滑坡灾害风险评价及其治理决策方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滑坡灾害是自然环境的一部分,是仅次于地震灾害和洪水灾害的一种严重自然灾害。滑坡对人类社会发展和经济建设的危害是世界性的,滑坡灾害给世界各国造成的经济损失估计每年可达数十亿美元,防灾减灾费用十分惊人。此外,工程不能及时发挥效益或使用中断,其间接损失更大。在我国因70%地域为山区,故滑坡灾害发生密度大,频率高,我国已成为世界上受滑坡危害最严重的国家之一,每年因滑坡灾害造成的损失数以亿计,给国家和人民生命财产带来巨大损失,产生严重社会影响。面对严重滑坡灾害,为合理确定并评价滑坡灾害对生命财产的影响尺度,需应用风险评价理论方法;为采用合理经济有效的治理工程方案,需应用决策理论方法。目前,在滑坡灾害风险评价及其治理决策理论方法研究方面的学者不多,其理论方法还远未建立起来,国内在这一领域的研究尤其薄弱,在有的研究方面几乎还是空白。为此,本论文进行了滑坡灾害风险评价及其治理决策理论方法研究,其究成果不仅具有的重要理论价值,而且极具现实意义。
     本论文研究以系统工程理论、经济学原理、风险评价理论、可靠性理论和决策理论等为理论基础,对滑坡灾害风险评价及其治理决策理论方法进行了研究,主要取得如下的研究成果:
     (1)通过国内外大量的文献研究,分析了滑坡灾害风险评价及其治理决策理论方法的研究进展、研究成果、存在的问题以及发展方向,在此基础上确定了本论文的研究方向和研究内容。
     (2)运用系统工程的思想,建立了滑坡灾害风险评价的系统分析方法。该方法从系统理论的观点出发,提出了滑坡灾害复杂大系统的概念,并以这一概念为基础,探讨了滑坡灾害风险特征及滑坡灾害风险评价的基本内容,系统地阐述了以滑坡灾害危险性评价、滑坡灾害承灾体易损性评价和滑坡灾害破坏损失评价等为核心内容的滑坡灾害风险评价的系统理论框架。
     (3)以可靠性理论为基础,建立了基于Bishop法的滑坡灾害危险性概率的计算方法。系统地分析了滑坡灾害易损性构成、评价内容与方法、滑坡灾害承灾体类型及受害方式、滑坡灾害承灾体价值和承灾体损毁等级划分及价值损失率的确定。在系统分析滑坡灾害破坏损失构成及滑坡灾害直接经济损失评价方法的基础上,初步建立了滑坡灾害间接损失评价的投入产出法。在总结国内外文献资料研究基础上,分析了滑坡灾害的可接受风险水平,给出了单个滑坡灾害可接受失稳风险准则,汇总了部分国家和地区的年平均滑坡灾害死亡人数和由于滑坡造成人员死亡的平均年概率,这些对于确定滑坡灾害的风险水平是有一定的参考价值的。建立了滑坡灾害治理工程经济合理性评价的费用效益分析方法。
     (4)针对目前滑坡灾害破坏损失评价研究还没有涉及滑坡次生灾害破坏损失评价方面的研究,建立了滑坡次生灾害破坏损失的评价模型与方法。应用故
    
    武汉理工大学博士学位论文
    障树分析法(曰汰)和事件树分析法(ETA)相结合的因果图方法对滑坡次生灾
    害系统作了可靠性分析,由此对滑坡次生灾害损失进行评价预测。
     (5)首先运用系统分析的方法,建立了滑坡灾害破坏损失综合评价指标体
    系,然后运用模糊数学理论,建立了滑坡灾害破坏损失多级综合模糊评价模型。
    并通过实例详细分析了滑坡灾害破坏损失综合评价模型的应用。
     (6)滑坡灾害治理工程是一个复杂系统工程,治理方案的决策受到技术、
    经济、环境、风险以及专家与决策者的个人素质等许多因素的影响。为此通过
    系统分析,建立了滑坡灾害治理方案优化决策的评价指标体系。
     (7)根据层次分析法的基本原理,建立了滑坡灾害治理方案决策的层次分
    析法(S mM~AHP法)。并以板岩山危岩体治理为例,建立了板山危岩体治理方
    案评价层次结构模型,其分析结果为板岩山危体治理实施提供了科学的决策依
    据。
     (8)利用最优传递矩阵对常规的层次分析法进行改进,建立了滑坡灾害治
    理方案决策的改进层次分析法(STDM-IA圣IP法),该方法求得的判断矩阵自然
    满足一致性要求,不需要进行一致性检验。以黄石二中滑坡体治理为例,进行
    了实例研究。
     (9)针对滑坡灾害治理方案决策评价指标的模糊性问题,建立了基于嫡权
    的滑坡灾害治理方案决策的模糊层次分析方法(S TDM~FAI硕P法),该方法通过
    两两指标元素相比较的技术,采用三角模糊数来建立判断矩阵,改善了常规层
    次分析方法所给出的判断矩阵的不平衡问题。根据水平截集和乐观指标,进行
    模糊区间运算,从而得出嫡权,再根据嫡权的大小对滑坡灾害治理方案进行评
    价决策。以一滑坡体的治理方案评价为例,详细讨论了该方法的应用。
     (10)针对不同专家决策者对滑坡灾害治理方案有明显的偏好和决策属性
    指标权重信息不能完全确知问题。建立了一种基于相似度的对方案有偏好的三
    角模糊数型滑坡灾害治理方案多属性决策方法(s TDM一MADM法)。该方法首
    先建立一个线性规划模型,通过求解该模型获得属性权重,然后,采用三角模
    糊数来建立判断矩阵,对滑坡灾害治理方案进行优化决策。以一滑坡灾害的治
    理决策为例,进行了实例研究。
     (11)由于滑坡灾害的成灾条件十分复杂,并非任何一种方法都可
Landslide hazard is a serious natural hazard next only to earthquake and floodwater. It has brought about great losses to the economic and societal development worldwide. Each year it causes a loss up to billions of dollars in the whole world. A striking amount of money has been spent on the prevention and redress of the landslide hazard and much more losses have been incurred indirectly therefore. In China, 70% of the area is covered by mountains where landslide hazard happens frequently and densely. China is among those countries stricken most by this hazard. This hazard gives rise to loss with a total value of hundreds of millions yuan and great damages to the country and people's lives and properties. In order to measure the influence of hazard on life and property, a risk evaluation theory needs to be applied to. And a decision theory is necessary to design an economical and effective treatment scheme. At present, only few scholars have studied on the landslide hazard risk evaluation and treatment decis
