Aubry-Mather理论中的若干问题
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究Aubry-Mather理论中的若干问题.全文共分四章,第一章是绪论,第二章至第四章为论文主体部分.
     在第二章,我们首先将法国数学家A.Fathi建立的弱KAM理论(与Mather理论密切相关)参数化,对于一般形式的Hamilton函数得到低维作用极小测度的存在性定理.然后,将该定理局部地应用于近可积Hamilton系统,从而对动力系统理论的创始人,著名的法国博学家H.Poincar(?)提出的可积系统的稳定性机制有多少在小扰动下保持下来这一动力学基本问题作出进一步的回答.在第三章,我们研究了一类特殊的平面Lagrange系统极小解集的构造.Lagrange系统的极小解对应着相应Hamilton系统Poincar(?)映射的Mather集.我们给出了连接相邻的以0为旋转数的周期极小解的极小异宿解的一种新的变分构造.在第四章,我们研究了相应于具有变扩散系数的受控Markov扩散的Mather理论,讨论了随机作用极小测度的性质,给出了随机作用极小测度的变分构造,定义了相应的Mather函数,并且讨论了它们的可微性.
The study on the dynamical behaviour of area-preserving mappings is always on the cutting edge of the study on Hamiltonian systems and symplectic geometry. The class of area-preserving mappings with monotone twist property has been paid more attention by mathematicians. So-called Aubry-Mather theory of the mappings mentioned above is one of the most fascinating developments in this field.
     Area-preserving mappings were first considered by H. Poincare in his work on the restricted three-body problem. The celebrated "last geometric theorem of Poincare" states that an area-preserving homeomorphism of the annulus, which rotates the two boundary circles in opposite directions, must have at least two fixed points. It was conjectured by H. Poincare (1912) from a consideration of the three-body problem in celestial mechanics and proved by G. Birkhoff (1913), who generalized the result in 1925. Poincar(?)-Birkhoff geometric theorem implies the existence of periodic orbits of the monotone twist mappings. Afterwards, in the field of area-preserving mappings we must mention the famous work on stability theory of A. Kolmogorov [90]-V. Arnold [12]-J. Moser [124]-KAM theory. Moser's twist mapping theorem [124] guarantees the existence of closed invariant curves of nearly integrable monotone twist homeomorphisms. Obviously, there should be a new kind of solutions between periodic orbits and closed invariant curves. Aubry-Mather theory confirmed the assertion.
     Physicists S. Aubry and P. Le Daeron published their theory of minimum energy states for Frenkel-Kontorova models on《Physica D: Nonlinear Phenomena》in 1983. The theory is a beautiful body of work that has greatly enhanced understanding of how structure is determined in the solid state and played a key role in the interplay between condensed matter physics and dynamical systems theory and in our careers. They proved that the set of recurrent minimum energy states of mean spacing is either a curve or a Cantor set. Some of these results were also proved by J. Mather (starting independently of Aubry). Mathematician J. Mather obtained the existence of quasi-periodic orbits of monotone twist mappings of the annulus in his work, which was published on《Topology》in 1982. He proved that for each given numberαin the twist interval, there exists an invariant Mather set of rotation numberα. Mather sets are closed and invariant. For the smallest Mather set there are only three cases: when the rotation number is rational, it is an order-preserving periodic orbit, which is also called Birkhoff periodic orbit; when the rotation number is irrational, it is either a closed invariant curve or a Denjoy Cantor set. The works by S. Aubry and J. Mather were begun independently and with different motivations but led to similar results by different methods. So the subject is often called Aubry-Mather theory. Afterwards, many people generalized the theory in various directions. In particular, J. Mather [113] proposed a generalization of Aubry-Mather theory to periodic Hamiltonian systems in more degrees of freedom.
     In this thesis, we make attempt to study several problems in Aubry-Mather theory. In Chapter 2, we parametrize weak KAM theory (closely related to Mather theory [113]), developed by A. Fathi [60, 61, 62, 63], using a variational approach, and then by applying the parametrized weak KAM theory to nearly integrable Hamiltonian systems locally, we obtain the existence of lower dimensional action minimizing measures, which gives a definite answer to the basic problem of dynamics raised by H. Poincar(?). In Chapter 3, we study the structure of the set of minimal solutions to a plane Lagrangian system. Minimal solutions of Lagrangian systems correspond to Mather sets of Poincare map of Hamiltonian systems. We give a constructive proof of the existence of minimal heteroclinic solutions connecting two adjacent periodic minimal solutions of rotation number 0. In Chapter 4, we study the stochastic Mather theory with respect to the non-uniform controlled Markov diffusion. More precisely, we discuss the properties of stochastic action minimizing measures and construct a stochastic action minimizing measure by using a variational approach. At last, we define the stochastic versions ofMather's functions and discuss the differentiability of them. Now let us introduce the main results of the thesis.
