多孔硅酸钙生物活性陶瓷的生物性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当患者有大面积骨缺损或经历多次骨重建后,自体骨往往不足或不适合。这时,应当考虑具有良好生物相容性、安全性和骨传导性的人工骨替代物。生物活性陶瓷可以与骨自主结合,已经用作骨移植替代物超过30年。现在,应当考虑使用更生物性的方法-具有生物活性和可降解性的“第三代生物医学材料”。作为第三代生物材料之一,近年来硅酸钙陶瓷开始引起研究者的重视。因此,本课题试图探讨硅酸钙陶瓷在生物学领域应用,特别是临床前期动物实验方面的表现。材料特性和制备工艺是骨组织工程用多孔支架的两个最重要的影响因素。传统制备方法的主要缺点是孔道结构的不可控性,尤其是对于微观参数,如孔道尺寸、孔道连通率等是不能控制的。据我们所知,目前为止国际上还没有关于使用快速成型技术制备可控结构多孔硅酸钙陶瓷的相关研究报道。因此,本课题还探索了利用快速成型技术制备具有可控结构多孔硅酸钙陶瓷支架的可能性,并初步探讨其体外、体内生物学表现。
     本课题主要从以下四个方面进行具体研究:
     1.多孔硅酸钙生物陶瓷体内筋膜下植入研究
     采用泡沫浸渍法制备得到多孔硅酸钙(CS)和β-磷酸三钙(β-TCP)生物陶瓷材料,将其植入家兔皮下筋膜组织中以研究其非骨性环境下的生物学行为。分别植入1、2、4周后取材,采用SPECT、Micro-CT、V-G染色、SEM、EDX等方法进行样品的观察分析。研究表明,多孔硅酸钙生物陶瓷植入后未见明显毒性反应、且表面沉积了一层类骨羟基磷灰石层,说明材料具有良好的生物相容性和生物活性。植入4周时SPECT扫描表明,CS和β-TCP的ROI值分别为53.95±15.14和9.81±3.64(p<0.01),表明CS的血管化程度明显高于β-TCP。植入4周时Micro-CT分析表明,CS和β-TCP的残余材料占总体积百分比分别为16.41%±1.96%和30.72%±0.69%(p<0.05),组织学半定量分析也表明,CS的残余面积明显小于β-TCP(p<0.01),说明CS的降解性明显优于β-TCP。与β-磷酸三钙相比较,多孔硅酸钙陶瓷材料在早期血管化、新生组织形成、材料降解性方面均具有明显优势。研究结果显示多孔硅酸钙生物陶瓷有望用作硬组织修复和组织工程用支架材料。
     2.五种多孔生物玻璃/陶瓷支架体内肌肉植入研究
     利用添加造孔剂方法成功制备五种多孔支架,包括β-硅酸钙、α-硅酸钙、β-磷酸三钙、羟基磷灰石和生物玻璃。将其植入兔背部肌肉后4、8、12、16周取材分析。结果表明,所制备硅酸钙陶瓷具有良好的孔隙率和力学性能。通过动物试验,借助图像分析、组织学观察分析、Micro-CT分析、扫描电镜观察和X线能谱分析、反转录PCR检测等方法,发现硅酸钙具有良好体内生物活性,可以沉积羟基磷灰石层;具有良好降解性,明显优于其它三种生物玻璃/陶瓷;没有观察到其具有诱导成骨能力,但可以引起周围组织BMP的mRNA表达。因此,很有希望用作骨缺损修复和骨组织工程研究领域。
     3.多孔硅酸钙生物活性陶瓷修复家兔颅骨缺损的实验研究
     为了进一步研究多孔硅酸钙在体内骨性环境的表现,将制备的多孔β-CS和β-TCP陶瓷植入兔颅骨缺损处。术后4、8、16周取材,利用显微CT、组织学分析等方法评价其生物学表现。结果表明,与β-TCP相比,β-CS在体内具有更快的降解性和更好的骨再生能力。β-CS表面出现TRAP染色阳性的多核细胞,提示细胞介导过程参与β-CS的体内降解。骨组织可以长入β-CS陶瓷的多孔结构内部,同时表面还出现骨样磷灰石层。电镜观察和能谱分析表明,骨与β-CS通过这一磷灰石层相结合。磷灰石层的形成对于与骨的结合可能起关键作用。因此,多孔β-CS陶瓷可以作为具有生物活性和生物可降解性的材料用于硬组织修复和组织工程领域。
     4.基于快速成型技术的可控结构多孔硅酸钙陶瓷支架的制备及体外体内研究
     利用快速成型技术和凝胶铸模工艺,成功制备了可控结构多孔硅酸钙陶瓷。体外模拟体液浸置表明,RP-CS可以体外沉积羟基磷灰石层,具有生物活性。与兔骨髓细胞共培养发现,RP-CS具有良好细胞相容性,可以促进骨髓细胞增殖并向成骨细胞分化。将其植入兔桡骨12mm缺损最长至24周发现,与RP-TCP相比,RP-CS有较高的成骨速率和降解性。此研究为今后可控结构硅酸钙的制备、体内研究提供了可能性。
Autogenous bone is not always available or suitable for large areas of bone defect or in patients who have already had multiple procedures for bone reconstruction. In these cases, artificial bone substitutes can be chosen, with improved biocompatibility, safety, and osteoconductivity. Bioactive ceramics, which can bond with bone spontaneously, have been considered for use as bone graft substitutes for over 30 years. It is time to consider a shift towards a more biologically based method termed as“Third-Generation Biomedical Materials”designed to be both bioactive and resorbable. As one of the most important part of“Third-Generation Biomedical Materials”, calcium silicate has been in study in recent years. This research focused on the in vivo performance of calcium silicate in the biomedical application, especially in the preclinical experiment. Materials and fabrication technologies are critically important in designing temporary scaffolds for bone tissue engineering. The methods manual-based fabrication techniques produce poorly controlled architecture. Especially, the microscopic parameters, such as pore size and interconnectivity, are fully uncontrollable. To our knowledge, no reports about porous calcium silicate scaffolds fabricated by rapid prototyping have been published until now. So, much attention has been paid in this research on fabricating porous calcium silicate scaffolds with controlled architecture and on evaluating the in vitro and in vivo performance of the prepared scaffolds.
