714-1719.
    200.Smith W K, Vogelmann T C, DeLucia E H, et al. Leaf form and photosynthesis.Bioscience, 1997,47: 785-793.
    201.Smucker A J M, Aiken R M. Dynamic root responses to water deficits. Soil Science, 1992,154: 281-289.
    202.Snyman H A. Rangeland degradation in a semi-arid South Africa I: influence on seasonal root distribution, root/shoot ratios and water-use efficiency. Journal of Arid Environments, 2005, 60: 457-481.
    
    203.Sole R. Scaling laws in the drier. Nature, 2007,449: 151-153.
    204.Souza R P, Machado E C, Silva J A B, et al. Photosynthetic gas exchange,chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environmental and Experimental Botany, 2004, 51: 45-56.
    205.Sperry J S, Hacke U G Desert shrub water relations with respect to soil characteristics and plant functional type. Functional Ecology, 2002,16: 367-378.
    206.Stephenson N L. Climatic control of vegetation distribution: the role of the water balance. The American Naturalist, 1990, 135: 649-670.
    207.Stokes V J, Morecroft M D, Morison J I L. Boundary layer conductance for contrasting leaf shapes in a deciduous broadleaved forest canopy. Agricultural and Forest Meteorology, 2006,139: 40-54.
    208.Sun J D, Nishio J N. Why abaxial illumination limits photosynthetic carbon fixation in spinach leaves. Plant and Cell Physiology, 2001,42: 1-8.
    209.Sun Q G, Collison M E, Li C S, et al. Quantitative reconstruction of paleoclimate from the middle Miocene Shanwang flora, eastern China. Palaeogeography,Palaeoclimatology, Palaeoecology, 2002, 180: 315-329.
    210.Takeda S, Gapper C, Kaya H, et al. Local positive feedback regulation determines cell shape in root hair cells. Science, 2008, 319: 1241-1244.
    211.Takenaka A. Effects of leaf blade narrowness and petiole length on the light capture efficiency of a shoot. Ecological Research, 1994, 9: 109-114.
    212.Takenaka A, Takahashi K, Kohyama T. Optimal leaf display and biomass partitioning for efficient light capture in an understorey palm, Licuala arbuscula.Functional Ecology, 2001,15: 660-668.
    213.Terashima I, Araya T, Miyazawa S I, et al. Construction and maintenance of the optimal photosynthetic systems of the leaf, herbaceous plant and tree: an eco-developmental treatise. Annals of Botany, 2005,95: 507-519.
    214.Thomber J P. Chlorophyll-proteins: light-harvesting and reaction center components in plant. Annual Review of Plant Physiology, 1975,26: 127-158.
    215.Thornley J H M. Dynamic model of leaf photosynthesis with acclimation to light and nitrogen. Annals of Botany, 1998, 81: 431-430.
    216.Tilman D, Reich P B, Knops J M H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature, 2006,441: 629-632.
    217.Traiser C, Klotz S, Uhl D, et al. Environmental signals from leaves: a physiognomic analysis of European vegetation. New Phytologist, 2005, 166:465-484.
    218.Tsialtas J T, Maslaris N. Leaf shape and its relationship with leaf area index in a sugar beet (Beta vulgaris L.) cultivar. Photosynthetica, 2007,45: 527-532.
    219.Tsukaya H. Organ shape and size: a lesson from studies of leaf morphogenesis. Current Opinion in Plant Biology, 2003, 6: 57-62.
    220.Turunen M T, Vogelmann T C, Smith W K. UV screening in lodgepole pine (Pinus contorta ssp. latifolia) cotyledons and needles. International Journal of Plant Sciences, 1999,160: 315-320.
    221.Valladares F, Wright S J, Lasso E, et al. Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecology, 2000, 81: 1925-1936.
    222.van Praag H J, Lognay G, Carletti G, et al. Temporal and spatial variations of root tip density and ergosterol content of mycorrhizal roots of Picea abies Karst. and Fagus sylvatica L. Soil Biology and Biochemistry, 1994, 26: 833-840.
    223.Vretare V, Weisner S E B, Strand J, et al. Phenotypic plasticity in Phragmites australis as a functional response to water depth. Aquatic Botany, 2001, 69:127-145.
    224.Walters R G, Horton P. Resolution of components of non-photochemical chlorophyll fluorescence quenching in barley leaves. Photosynthesis Research,1991,27:121-133.
    225.Wang G G, Bauerle W L. Effects of light intensity on the growth and energy balance of photosystem II electron transport in Quercus alba seedlings. Annals of Forest Science, 2006, 63: 111-118.