    ion theory. The relevant theory is far from perfect. In this article, the author makes research on risk evaluation and optimal decision-making of treatment schemes of landslide hazard to reduce loss and expenditure in dealing with this hazard. The research result is of both theoretical and practical significance.
    Based on system engineering theory, principles of economics, risk evaluation theory, reliability theory, and decision-making theory, this article studies the risk evaluation and treatment decision-making of landslide hazard. The main research findings are as follows:
    (1) Based on study of the relevant literature at home and abroad, the author analyzes the research development, results, problems, and trends in this field and set his own research direction and scope accordingly.
    (2) From the viewpoint of systems engineering theory, the concept of large complex system of landslide hazards is put forward, on which is based to investigate the characteristics and fundamental contents about the risk analysis for landslide hazards. The hazard analysis of landslides and the vulnerability analysis of landslide hazards affected body as well as the loss evaluation of landslide hazards taken as the key contents are systematically described.
    (3) On the basis of reliability theory, a Bishop-based computational method for appraisal of hazard potentiality is adopted. The author analyzes the vulnerability composition, evaluation index and method, type and value of hazards-affected body, way and scale of damage on the body and ratio of value loss. After systematic study of composition of hazard damage and direct loss evaluation method, an input-output method of the indirect loss evaluation is generally proposed. Based on conclusion of available literature, an acceptable risk level is analyzed and acceptable unstable risk standard in one single hazard is set down. An average yearly casualty number in some countries and areas and yearly probability of casualty are gathered, which serve as good references for confirmation of the hazard risk level. One analysis method for expenditure efficiency of a treatment scheme is also put forward.
    (4) Since till now the damage and loss evaluation of secondary disaster has not been touched upon, the author proposes an evaluation model by making use of causal
    
    
    
    diagram combining the FTA and ETA method to make reliability analysis of the secondary disaster system and forecasting of the losses thus arising from.
    (5) The system analysis method is adopted and an index system of comprehensive evaluation of the damage is established. Then a multi-level comprehensive evaluation model based on fuzzy mathematics theory is set up. What's more, the application of this model is further expounded with example.