     Lower dimensional action minimizing measures
     LetΩ= T~n×R~n×X×X, where X is a real Hilbert space. Assume that Hamiltonian H :Ω→R~1, H=H(x,p,α,β), is smooth, and satisfies the following two conditions:
     (a) uniformly strict convexity in p: There exists a constantθ> 0, such thatfor each x∈T~n, p,ξ∈R~n,α,β∈X;
     (b) growth bounds: There exists a constant C > 0, such thatfor each x∈T~n, p∈R~n,α,β∈X.
     For given P∈R~n, (?), we obtain a Borel probability measureμonΩby using a variational approach. Setν= proj_(TT~n)μ, where TT~n= T~n×R~n. We have the following result:
     Theorem 1 Probability measure v is Euler-Lagrange flow invariant (lower dimension), i.e.,for allφ∈C~1(T~n). Furthermore, v is an action minimizing measure on TT~n of rotation vector∫_(TT~n) qdv.
     Consider the nearly integrable Hamiltonian systemH(x,y) = H_0(y) +εP(x,y), (1)where y∈G (?) R~n, x∈T~n, H_0 and P are C~3 functions defined on the closed bounded region G and T~n×G, respectively. Assume that H_0 is strictly convex. P is a perturbation andε> 0 is a small parameter.
     For a given rank m_0 subgroup g of Z~n, set m = n -m_0 andis called a g-resonant surface.
     Applying Theorem 1 to the nearly integrable Hamiltonian system (1), we have:
     Theorem 2 For each y∈O(g,G), there exist at least m_0 + 1 action minimizing measures {μ_y~i}_(m=1)~(m_0+1) on T~m×K~m for the nearly integrable Hamiltonian system (1).
     It is well known that most of the nonresonant tori of the integrable system persist under a small perturbation, and the resonant tori are destroyed. In the late 60's of the last century, V. Melnikov [123] used the then relatively new ideas of KAM theory to find lower dimensional invariant tori residing in the resonant surfaces of analytic, nearly integrable Hamiltonian systems. Since then, such tori have become a crucial element in attempts to establish a rigorous foundation for "Arnold diffusion" (an instability mechanism whose explication is considered by many to be the outstanding problem in the theory of nearly integrable Hamiltonian systems). Partly motivated by applications to the problem of Arnold diffusion, a number of authors (D. Bernstein and A. Katok [22], C. Cheng [37], L. Chierchia and G. Gallavotti [39], R. de la Llave and E. Wayne [46], L. Eliasson [51], S. Graff [78], J. P(?)schel [134], M. Rudnev and S. Wiggins [139], D. Treschev [146], and others) have given more refined results on the persistence of lower dimensional invariant tori. For the most part, these results are restricted to the multiplicity one resonant case and require hyperbolicity conditions in addition to the usual nondegeneracy conditions. For the multiplicity m_0 > 1 resonant case, in [40] the authors prove the persistence of lower dimensional tori in such systems under standard nondegeneracy conditions and without the requirement of hyperbolicity. More precisely, they proved that for most frequencies on the resonant surface (a Cantor subset of positive measure), the resonanttorus foliated by nonresonant lower dimensional tori is not destroyed completely and that there are some lower dimensional tori which survive the perturbation. Then what happens to the points outside the Cantor set in O(g,G)? Theorem 2 tells us that for each y∈O(g,G), there exist at least m_0 +1 action minimizing measures on T~m×R~m, which support certain either quasi-periodic motions or weak quasi-periodic motions. Therefore, Theorem 2 gives a definite answer to the basic problem of dynamics put forward by H. Poincar(?).
     Minimal heteroclinic solutons
     Next let us discuss the structure of the set of minimal solutions to plane Lagrangian systems. First we give the concept of minimal solutions. Given a Lagrangian L : R~3→R~1, the corresponding Euler-Lagrange equation reads
     Definition 1 A C~1 function q : R~1→R~1 is called a minimal solution of (LS), if for each [a, b] andξ∈C_0~1([a, b]).The concept was given by M. Giaquinta and E. Guisti in [70].
     Consider the standard Lagrangian L(t, q, (?)) = (?) + U(t, q) in classical mechanics. Assume that U satisfies the following three conditions: (U1) U∈C~2(R~1×R~1); (U2) U is 1-periodic t, q; (U3) U is even in t
     The Euler-Lagrange equation is Newton equation(?). (2)LetΞ_0 = {q∈W_(loc)~(1,2)(R~1) : q is 1-periodic in t}.Consider a minimization problemFrom a well known result of Moser [125], we know that there exist minimizers of the problem above, and each minimizer q∈Ξ_0 is a C~2 solution to (2).