    226.Wang G G, Bauerle W L, Mudder B T. Effects of light acclimation on the photosynthesis, growth, and biomass allocation in American chestnut (Castanea dentata) seedlings. Forest Ecology and Management, 2006,226: 173-180.
    227.Watt A S. Pattern and process in the plant community. Journal of Ecology, 1947,35: 1-22.
    228.Weiher E, van der Werf A, Thompson K, et al. Challenging Theophrastus: a common core list of plant traits for functional ecology. Journal of Vegetation Science, 1999,10: 609-620.
    229.Weiner J. Allocation, plasticity and allometry in plants. Perspectives in Plant Ecology, Evolution and Systematics, 2004, 6: 207-215.
    230.Weiner J, Thomas S C. Competition and allometry in three species of annual plants. Ecology, 1992, 73: 648-656.
    231. Werner C, Correia O, Beyschlag W. Two different strategies of Mediterranean macchia plants to avoid photoinhibitory damage by excessive radiation levels during summer drought. Acta Oecologica, 1999, 20: 15-23.
    232.Westoby M, Falster D S, Moles A T, et al. Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 2002, 33: 125-159.
    233.Westoby M, Wright I J. The spectrum of twig-size variation and its correlates among perennial species in fire-prone sclerophyll vegetation. Oecologia, 2003,135: 621-628.
    234.White A J, Critchley C. Rapid light curves: a new fluorescence method to assess the state of the photosynthetic apparatus. Photosynthesis Research, 1999, 59:63-72.
    235.Williams D G, Ehleringer J R. Intra- and interspecific variation for summer precipitation use in pinon-juniper woodlands. Ecological Monographs, 2000, 70:517-537.
    236.Williams-Linera G, Dominguez-Gastelu V, Garcia-Zurita M E.Microenvironment and floristics of different edges in a fragmented tropical rainforest. Conservative Biology, 1998,12: 1091-1102.
    237.Wolfe J A. Paleoclimatic estimates from Tertiary leaf assemblages. Annual Review of Earth Planet Science, 1995, 23: 119-142.
    238.Woolley J T. Reflectance and transmittance of light by leaves. Plant Physiology,1971,47:656-662.
    239.Worku W, Skjelv(?)g A O, Gisler(?)d H R. Responses of common bean (Phaseolus vulgaris L.) to photosynthetic irradiance levels during three phenological phases.Agronomie,2004,24:267-274.
    240.Wright I J,Ackerly D D,Bongers F,et al.Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests.Annals of Botany,2007,99:1003-1015.
    241.Wright I J,Reich P B,Cornelissen J H C,et al.Assessing the generality of global leaf trait relationships.New Phytologist,2005a,166:485-496.
    242.Wright I J,Reich P B,Cornelissen J H C,et al.Modulation of leaf economic traits and trait relationships by climate.Global Ecology and Biogeography,2005b,14:411-421.
    243.Wright I J,Reich P B,Westoby M,et al.The worldwide leaf economics spectrum.Nature,2004,428:821-827.
    244.Xu X L,Wang Z M,Zhang J P.Effect of heat stress on photosynthetic characteristics of different green organs of winter wheat during grain-filling stage.Acta Botanica Sinica,2001,43:571-577.
    245.Ye Z P.A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa.Photosynthetica,2007,45:637-640.
    246.Yu F H,Dong M.Effect of light intensity and nutrient availability on clonal growth and clonal morphology of the Stoloniferous Herb Halerpestes ruthenica.Acta Botanica Sinica,2003,45:408-416.
    247.Zhang S R,Ma K P,Chen L Z.Photosynthetic gas exchange and leaflet movement of Robinia psedoacacia in relation to changing light environments.Acta Botanica Sinica,2002,44:858-863.
    248.Zhang X L,Zang R G,Li C Y.Population differences in physiological and morphological adaptations of Populus davidiana seedlings in response to progressive drought stress.Plant Science,2004,166:791-797.
    249.Zhang X Q,Liu J,Welham C V J,et al.The effects of clonal integration on morphological plasticity and placement of daughter ramets in black locust (Robinia pseudoacacia).Flora,2006,201:547-554.
    250.Zhao C M,Wang G X,Wei X P,et al.Effects of groundwater depth variation on photosynthesis and photoprotection of Elaeagnus angustifolia L.Trees:Structure and Function,2007,21:55-63.
    251.蔡永立,宋永昌.浙江天童常绿阔叶林藤本植物的适应生态学Ⅰ.叶片解剖 特征的比较.植物生态学报,2001,25(1):90-98.