    (6) The treatment engineering of landslide hazard is a complex systems engineering. The selection of its treatment schemes depends on such factors as technology, economics, environment, and risk. After systematic analysis an evaluation in
引文
[1] 茹继平.土木基础设施减灾基础研究进展与趋势[J].土木工程学报,2000,33(6):1-5
    [2] 殷坤龙,朱良峰.滑坡灾害空间区划与GIS应用研究[J].地学前缘,2001,8(2):279-2830
    [3] 沈芳,黄润秋,苗放,等.地理信息系统与地质环境评价[J].地质灾害与环境保护,2000,11(1):6-10
    [4] 朱良峰,殷坤龙,张梁等.GIS支持下的地质灾害风险分析[J].长江科学院院报,2002,54(5):42-45
    [5] 黄崇福.自然灾害风险分析的基本原理[J].自然灾害学报,1999,8(2):21-30
    [6] 黄崇福.用计算机仿真技术检验自然灾害模糊风险模型[J].自然灾害学报,2002,11(1):44-51
    [7] 楼宝棠.中国古今地震灾情总汇[M].北京:地震出版社,1996
    [8] 黄崇福,王家鼎.模糊信息优化处理技术及其应用[M].北京:北京航空航天大学出版社,1995
    [9] 谭万沛等.暴雨泥石流滑坡的区域预测与预报[M].成都:四川科学技术出版社,1994
    [10] 黄崇福.自然灾害风险分析的基本原理[J].自然灾害学报,1999,8(2):21-30
    [11] 李焯芬,汪敏.港渝两地滑坡灾害对比研究.岩石力学与工程学报[J].2000,19(4):312-315
    [12] 张梁,张业成.关于地质灾害涵义及其分类分级的探讨[J].地质灾害与防治学报,1994,5(2)
    [13] 郭仲伟.风险的辨识—风险分析与决策讲座(一)[J].系统工程理论与实践,1987,7(1):72-77
    [14] 黄崇福,刘新立,周国贤等.以历史灾情资料为依据的农业自然灾害风险评估方法[J].自然灾害学报,1998,7(2):1-9
    [15] 陈来安,陆军令.系统工程原理与应用[M].北京:学术期刊出版社,1988
    [16] 刘希林.区域泥石流风险评价研究[J].自然灾害学报,2000,9(1):54-61
    [17] 刘传正.长江三峡库区的地质灾害及其监测预警[J].科技导报,2000,(11):60-63
    [18] 刘希林.泥石流危险度判定的研究[J].灾害学,1988,(3):10-15
    [19] 张业成,云南省东川市泥石流灾害风险分析[J].地质灾害与环境保护,1995,6(1):25-34
    [20] 吕发钦等.资产评估常用数据与参数手册,北京:北京科学技术出版社,1993
    [21] 陈浩光,杨惠鹄,陈庆华.模糊计划中处理不确定性的模糊评判模型与方法[J].计算机工程与设计,2000,21(2):44-48
    [22] 李若刚,王国祥.关于网络计划模型中的时间不确定性的讨论[J].系统工程与电子技术,1997,19(8):40-45
    [23] 胡志根,肖焕雄,向超群.模糊网络计划及其工期实现的可能性研究[J].武汉水利电力大学学报,1999,32(5):6-9
    [24] WilliamJ.P., ArthurA.A.自然灾害风险评价与减灾对策[M].北京:地震出版社,1993
    [25] 张业成,张梁.论地质灾害风险评价[J].地质灾害与环境保护,1996,7(3):1-6
    
    
    [26] 任鲁川.区域自然灾害风险分析研究进展[J].地球科学进展,1999,14(3):242-246
    [27] 向喜琼,黄润秋.地质灾害风险评价与风险管理[J].地质灾害与环境保护,2000,11(1):38-41
    [28] 刘希林,唐川.泥石流危险性评价[M].北京:科学出版社,1995
    [29] 钟敦伦,谢洪,韦方强,陈精日,李泳,刘洪江.四川与重庆泥石流分布及危险度区划图(说明书)[M].成都:成都地图出版社,1997
    [30] 杜榕桓,康志成,陈循谦,朱平一.云南小江泥石流综合考察与防治规划研究[M].重庆:科学技术文献出版社重庆分社,1987
    [31] 吴世伟 水工结构风险分析[J] 河海大学科技进展,1991,(12):29-33
    [32] 章志强,王卓甫,杨高升.长江南京段堤防工程失稳风险分析[J] 河海大学学报,1999,(2):17-21
    [33] 郑锋,吴世伟.土坝稳定可靠度分析方法初探[A] 全国第三届工程结构可靠性学术会议论文集[C] 南京:河海大学出版社,1992