     Set c_0 = inf{I_0(g) : q∈Ξ_0 }. It is easy to see that c_0∈R~1. Then the set of periodic minimal solutions of rotation number 0 of (2) is M(0) = {q∈Ξ_0 : I_0(q) = c_0}. Furthermore, M(0) is a nonempty ordered set. Consider the following condition:
     (*) gap condition: There exist adjacent p_0, r_0∈M(0) with p_0 < r_0.
     For i∈Z, set
     Theorem 3 Let U satisfy (U1)-(U3) and gap condition (*) hold. Then there exists a classical solution Q of (2), such thatτ_iQ (?) p_0 and (?)r_0 in W~(1,2)([0,1]) as i→∞. Furthermore, Q is a minimal solution of (2).
     Since minimal solutions of Lagrangian systems correspond to Mather sets of Poincare map of Hamiltonian systems, studying the structure of the set of minimal solutions is important for understanding of Aubry-Mather theory. Theorem 3 tells us that there exists a minimal heteroclinic solution connecting two adjacent periodic minimal solutions of rotation number 0. And the proof of Theorem 3 is constructive.
     Stochastic Mather theory: non-uniform diffusion case
     D. Gomes [74] generlized the work of J. Mather [113] on the action minimizing measures of positive definite Lagrangian systems to the stochastic case. More precisely, he considered the stochastic Mather minimizationproblemwith respect to the controlled Markov diffusiondx = v(t)dt +σdw,whereμis a Borel probability measure on T~n×R~n, and satisfiesfor allφ∈C~2(T~n).
     We attempt to generalize Gomes' results (uniform diffusion case) to non-uniform diffusion case (σis a function of x). It means that we consider the stochastic Mather minimization problem with respect to the controlled Markov diffusiondx = v(t)dt +σ(x)dw.Here w(t) is an n-dimensional Brownian motion, v(t) is a bounded progressively measurable control, and the diffusion rateσ(x)≥0 for all x∈T~n. We also assumeσis weakly differentiate andσ(x)≠0 almost everywhere (Lebesgue measure).
     We prove that the stochastic Mather minimization problem above admits minimizers, i.e., stochastic action minimizing measures, and each minimizer has the following property:
     Proposition 1 Each stochastic action minimizing measure is supported in the graph {(x, -D_pH(x, D_xu))}, where u is the solution of(?), (3)and (?) is the stochastic Ma(?)'s critical value.
     By the above proposition we can obtain another property of stochastic action minimizing measures.
     Theorem 4 Letμbe a stochastic action minimizing measure, and v = proj_(T~n)μ. Then we haveσ~2(x)dv =θ{x)dxfor someθ∈W~(1,2)(T~n). Furthermore,θis a weak solution ofwhere w = -D_pH(x, D_xu) and u is the solution of (3).
     Furthermore, we construct a stochastic action minimizing measure by using a variational approach from the stochastic minimax formula. The method is valid for both uniform and non-uniform diffusion. At last, we define the stochastic versions of Mather's functions and discuss the differentiability of them. The stochastic Mather theory is well developed now.
引文
[1] 蒋美跃,裴明亮.扭转映射的Aubry-Mather理论及其应用[J].数学进展,1994,23:97-114.
    [2] 王继春.数学物理中的同调论[M].北京:科学出版社,1991.
    [3] 伍卓群,李勇.常微分方程[M].北京:高等教育出版社,2004.
    [4] 严加安.测度论讲义[M].北京:科学出版社,2004.
    [5] 张恭庆.临界点理论及其应用[M].上海:上海科技出版社, 1986.
    [6] A. Aftabizadeh, N. Pavel, Y. Huang. Anti-periodic oscillations of some second-order differential equations and optimal control problems. Oscillations in nonlinear systems: applications and numerical aspects [J]. J. Comput. Appl. Math., 1994, 52: 3-21.
    [7] A. Aftabizadeh, Y. Huang, N. Pavel. Nonlinear third-order differential equations with anti-periodic boundary conditions and some optimal control problems [J]. J. Math. Anal. Appl., 1995, 192: 266-293.
    [8] S. Aizicovici, N. Pavel. Anti-periodic solutions to a class of nonlinear differential equations in Hilbert space [J]. J. Funct. Anal., 1991, 99: 387-408.
    [9] S. Aizicovici, S. Reich. Anti-periodic solutions to a class of non-monotone evolution equations [J]. Discrete Contin. Dyn. Syst., 1999, 5: 35-42.
    [10] S. Aizicovici, M. McKibben, S. Reich. Anti-periodic solutions to nonmonotone evolution equations with discontinuous nonlinearities [J]. Nonlinear Anal., 2001, 43: 233-251.
    [11] M. Altman. A fixed point theorem in Banach space [J]. Bull. Polish Acad. Sci., 1957, 5: 19-22.
    [12] V. Arnold. Proof of a theorem by A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian [J]. Russ. Math. Surveys, 1963, 18: 9-36.