    252.晁敏.山东省农业可持续发展战略主体模式研究——以滨州、峄城区、房干村为例.山东大学:硕士学位论文,1999,38-39.
    253.陈育峰.气候-森林响应过程敏感性的初步研究——以四川西部紫果云杉群落为例.地理学报,1996,51(增刊):58-65.
    254.陈志刚,樊大勇,张旺锋,等.林隙与林下环境对锐齿槲栎和米心水青冈种群更新的影响.植物生态学报,2005,29(3):354-360.
    255.楚道文,李海霞.房干生态旅游区开发建设理论、问题和对策.山东省农业管理干部学院学报,2002,18(1):91-93.
    256.耿宇鹏,张文驹,李博,等.表型可塑性与外来植物的入侵能力.生物多样性,2004,12(4):447-455.
    257.关保华,葛滢,樊梅英,等.华荠苧响应不同土壤水分的表型可塑性.生态学报,2003,23(2):259-263.
    258.郭卫华,李波,黄永梅,等.不同程度的水分胁迫对中间锦鸡儿幼苗气体交换特征的影响.生态学报,2004,24(12):2716-2722.
    259.郭卫华,李波,张新时,等.水分胁迫对沙棘(Hippophae rhamnoides)和中间锦鸡儿(Caragana intermedia)蒸腾作用影响的比较.生态学报,2007,27(10):4132-4140.
    260.郭志华,胡启鹏,王荣,等.喜树幼苗的叶悬挂角和叶柄角对不同光环境的响应和适应.林业科学研究,2006a,19(5):647-652.
    261.郭志华,张旭东,黄玲玲,等.落叶阔叶树种蒙古栎(Quercus mongolica)对林缘不同光环境光能和水分的利用.生态学报.2006b,26(4):1047-1056.
    262.韩志国,雷腊梅,韩博平.光-暗循环中三角褐指藻和具齿原甲藻快速光曲线的变化.热带海洋学报,2005a,24(6):13-21.
    263.韩志国,雷腊梅,韩博平.利用调制荧光仪在线监测叶绿素荧光.生态科学.2005b,24(3):246-249.
    264.胡启鹏,郭志华,李春燕,等.不同光环境下亚热带常绿阔叶树种和落叶阔叶树种幼苗的叶形态和光合生理特征.生态学报,2008,28(7):3262-3270.
    265.季本华,焦德茂.水稻抗光破坏能力与D1蛋白和叶黄素循环的关系.科学通报,2000,45(5):510-515.
    266.姜闯道,高辉远,邹琦.D1蛋白周转及其对能量耗散的调节.植物生理学通讯,2002,38(3):207-212.
    267.姜闯道,高辉远,邹琦,等.叶角、光呼吸和热耗散协同作用减轻大豆幼叶光抑制.生态学报,2005,25(2):319-324.
    268.蒋高明.植物生理生态学.北京:高等教育出版社,2004.
    269.李芳兰,包维楷.植物叶片形态解剖结构对环境变化的响应与适应.植物学通报,2005,22(增刊):118-127.
    270.李吉跃.全球大气CO_2浓度变化与植物水分关系.世界林业研究,1997,10(5):16-25.
    271.李军超,苏陕民.黄花菜耐阴特性的初步研究.生态学报,1994,14(4):444-446.
    272.李梅,韩海荣,康峰,等.山西灵空山辽东栎种群叶性状表型变异研究.北京林业大学学报,2005,27(5):10-16.
    273.李荣生,许煌灿,尹光天,等.植物水分利用效率的研究进展.林业科学研究,2003,16(3):366-371.
    274.李伟,曹坤芳.干旱胁迫对不同光环境下的三叶漆幼苗光合特性和叶绿素荧光参数的影响.西北植物学报,2006,26(2):266-275.
    275.李西文,陈士林.遮荫下高原濒危药用植物川贝母(Fritillaria cirrhosa)光合作用和叶绿素荧光特征.生态学报,2008,28(7):3438-3446.
    276.李晓萍,陈贻竹,郭俊彦.叶绿体PS Ⅱ光能耗散机制的研究进展.生物化学与生物物理进展,1999,23(2):145-149.
    277.李晓征,郝日明,任燕.遮荫处理对不同苗龄交让木的生长和光合特性的影响.广西植物,2006,26(5):499-502.
    278.李妍,李海涛,金冬梅,等.WBE模型及其在生态学中的应用:研究概述.生态学报,2007,27(7):3018-3031.
    279.李玉霖,孟庆涛,赵学勇,等.科尔沁沙地植物成熟叶片性状与叶凋落物分解的关系.生态学报,2008,28(6):2486-2494.