    [34] 张梁,张业成,罗元华等.地质灾害灾情评估理论与实践,北京:地质出版社,1998
    [35] 吕发钦等.资产评估常用数据与参数手册,北京:北京科学技术出版社,1993
    [36] BowersNL.风险理论[M].上海:上海科学技术出版社,1995
    [37] 孙桂华.洪水风险分析制图实用指南[M].北京:水利电力出版社,1992
    [38] 周寅康.洪水灾害风险评价[J].大自然探索,1995,14(2):48-52
    [39] 罗祖德.防灾减灾预测[J].科技导报,1997,117(3):53-54
    [40] 国家科委全国重大自然灾害综合研究组.中国重大自然灾害及减灾对策(总论)[M].中国自然灾害丛书.北京:科学出版社,1994
    [41] 闵赛.洪险度及其灾害学意义[J].灾害学,1996,11(2):80-85
    [42] 魏一鸣,金菊良.洪水灾害研究进展[J].大自然探索,1998,17(3):1-6
    [43] 汪寿阳.关于建立灾害管理学的思考[J].国际技术经济研究,1999,2(2):9-12
    [44] 虞立红.国内外自然灾害研究概况[M].北京师范大学地理系编.区域·环境·自然灾害地理研究.北京:科学出版社,1990,115-120
    [45] 郑远长.防灾减灾的基础研究及应用研究进展概况[J].自然灾害学报,1996,5(4):1-5
    [46] 魏一鸣,金菊良.洪水灾害评估体系研究[J].灾害学,1997,12(3):1-5
    [47] 魏一鸣.洪水灾害研究的复杂性理论[J].自然杂志,1999,21(3):139-142
    [48] 魏一鸣,杨存建.洪水灾害分析与评估的综合集成方法[J].水科学进展,1999,10(1):25-30
    [49] 杨存建,魏一鸣.基于星载雷达的洪水灾害淹没范围获取方法探讨[J].自然灾害学报,1998,7(3):45-50
    [50] 金菊良,魏一鸣.基于遗传算法的神经网络及其在洪水灾害承灾体易损性建模中的应用[J].自然灾害学报,1998,7(2):653-660
    [51] 金菊良,魏一鸣.基于遗传算法的洪水灾害灾情评估模型探讨[J].灾害学,1998,13(2):6-11
    [52] 成思危.复杂科学与系统工程[J].管理科学学报,1999,2(2):1-7
    
    
    [53] 张象枢,魏国印.环境经济学[M].北京:中国环境科学出版社,1994
    [54] 历以宁,章铮.环境经济学[M].北京:中国计划出版社,1995
    [55] 史培军.再论灾害研究的理论与实践[J].自然灾害学报,1996,5(4):6-17
    [56] 史培军.论灾害研究的理论与实践[J].南京大学学报,灾害研究专集,1991,11:37-42
    [57] 张兰生,史培军.我国农业自然灾害灾情分析[J].北京师范大学学报,1990,3:94-100
    [58] 刘立新.区域水灾风险评估的理论与实践[M].北京:北京师范大学学出版社,2000
    [59] 台风灾害的模糊数学评价[J].热带气象学抱,1999,15(4):305-311
    [60] 黄崇福,白海岭.模糊直方图的概念及其在灾害风险分析中的应用[J].工程数学学报,2000,17(2):71-76
    [61] 王敬爱,史培军.中国沿海自然灾害及减灾对策[J].北京师范大学学报,1995,(3):104-109
    [62] 马宗晋.中国减灾重大问题研究[M].北京:地震出版社,1992
    [63] 黄崇福.城市自然灾害风险评价模型[J].自然灾害学报,1994,3(1):16-19
    [64] 张剑光.区域社会经济易损性综合评价研究[J].灾害学,1993,8(4):6-9
    [65] 苏经宇.泥石流危险等级评价的模糊数学方法[J].自然灾害学报,1993,2(2):11-13
    [66] 刘希林.泥石流危险度判定研究[J].灾害学,1988,3(3):8-11
    [67] 梅启智等.系统可靠性工程基础.北京:科学出版社,1987
    [68] 夏元友,朱瑞赓.病害边坡治理方案选择的智能辅助决策系统[J].岩石力学与工程学报,1998;17(4):453-458
    [69] 夏元友,朱瑞赓.不稳定边坡治理方案的多层次模糊群决策[J].自然灾害学报,1998;7(1):60-65
    [70] 夏元友,朱瑞赓.岩质边坡稳定性多人多层次模糊综合评价系统研究[J].工程地质学报,1999;7(1):46-53
    [71] 复元友.用层次分析法优选边坡治理方案[J].中国地质灾害与防治学报,1997;8(3):1-6
    [72] 朱瑞赓,夏元友.病害边坡防治技术的研究现状及发展展望[J].武汉工业大学学报,1998;20(特刊):130-133.