    [13] V. Arnold. Instability of dynamical systems with many degrees of freedom [J]. Dokl. Akad. Nauk SSSR, 1964, 156: 9-12.
    [14] V. Arnold. Mathematical Methods of Classical Mechanics [M]. Springer-Verlag, New York-Heidelberg, 1978.
    [15] S. Aubry, P. Y. Le Daeron. The discrete Frenkel-Kontorova model and its extensions. I. Exact results for the ground-states [J]. Phys. D, 1983, 8: 381-422.
    [16] S. Aubry. The twist map, the extended Frenkel-Kantorova model and the devil's straircase [J]. Phys. D, 1983, 7: 240-258.
    [17] V. Bangert. Mather sets for twist maps and geodesics on tori [J]. Dynamics Reported, 1988, 1: 1-56.
    [18] R. Bellman. Dynamic Programming [M]. Princeton: Princeton University Press, 1957.
    [19] P. Bernard. Connecting orbits of time dependent Lagrangian systems [J]. Ann. Inst. Fourier (Grenoble), 2002, 521: 1533-1568.
    [20] P. Bernard. The dynamics of pseudographs in convex Hamiltonian systems [J]. J. Amer. Math. Soc, 2008, 21: 615-669.
    [21] D. Bernstein. Birkhoff periodic orbits for twist maps with the graph intersection property [J]. Ergodic Theory Dynam. Systems, 1985, 5: 531-537.
    [22] D. Bernstein, A. Katok. Birkhoff periodic orbits for small perturbation of completely integrable Hamiltonian systems with convex Hamiltonians [J]. Invent. Math., 1987, 88: 225-241.
    [23] H. Bethe, E. Salpeter. Quantum Mechanics of One- and Two-Electron Atoms [M]. Berlin: Springer, 1957.
    [24] H. Bethe. Intermediate Quantum Mechanics [M]. Benjamin, NY, 1964.
    [25] G. Birkhoff. Surface transformations and their dynamical applications [J]. Acta Math., 1920, 43: 1-119.
    [26] G. Birkhoff. An extension of Poincar(?)'s last geometric theorem. In Collected Mathematical Papers of G. Birkhoff. Vol. Ⅱ: Dynamics (continued), physical theories [C]. New York: Dover Publications, Inc., 1968.
    [27] P. Calvez. Propri(?)t(?)s dynamiques des diff(?)omorphismes de l'anneau et du tore [J]. Asterisque, 1991, 204: 1-131.
    [28] M. Carneiro. On minimizing measures of the action of autonomous Lagrangians [J]. Nonlinearity, 1995, 8: 1077-1085.
    [29] P. Carter. An improvement of the Poincar(?)-Birkhoff fixed point theorem [J]. Trans. Amer. Math. Soc., 1982, 269: 285-299.
    [30] M. Casdagli. Periodic orbits for dissipative twist maps [J]. Ergodic Theory Dynam. Systems, 1987, 7: 165-173.
    [31] P. Celada, G. Cupini, M. Guidorzi. A sharp attainment result for nonconvex variational problems [J]. Calc. Var. Partial Differential Equations, 2004, 20: 301-328.
    [32] Y. Chen. On Massera's theorem for anti-periodic solution [J]. Adv. Math. Sci. Appl., 1999. 9: 125-128.
    [33] Y. Chen, J. Kim, Y. Li. Viscosity periodic and anti-periodic solutions for nonlinear equations [J]. Nonlinear Funct. Anal. Appl., 2005, 10: 173-177.
    [34] Y. Chen, Y. Cho, D. O'Regan. Anti-periodic solutions for evolution equations with mappings in the class (S_+) [J]. Math. Nachr., 2005, 278: 356-362.
    [35] Y. Chen. Anti-periodic solutions for semilinear evolution equations [J]. J. Math. Anal. Appl., 2006, 315: 337-348.
    [36] A. Chenciner. La dynamique au voisinage d'un point fixe elliptique conser-vatif: de Poincare et Birkhoff a Aubry et Mather [J]. Seminar Bourbaki. 1983/84. Asterisque No. 121-122. 1985, 147-170.
    [37] C. Cheng. Birkhoff-Kolmogorov-Arnold-Moser tori in convex Hamiltonian systems [J]. Comm. Math. Phys., 1996. 177: 529-559.
    [38] C. Cheng. J. Yan. Existence of diffusion orbits in a priori unstable Hamiltonian systems [J]. J. Differential Geom., 2004. 67: 457-517.
    [39] L. Chierchia, G. Gallavotti. Drift and diffusion in phase space [J]. Ann. Inst. H. Poincar Phys. Theor., 1994. 69: 1-144.
    [40] F. Cong. T. Kiipper. Y. Li. J. You. KAM-type theorem on resonant surfaces for nearly integrable Hamiltonian systems [J]. J. Nonlinear Sci., 2000. 10: 49-68.