    280.林而达,许吟隆,蒋金荷.气候变化国家评估报告(Ⅱ):气候变化的影响与适应.气候变化研究进展,2006,2(2):51-56.
    281.刘春蓁.气候变异与气候变化对水循环影响研究综述.水文,2003,23(4): 1-7.
    282.刘锦春,钟章成,何跃军.水分胁迫对重庆石灰岩地区不同龄级柏木(Cupressus funebris Endl.)幼苗气体交换的影响.生态学报,2007,27(9):3601-3608.
    283.刘峻杉,高琼,朱玉洁,等.土壤-根系统水分再分配:土壤-植物-大气连续体中的一个小通路.植物生态学报,2007,31(5):794-803.
    284.刘悦秋,孙向阳,王勇,等.遮荫对异株荨麻光合特性和荧光参数的影响.生态学报,2007,27(8):3457-3464.
    285.陆霞梅,周长芳,安树青,等.植物的表型可塑性、异速生长及其入侵能力.生态学杂志,2007,26(9):1438-1444.
    286.吕爱锋,田汉勤.气候变化、火干扰与生态系统生产力.植物生态学报,2007,31(2):242-251.
    287.茹桃勤,李吉跃,张克勇,等.国外刺槐(Robinia pseudoacacia)研究.西北林学院学报,2005,20(3):102-107.
    288.单长卷,粱宗锁.黄土高原刺槐人工林根系分布与土壤水分的关系.中南林学院学报,2006,26(1):19-21.
    289.施雅风.气候变化对西北华北水资源的影响.济南:山东科学技术出版社,1995.
    290.陶建平,钟章成.光照对苦瓜形态可塑性及生物量配置的影响.应用生态学报,2003,14(3):336-340.
    291.田汉勤,万师强,马克平.全球变化生态学:全球变化与陆地生态系统.植物生态学报,2007,31(2):173-174.
    292.王家华,李建东.林窗研究进展.世界林业研究,2006,19(1):27-30.
    293.王磊,胡楠,张彤,等.干旱和复水对大豆(Glycine max)叶片光合及叶绿素荧光的影响.生态学报,2007,27(9):3630-3636.
    294.王满莲,冯玉龙.紫茎泽兰和飞机草的形态、生物量分配和光合特性对氮营养的响应.植物生态学报,2005,29(5):697-705.
    295.王仁卿,郭卫华,韩雪梅.房干村生态文明建设分析.见张凯主编:山东生态省建设研究.北京:中国科学技术出版社,2004,129-136.
    296.王仁卿,藤原一绘,尤海梅.森林植被恢复的理论和实践:用乡土树种重建 当地森林——宫胁森林重建法介绍.植物生态学报,2002,26(增刊):133-139.
    297.王仁卿,周光裕.山东植被.济南:山东科技出版社,2000,5.
    298.王文杰,祖元刚,杨逢建,等.边缘效应带促进红松生长的光合生理生态学研究.生态学报,2003,23(11):2318-2326.
    299.王希群,马履一,贾忠奎,等.叶面积指数的研究和应用进展.生态学杂志,2005,24(5):537-541.
    300.王祥宁,熊丽,陈敏,等.不同光照条件下东方百合生长状态及生物量的分配.西南农业学报,2007,20(5):1091-1096.
    301.王叶,延晓冬.全球气候变化对中国森林生态系统的影响.大气科学,2006,30(5):1009-1018.
    302.吴大千,徐飞,郭卫华,等.中国北方城市常见绿化植物夏季气孔导度影响因素及模型比较.生态学报,2007,27(10):4141-4148.
    303.吴彤,倪绍祥,李云梅,等.由冠层孔隙度反演植被叶面积指数的算法比较.南京师大学报(自然科学版),2006,29(1):111-115.
    304.夏江宝,曲志远,朱玮,等.鲁中山区不同人工林土壤水分特征.中国水土保持科学,2005,3(3):45-50.
    305.肖强,叶文景,朱珠,等.利用数码相机和Photoshop软件非破坏性测定叶面积的简便方法.生态学杂志,2005,24(6):711-714.
    306.许大全.光合作用测定及研究中一些值得注意的问题.植物生理学通讯,2006,42(6):1163-1167.
    307.徐飞,郭卫华,徐伟红,等.短期干旱和复水对麻栎幼苗光合及叶绿素荧光的影响.山东林业科技,2008,38(4):1-4.
    308.许皓,李彦,邹婷,等.梭梭(Haloxylon ammodendron)生理与个体用水策略对降水改变的响应.生态学报,2007,27(12):5019-5028.