    [73] 谢全敏,夏元友,朱瑞赓.边坡治理方案评判体系的层次结构模型及其应用[J].岩石力学与工程学报,2001;20(增1):1065-1069
    [74] 谢全敏,夏元友,朱瑞赓.模糊综合评价模型在危岩滑坡体治理中的应用[J].化工矿物与加工 2001:30(7):18-20
    [75] 谢全敏,复元友.边坡治理决策的改进层次结构模型及其应用[J].岩土工程学报,2002;24(1):86-88
    [76] 谢全敏,夏元友.岩体边坡治理决策的模糊层次分析方法研究.2003;22(7)
    [77] 谢全敏,夏元友.边坡治理多层次多目标优化决策方法研究[J].武汉理工大学学报,2002;24(10):21-24
    [78] Schuster, R.L Landslide Hazard Management Experience in the United States. Proceedings of the Inter nationalConferenceonSlopeStability, pp253~263, 1991
    
    
    [79] Brand, E.W. Landslides in Hong Kong. Proceedings of the Eighth Southeast Asian Geotechnical Conference, pp107~122, 1985
    [80] WEIYM, JINJL. The general system for flood disaster evaluation and analysis[C]. Proceedings of IWGIS'97. 1997, 7:841-947
    [81] Kolluru R V. Risk assessment and management handbook for environmental, health and safety professionals[M]. McGraw-Hill, New York, 1996
    [82] Starr C., Rudman R, Whipple C. Philosophical basis for risk analysis[J]. Ann. Rev. Engergy, 1976, (1): 629-661
    [83] Starr C. Risk and Risk acceptance by society[R]. Electric Power Res. Inst., Palo Alto. CA, 1977
    [84] Start C, Whipple C. Risk and Risk decisions[J]. Sci., 1998, 208:1114-1119
    [85] Huang C F. Concepts and methods of fuzzy risk analysis[A]. Risk Research and Management Perspective[C]. Proceedings of the First China-Japan Conference on Risk Assessment and Management, November 23-26, 1998, Beijing, International Academic Publishers: 12-23
    [86] Huang C F. Fuzzy risk assessment of urban natural hazards[J]. Fuzzy Sets and Systems, 1996, 83: 271-282
    [87] Anbalagan R. & Singh B. Landslide hazard and risk assessment mapping of mountainous terrains-a case study from kumaun himalaya, India, Engineering geology, 1996, 43: 237-246
    [88] Carra A. Multivariate models for landslide hazard evaluation[J]. Mathematical Geology, 1983, 15(3): 403-426
    [89] CarraA., Cardinali M., Detti R., Guzzetti F. etal. GIS techniques and statistical models in evaluating landslide hazard[J]. Earth surface processes and landforms, 1991, 16: 427-445
    [90] Carra A., Cardinali M. & Guzzetti F. Uncertainty in assessing landslide hazard and risk[J]. ITC Journal, 1992, (2): 172-183
    [91] Einsten H. H. Special lecture: Landslide risk assessment procedure[C]. Proc. 5th Int. Syrup. Landslide, lausanne, 1988, (2): 1075-1090
    [92] Mejia-Nanarro M. & Wohl E. E. Geological hazard and evaluation using GIS: Methodology and model applied to Medellin[J]. Colombia, Bulletin of the association of engineering geologists, 1994, ⅩⅩⅪ(4): 459-481
    [93] Mehretra G S., Sarkar S. & Dharmarraju R. Landslide hazard assessment in Rishikesh-Tehri area, Garhwal Himalaya[C]. Proc. 6th Int. Symp. Landslides, Christchurch, New Zealand, 1992, 2:1001-1007
    [94] Mora S. & Vahrson W. G. Macrozonation methodology for landslide hazard determination[J]. Bulletin of the association of engineering geologists, 1994, ⅩⅩⅪ (1): 49-58
    [95] Vares D. IAEG Commission on landslides[A]. Landslide hazard zonation: a review of principles and practice[C], Paris: UNESCO, 1984
    
    
    [96] Salmon G. M. and Hartford D.N. D. Risk analysis for dam safety(partI)[J]. International Water Power and Dam Construction, March 1995: 42-47
    [97] Salmon G. M. and Hartford D.N.D. Risk analysis for dam safety(partII)[J]. International Water Power and Dam Construction, April 1995: 38-39
    [98] B. Temesgen, M.U. Mohammed. Natural hazard assessment using GIS and remote sensing methods, with particular reference to the landslides in the Wondogenet Area, Ethiopia[J]. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science. 2001.26(9): 665-675