    [41] C. Conley. E. Zehnder. The Birkhoff-Lewis fixed point theorem and a conjecture of V. I. Arnold [J]. Invent. Math.. 1983. 73: 33-49.
    [42] G. Contreras, J. Delgado. R. Iturriaga. Lagrangian flows: the dynamics of globally minimizing orbits. II [J]. Bol. Soc. Brasil. Mat. (N.S.). 1997. 28: 155-196.
    [43] G. Contreras. R. Iturriaga. P. Paternain, M. Paternain. Lagrangian graphs, minimizing measures and Mane's critical values [J]. Geom. Funct. Anal., 1998. 8: 788-809.
    [44] G. Contreras. R. Iturriaga. Global Minimizers of Autonomous Lagrangians. 22° Coloquio Brasileiro de Matematica. [22nd Brazilian Mathematics Colloquium] [C] Institute de Matematica Pura e Aplicada (IMPA). Rio de Janeiro. 1999.
    [45] G. Contreras. P. Paternain. Connecting orbits between static classes for generic Lagrangian systems [J]. Topology, 2002. 41: 645-666.
    [46] R. de la Llave, E. Wayne. Whiskered and low dimensional tori in nearly in-tegrable Hamiltonian systems [J]. Math. Phys. Electron. J., 2004, 10: Paper 5, 45 pp.
    [47] A. Denjoy. Sur les courbes defines par les equations differentielles a la surface du tore [J]. J. Math Pures Appl., 1932, 11: 333-375.
    [48] J. Denzler. Mather sets for plane Hamiltonian systems [J]. Z. Angew. Math. Phys., 1987, 38: 791-812.
    [49] W. Ding. A generalization of the Poincare-Birkhoff theorem [J]. Proc. Amer. Math. Soc, 1983, 88: 341-346.
    [50] E. Dynkin. Markov Processes, vol I, II [M]. New York: Springer-Verlag, 1965.
    [51] L. Eliasson. Biasymptotic solutions of perturbed integrable Hamiltonian systems [J]. Bol. Soc. Mat., 1994, 25: 57-76.
    [52] S. Ethier, T. Kurtz. Markov Processes: Characterization and Convergence [M]. New York: Wiley, 1986.
    [53] L. Evans. Partial Differential Equations [M]. American Mathematical Society, 1998.
    [54] L. Evans, D. Gomes. Effective Hamiltonians and averaging for Hamiltonian dynamics. I [J]. Arch. Ration. Mech. Anal., 2001, 157: 1-33.
    [55] L. Evans, D. Gomes. Effective Hamiltonians and averaging for Hamiltonian dynamics. II [J]. Arch. Ration. Mech. Anal., 2002, 161: 271-305.
    [56] L. Evans. Some new PDE methods for weak KAM theory [J]. Calc. Var. Partial Differential Equations, 2003, 17: 159-177.
    [57] L. Evans. Towards a quantum analog of weak KAM theory [J]. Comm. Math. Phys., 2004, 244: 311-334.
    [58] L. Evans. A survey of partial differential equations methods in weak KAM theory [J]. Comm. Pure Appl. Math., 2004, 57: 445-480.
    [59] L. Evans. Weak KAM theory and partial differential equations. Calculus of variations and nonlinear partial differential equations. Lecture Notes in Math., 1927: 123-154. Berlin: Springer, 2008.
    [60] A. Fathi. Th(?)or(?)me KAM faible et th(?)orie de Mather sur les syst(?)mes lagrangiens [J]. C. R. Acad. Sci. Paris S(?)r. Ⅰ Math., 1997, 324: 1043-1046.
    [61] A. Fathi. Solutions KAM faibles conjuguees et barrieres de Peierls [J]. C. R. Acad. Sci. Paris S(?)r. Ⅰ Math., 1997, 325: 649-652.
    [62] A. Fathi. Orbites h(?)t(?)roclines et ensemble de Peierls [J]. C. R. Acad. Sci. Paris S(?)r. ⅠMath., 1998, 326: 1213-1216.
    [63] A. Fathi. Sur la convergence du semi-groupe de Lax-Oleinik [J]. C. R. Acad. Sci. Paris S(?)r. ⅠMath., 1998, 327: 267-270.
    [64] A. Fathi. Weak Kam Theorem and Lagrangian Dynamics [M]. Cambridge: Cambridge Univ. Press, 2007.
    [65] W. Fleming, H. Soner. Controlled Markov Processes and Viscosity Solutions [M]. New York: Springer-Verlag, 1993.
    [66] A. Floer. Morse theory for Lagrangian intersections [J]. J. Differential Geom., 1988, 28: 513-547.
    [67] A. Floer. Symplectic fixed points and holomorphic spheres [J]. Comm. Math. Phys., 1989, 120: 575-611.