    309.许振柱,周广胜.不同温度条件下土壤水分对羊草幼苗生长特性的影响.生态学杂志,2005,24(3):256-260.
    310.许振柱,周广胜.陆生植物对全球变化的适应性研究进展.自然科学进展,2003,13(2):113-120.
    311.许振柱,周广胜,肖春旺,等.CO_2浓度倍增和土壤干旱对两种幼龄沙生灌木碳分配的影响.植物生态学报,2005,29(2):281-288.
    312.杨小波,王伯荪.森林次生演替优势种苗木的光可塑性比较研究.植物学通报,1999,16(3):304-309.
    313.杨兴洪,邹琦,赵世杰.遮荫和全光下生长的棉花光合作用和叶绿素荧光特征.植物生态学报,2005,29(1):8-15.
    314.叶子飘.光响应模型在超级杂交稻组合-Ⅱ优明86中的应用.生态学杂志,2007,26(8):1323-1326.
    315.於凡,曹颖.全球气候变化对区域水资源影响研究进展综述.水资源与水工程学报,2008,19(4):92-97.
    316.臧润国,徐化成.林隙干扰研究进展.林业科学,1998,34(1):90-98.
    317.曾伟,蒋延玲,李峰,等.蒙古栎(Quercus mongolica)光合参数对水分胁迫的响应机理.生态学报,2008,28(6):2504-2510.
    318.张大勇.理论生态学研究.北京:高等教育出版社,2000,52-63.
    319.张守仁.叶绿素荧光动力学参数的意义及讨论.植物学通报,1999,16(4):444-448.
    320.张守仁,高荣孚.光诱导下杂种杨无性系叶角和叶绿体的运动.生态学报,2001,21(1):68-74.
    321.张守仁,高荣孚,王连军.杂种杨无性系的光系统Ⅱ放氧活性、光合色素及叶绿体超微结构对光胁迫的响应.植物生态学报,2004,28(2):143-149.
    322.张淑敏,陈玉福,于飞海,等.林下和林窗内娟毛匍匐委陵菜的克隆生长和克隆形态.植物生态学报,2003,27(4):567-571.
    323.张宪强,郭卫华,杨继红,等.刺槐(Robinia pseudoacacia)无性系种群结构与生长动态的研究.山东大学学报(理学版),2006,41(2):135-139.
    324.张亚杰,冯玉龙,冯志立,等.绒毛番龙眼对生长光强的形态和生理适应.植物生理与分子生物学学报,2003,29(3):206-214.
    325.张一平,马友鑫,刘玉洪,等.热带雨林林缘不同热力作用面热力特征初探.北京林业大学学报,2001,23(6):22-26.
    326.张一平,马友鑫,刘玉洪,等.云南哀牢山常绿阔叶林林缘不同热力作用面热力特征.生态学杂志,2003,22(2):74-79.
    327.张永利,张宪强,王仁卿.鲁中山区植物区系初步研究.山东林业科技,2005,34(1):1-5.
    328.张治安,张美善,蔚荣海主编.植物生理学实验指导.北京:中国农业科学技术出版社,2004,1.
    329.赵丽英,邓西平,山仑.活性氧清除系统对干旱胁迫的响应机制.西北植物学报,2005,25(2):413-418.
    330.赵育民,牛树奎,王军邦,等.植被光能利用率研究进展.生态学杂志,2007,26(9):1471-1477.
    331.赵忠,李鹏,王乃江.渭北黄土高原主要造林树种根系分布特征的研究.应用生态学报,2000,11(1):37-39.
    332.郑盛华,严昌荣.水分胁迫对玉米苗期生理和形态特性的影响.生态学报,2006,26(4):1138-1143.
    333.郑淑霞,上官周平.陆生植物气孔参数与大气CO_2浓度变化.生态科学,2005,24(3):264-267.
    334.郑淑霞,上官周平.黄土高原油松和刺槐叶片光合生理适应性比较.应用生态学报,2007,18(1):16-22.
    335.中国科学院中国植物志编辑委员会.中国植物志(第二十二卷).北京:科学出版社,1998,219-221.
    336.中国科学院中国植物志编辑委员会.中国植物志(第四十卷).北京:科学出版社,1994,228-229.
    337.钟海玲,沈永平.2007年全球气候变化回顾.气候变化研究进展,2008,4(1):53-56.
    338.周海燕,张景光,李新荣,等.生态脆弱带不同区域近缘优势灌木的生理生态学特性.生态学报,2005,25(1):168-175.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700