    [99] Conor G. Smyth and Stephen A. Royle. Urban landslide hazards: incidence and causative factors in Niter?i, Rio de Janeiro State, Brazil[J]. Applied Geography.-2000.20(2).-95-118
    [100] Finlay, P.J.; Fell, Robin. Landslides: Risk perception and acceptance[J]. Canadian Geotechnical Journal..1997.34(2): 169-188
    [101] F.C. Dai and C.F. Lee. Frequency-volume relation and prediction of rainfall-induced landslides[J]. Engineering geology.2001.59(3-4): 253-266
    [102] Edward Derbyshire. Geological hazards in loess terrain, with particular reference to the loess regions of China[J]. Earth-science reviews.2001.54(1-3): 231-260
    [103] George A. Kiersch. Development of engineering geology in western United States[J]. Engineering geology.2001.59(1-2): 1-49
    [104] Mandy Lineback Gritzner, W. Andrew Marcus, Richard Aspinall and Stephan G. Custer. Assessing landslide potential using GIS, soil wetness modeling and topographic attributes, Payette River, Idaho[J]. Geomorphology.2001.37(1-2): 149-165
    [105] Fausto Guzzetti. Landslide fatalities and the evaluation of landslide risk in Italy[J]. Engineering geology.2000.58(2): 89-107
    [106] A. Uromeihy, M. R. Mahdavifar. Landslide hazard zonation of the Khorshrostam area, Iran[J]. Bulletin of Engineering Geology and the Environment.2000.58(3): 207-213
    [107] P.J. Finlay, G.R. Mostyn, and R. Fell. Landslide risk assessment: prediction of travel distance[J]. Canadian Geotechnical Journal.1999.36(3): 556-562
    [108] Miles, S.B.; Ho, C.L. Rigorous landslide hazard zonation using Newmark's method and stochastic ground motion simulation[J]. Soil Dynamics and Earthquake Engineering. 1999.18(4): 305-323
    [109] Piyoosh Rautelal and Ramesh Chandra Lakhera. Landslide risk analysis between Girl and Tons Rivers in Himachal Himalaya (India)[J]. ITC Journal/the International Institute for Aerial Survey and Earth Sciences.-2000.2(3-4).-153-160
    [110] A. CARRARA, F. GUZZETFI. Use of GIS Technology in the Prediction and Monitoring of Landslide Hazard[J]. Natural hazards.-1999.20(2-3).-117-135
    [111] John R. Dymond Murray R. Jessen. Computer simulation of shallow landsliding in New Zealand hill country[J]. ITC Journal/the International Institute for Aerial Survey and Earth Sciences.1999.1(2): 122-131
    
    
    [112] Borga, M.; Fontana, G.D.; Da Ros, D.; Marchi, L Shallow landslide hazard assessment using a physically based model and digital elevation data[J]. Environmental Geology. 1998.35(2-3): 81-88
    [113] David Toll. Artificial intelligence application in geotechnical engineering. The Electronic Journal of Geotechnical Engineering, 1996, (1): 1-11
    [114] Ahn B S, Park K S, Han C H, etal. Multi-attribute decision aid under incomplete information and hierarchical structure. European Journal of Operational Research, 2000, 125(2): 431-439
    [115] Kim Y M, Kim J H, Kim S H. Use of multi-attribute decision analysis for designing operations system framework in telecommunications management network. Computers and Operations, 2000, 27(12): 1375-1388
    [116] Kiyotada Hayashi. Multi-criteria aid for agricultural decision using preference relations: methodology and application. Agricultural System, 1998, 58(4): 483-503
    [117] Xie Quanmin, Xia yuanyou. An improved hierarchy decision making model for the treatment of rock mass slope[A]. Proc. of the 2nd Int. Conf. on New Development in Rock Mechanics & Rock engineering. Rinton Press(USA), 2002, 445-448

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700