    [68] D. Franco, J. Nieto. First-order impulsive ordinary differential equations with anti-periodic and nonlinear boundary conditions [J]. Nonlinear Anal., 2000, 42: 163-173.
    [69] J. Franks. Generalizations of the Poincare-Birkhoff theorem [J]. Ann. of Math., 1988, 128: 139-151.
    [70] M. Giaquinta, E. Guisti. On the regularity of the minima of variational integrals [J]. Acta Math., 1982, 148: 31-46.
    [71] H. Goldstein. Classical Mechanics [M]. Addison-Wesley, 1980.
    [72] C. Gol(?). A new proof of the Aubry-Mather's theorem [J]. Math. Z., 1992, 210: 441-448.
    [73] D. Gomes. Viscosity solutions of Hamilton-Jacobi equations, and asymptotics for Hamiltonian systems [J]. Calc. Var. Partial Differential Equations, 2002, 14: 345-357.
    [74] D. Gomes. A stochastic analogue of Aubry-Mather theory [J]. Nonlinearity, 2002, 15: 581-603.
    [75] D. Gomes. Regularity theory for Hamilton-Jacobi equations [J]. J. Differential Equations, 2003, 187: 359-374.
    [76] D. Gomes. Perturbation theory for viscosity solutions of Hamilton-Jacobi equations and stability of Aubry-Mather sets [J]. SIAM J. Math. Anal., 2003, 35: 135-147.
    [77] D. Gomes. Viscosity solution methods and the discrete Aubry-Mather problem [J]. Discrete Contin. Dyn. Syst., 2005, 13: 103-116.
    [78] S. Graff. On the continuation of hyperbolic invariant tori for Hamiltonian systems [J]. J. Differential Equations, 1974, 15: 1-60.
    [79] G. Hall. A topological version of a theorem of Mather on twist maps [J]. Ergodic Theory Dynam. Systems, 1984, 4: 585-603.
    [80] G. Hall. Some problems on dynamics of annulus maps [J]. Contemp. Math., 1988, 81: 135-152.
    [81] M. Herman. Sur les courbes invariantes par les diffeomorphismes de l'anneau. Vol. 1 [J]. (French) [On the curves invariant under diffeomorphisms of the annulus. Vol. 1] With an appendix by Albert Fathi. With an English summary. Asterisque, 103-104. Societe Mathematique de France, Paris. 1983, pp. i+221.
    [82] V. Imaikin, A. Komech, H. Spohn. Soliton-type asymptotics and scattering for a charge coupled to the Maxwell field [J]. Russian J. Math. Phys., 2002. 9: 428-436.
    [83] V. Imaikin. A. Komech, P. Markowich. Scattering of solitons of the Klein-Gordon equation coupled to a classical particle [J]. J. Math. Phys., 2003, 44: 1202-1217.
    [84] V. Imaikin, A. Komech, H. Spohn. Scattering theory for a particle coupled to a scalar field [J]. Discrete Contin. Dyn. Syst., 2003, 10: 387-396.
    [85] V. Imaikin, A. Komech, H. Spohn. Rotating charge coupled to the Maxwell field: scattering theory and adiabatic limit [J]. Monatsh. Math., 2004, 142: 143-156.
    [86] V. Imaikin, A. Komech, N. Mauser. Soliton-type asymptotics for the coupled Maxwell-Lorentz equations [J]. Ann. Inst. Poincare Phys. Theor., 2004, 5: 1117-1135.
    [87] R. Iturriaga, H. Sanchez-Morgado. On the stochastic Aubry-Mather theory [J]. Bol. Soc. Mat. Mexicana, 2005, 11: 91-99.
    [88] A. Katok. Some remarks of Birkhoff and Mather twist map theorems [J]. Ergodic Theory Dynam. Systems, 1982, 2: 185-194.
    [89] H. Koch, R. de la Llave, C. Radin. Aubry-Mather theory for functions on lattices [J]. Discrete Contin. Dyn. Syst., 1997, 3: 135-151.
    [90] A. Kolmogorov. On the conservation of conditionally periodic motions for a small chang in Hamilton's function [J]. Dokl. Akad. Nauk USSR, 1954, 98: 527-530.
    [91] A. Komech, H. Spohn, M. Kunze. Long-time asymptotics for a classical particle interacting with a scalar wave field [J]. Comm. Partial Differential Equations, 1997, 22: 307-335.
    [92] A. Komech, H. Spohn. Soliton-like asymptotics for a classical particle interacting with a scalar wave field [J]. Nonlinear Anal., 1998, 33: 13-24.
    [93] A. Komech, H. Spohn. Long-time asymptotics for the coupled Maxwell-Lorentz equations [J]. Comm. Partial Differential Equations, 2000, 25: 559-584.
    [94] A. Komech. On Global Attractors of Hamilton Nonlinear Wave Equations. Lecture Notes of the Max Planck Institute for Mathematics in the Sciences, LN 24/2005, Leipzig, 2005.
    [95] N. Kryloff, N. Bogoliouboff. La theorie generale de la mesure dans son application a l'etude des systemes dynamiques de la mecanique non lineaire [J]. Ann. of Math., 1937, 38: 65-113.
    [96] N. Krylov. Nonlinear Elliptic and Parabolic Equations of the Second Order [M]. Dordrecht: D. Reidel Publishing Co., 1987.
    [97] S. Kuksin. Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum [J]. Funct. Anal. Appl., 1987, 21: 192-205.
    [98] Y. Li, Z. Lin. A constructive proof of the Poincare-Birkhoff theorem [J]. Trans. Amer. Math. Soc, 1995, 347: 2111-2126.
    [99] Y. Li, Y. Yi. A quasi-periodic Poincare's theorem [J]. Math. Ann., 2003. 326: 649-690.
    [100] P. Lions. Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations. II. Viscosity solutions and uniqueness [J]. Comm. Partial Differential Equations, 1983, 8: 1229-1276.
    [101] P. Lions, G. Papanicolaou, S. Varadhan. Homogenization of Hamilton-Jacobi equations. Unpublished, circa, 1988.
    [102] R. Ma(?). On the minimizing measures of Lagrangian dynamical systems [J]. Nonlinearity, 1992, 5: 623-638.
    [103] R. Marie. Generic properties and problems of minimizing measures of Lagrangian systems [J]. Nonlinearity, 1996, 9: 273-310.
    [104] R. Ma(?). Lagrangian flows: the dynamics of globally minimizing orbits [J]. Bol. Soc. Brasil. Mat. (N.S.), 1997, 28: 141-153.
    [105] P. Marcellini. Nonconvex integrals of the Calculus of Variations. Methods of nonconvex analysis. Lecture Notes in Math., 1446: 16-57. Berlin: Springer. 1990.
    [106] D. Massart. On Aubry sets and Mather's action functional [J]. Israel J. Math., 2003, 134: 157-171.
    [107] J. Mather. Existence of quasiperiodic orbits for twist homeomorphisms of the annulus [J]. Topology, 1982, 21: 457-467.
    [108] J. Mather. Nonexistence of invariant circles [J]. Ergodic Theory Dynam. Systems, 1984, 4: 301-309.
    [109] J. Mather. A criterion for the nonexistence of invariant circles [J]. Inst. Hautes (?)tudes Sci. Publ. Math., 1986, 63: 153-204.
    [110] J. Mather. Destruction of invariant circles [J]. Ergodic Theory Dynam. Systems, 1988, Charles Conley Memorial Issue, 8~*: 199-214.
    [111] J. Mather. Minimal measures [J]. Comment. Math. Helv., 1989, 64: 375-394.
    [112] J. Mather. Differentiability of the minimal average action as a function of the rotation number [J]. Bol. Soc. Bras. Math., 1990, 21: 59-70.
    [113] J. Mather. Action minimizing invariant measures for positive definite Lagrangian systems [J]. Math. Z., 1991, 207: 169-207.
    [114] J. Mather. Variational construction of orbits of twist diffeomorphisms [J]. J. Amer. Math. Soc, 1991, 4: 207-263.
    [115] J. Mather. Variational construction of connecting orbits [J]. Ann. Inst. Fourier (Grenoble), 1993, 43: 1349-1386.
    [116] J. Mather, G. Forni. Action minimizing orbits in Hamiltonian systems. Transition to chaos in classical and quantum mechanics. Lecture Notes in Math., 1589: 92-186. Berlin: Springer, 1994.
    [117] J. Mather. Personal communication, 2001.
    [118] J. Mather. A property of compact, connected, laminated subsets of manifolds [J]. Ergodic Theory Dynam. Systems, 2002, 22: 1507-1520.
    [119] J. Mather. Total disconnectedness of the quotient Aubry set in low dimensions [J]. Comm. Pure Appl. Math., 2003, 56: 1178-1183.
    [120] J. Mather. Arnold diffusion. Ⅰ. Announcement of results [J]. Sovrem. Mat. Fundam. Napravl., 2003, 2: 116-130.
    [121] J. Mather. Arnold diffusion. Ⅱ. Unpublished. 2007.
    [122] J. Mather. Examples of Aubry sets [J]. Ergodic Theory Dynam. Systems, 2004, 24: 1667-1723.
    [123] V. Melnikov. A certain family of conditionally periodic solutions of a Hamiltonian system [J]. Dokl. Akad. Nauk SSSR, 1968, 181: 546-549.
    [124] J. Moser. On invariant curves of area preserving mapping of an annulus [J]. Nachr. Akad. Wiss. Gott. Math. Phys. K1. Ⅱ,1962, 1-20.
    [125] J. Moser. Minimal solutions of variational problems on a torus [J]. Ann. Inst. H. Poincare Anal. Non Lineaire, 1986, 3: 229-272.
    [126] J. Moser. Recent developments in the theory of Hamiltonian systems [J]. SIAM Rev., 1986, 28: 459-485.
    [127] J. Moser. Monotone twist mappings and the calculus of variations [J]. Ergodic Theory Dynam. Systems, 1986, 6: 401-413.
    [128] J. Moser. Selected Chapters in the Calculus of Variations [M]. Lecture notes by Oliver Knill. Lectures in Mathematics ETH Zurich. Basel: Birkhauser Verlag, 2003.
    [129] M. Nakao. Existence of an anti-periodic solution for the quasilinear wave equation with viscosity [J]. J. Math. Anal. Appl.. 1996, 204: 754-764.
    [130] H. Okochi. On the existence of anti-periodic solutions to nonlinear parabolic equations in noncylindrical domains [J]. Nonlinear Anal.. 1990, 14: 771-783.
    [131] I. Percival. A variational principle for invariant tori of fixed frequency [J]. J. Phys. A, 1979, 12: L57-L60.
    [132] I. Percival. Variational principles for invariant tori and Cantori. Nonlinear dynamics and the beam-beam interaction (Sympos., Brookhaven Nat. Lab., New York, 1979). AIP Conf. Proc. 57: 302-310. Amer. Inst. Physics. New York, 1980.
    [133] E. Picard. Sur l'application des methodes d'approximations successives a l'etude de certaines equations differentielles ordinaires [J]. J. Math., 1893, 9: 217-271.
    [134] J. Poschel. On elliptic lower-dimensional tori in Hamiltonian systems [J]. Math. Z., 1989, 202: 559-608.
    [135] P. Rabinowitz, E. Stredulinsky. Mixed states for an Allen-Cahn type equation [J]. Comm. Pure Appl. Math.. 2003, 56: 1078-1134.
    [136] P. Rabinowitz, E. Stredulinsky. On some results of Moser and of Bangert [J]. Ann. Inst. H. Poincare Anal. Non Lineaire, 2004, 21: 673-688.
    [137] R. Rockafellar. Extension of Fenchel's duality theorem for convex functions [J]. Duke Math. J., 1966, 33: 81-89.
    [138] R. Rockafellar. Convex Analysis [M]. Princeton: Princeton University Press, 1970.
    [139] M. Rudnev, S. Wiggins. KAM theory near multiplicity one resonant surfaces in perturbations of A-priori stable Hamiltonian systems [J]. J. Nonlinear. Sci., 1997, 7: 177-209.
    [140] L. Schiff. Quantum Mechanics [M]. McGraw-Hill, NY, 1955.
    [141] S. Schwartzman. Asymptotic cycles [J]. Ann. of Math., 1957, 66: 270-284.
    [142] A. Sorrentino. On the Structure of Action-Minimizing Sets for Lagrangian Systems [D]. Princeton: Princeton University, 2008.
    [143] A. Sorrentino. On the total disconnectedness of the quotient Aubry set [J]. Ergodic Theory Dynam. Systems, 2008, 28: 267-290.
    [144] P. Souplet. Optimal uniqueness condition for the antiperiodic solutions of some nonlinear parabolic equations [J]. Nonlinear Anal., 1998, 32: 279-286.
    [145] H. Spohn. Dynamics of Charged Particles and Their Radiation Field [M]. Cambridge: Cambridge Univ. Press, 2004.
    [146] D. Treschev. Mechanism for destroying resonance tori of Hamiltonian systems [J]. Mat. USSR Sb., 1989, 180: 1325-1346.
    [147] P. Walters. An Introduction to Ergodic Theory [M]. New York: Springer-Verlag, 1982.
    [148] K. Wang. Action minimizing stochastic invariant measures for a class of Lagrangian systems [J]. Comm. Pure Appl. Anal., 2008, 7: 1211-1223.
    [149] K. Wang. A new existence result for nonlinear first-order anti-periodic boundary value problems [J]. Appl. Math. Lett., 2008, 21: 1149-1154.
    [150] K. Wang, Y. Li. A note on existence of (anti-)periodic and heteroclinic solutions for a class of second-order odes [J]. Nonlinear Anal., 2009, 70: 1711-1724.
    [151] K. Wang, Y. Li. Existence and monotonicity property of minimizers of a nonconvex variational problem with a second-order Lagrangian [J]. Discrete Contin. Dyn. Syst., in press.
    [152] K. Wang, Y. Li. Lower dimensional action minimizing measures for a class of nearly integrable Hamiltonian systems. Submitted.
    [153] Z. Xia. Arnold diffusion: a variational construction. Proceedings of the International Congress of Mathematicians, vol. II, 1998 [C]. Berlin: Doc. Math., number Extra vol. II, 867-877 (electronic), 1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700