     Four main experiments were involved in this research as follows:
     1. In Vivo Study of Porous Calcium Silicate Bioceramic in Subfascial Sites
     Porous calcium silicate (CS) andβ-tricalcium phosphate (β-TCP) bioceramics were obtained by sintering polymeric sponges infiltrated with ceramic slurry. They were implanted in rabbit subfascial sites and the biological characteristics were investigated. At 1, 2 and 4 weeks after implantation, specimens were harvested and analyzed by SPECT, Von Gieson staining, Micro-CT, SEM and EDX. There is no obvious toxic reaction in porous CS ceramics, showing the excellent biocompatibility of CS ceramics. In SPECT scanning, the ROI of CS andβ-TCP is 53.95±15.14 and 9.81±3.64 respectively (p<0.01), showing higher vascularization for CS. In Micro-CT analysis, the percentage of residual material volume fraction of CS andβ-TCP after 4 weeks is 16.41%±1.96% and 30.72%±0.69% respectively (p<0.01). In semi-quantitative analysis of histological observation, the percentage of residual material in CS is obviously lower than that inβ-TCP. These results show that the biodegradation of CS is higher than that ofβ-TCP. The deposition of the bone-like hydroxyapatite layer at 2 week after implantation show good bioactivity of CS in vivo. In conclusion, compared withβ-TCP, porous CS bioceramics have superiority in vascularization, ingrowth of new tissue and degradation in early stage. Therefore, porous CS bioceramics may be potential candidates as biocompatible, bioactive and biodegradable scaffolds for hard tissue repair and tissue engineering applications.
     2. Comprative study of in vivo performance of five porous bioactive glass/ceramics after implantation in muscle
     Five porous scaffolds were fabricated by the addition of porogens, including porousβ-calcium silicate,α-calcium silicate,β-tricalcium phosphate, hydroxyapatite and Bioglass. After 4, 8, 12 and 16 weeks of implantation into muscles of rabbit back, specimens were harvested and analyzed. Characterization of porous ceramic showed that the resulting porous calcium silicates had suitable porosity and mechanical properties. By Micro-CT, Histomorphometric analysis, RT-PCR, SEM and EDX, it was found that the fabricated calcium silicates were bioactive in mucle and can formed hydroxyapatite layer on the surface. Compared with other three porous scaffolds, the porous calcium silicates in the study showed higher in vivo resorption. No bone tissue formation could be observed in all five scaffols. However, the mRNA expression of BMP in calcium silicate group should be emphasized via Reverse-Transcription Polymerase Chain Reaction. Therefore, it is promising for calcium silicate for application on bone defect reconstruction and bone tissue engineering.
     3. Reconstruction of calvarial defect using porous calcium silicate bioactive ceramics in Rabbits
     The porousβ-CS andβ-TCP ceramics were implanted in rabbit calvarial defects and the specimens were harvested after 4, 8 and 16 weeks, and evaluated by Micro-CT and histomorphometric analysis. The Micro-CT and histomorphometric analysis showed that the resorption ofβ-CS was much higher than that ofβ-TCP. The TRAP-positive multinucleated cells were observed on the surface ofβ-CS, suggested a cell-mediated process involved in the degradation ofβ-CS in vivo. The amount of newly formed bone was also measured, and more bone formation was observed withβ-CS as compared withβ-TCP (p<0.05).
     Histological observation demonstrated that newly formed bone tissue grew into the porousβ-CS, and a bone-like apatite layer was identified between the bone tissue andβ-CS materials. This study showed that the porousβ-CS ceramics could stimulate bone regeneration and may be used as bioactive and biodegradable materials for hard tissue repair and tissue engineering applications.
     4. Fabrication, in vitro and in vivo evaluation of a novel calcium silicate scaffolds with controlled architecture by rapid prototyping
     Porous calcium silicate scaffolds with controlled architecture (RP-CS) were fabricated by rapid prototyping and gel-casting. After immersion into SBF, a hydroxyapatite layer was precipitated on the surface of RP-CS, which showed its bioactivity. Co-cultured with rabbit bone marrow cells, RP-CS demonstrated suiiable biocompratibility. Futhermore, MTT tests and ALP activity tests showed the ability of RP-CS on bone marrow cells to osteogenic differentiation. Implanted into 12 mm bone defect of rabbit radius up to 24 weeks, RP-CS showed faster mineral apopsitional rate and higher resorption than RP-TCP. The study demonstrated the possibility of fabricating CS scaffolds with controlled architecture and further in vivo research.
引文
1. L. L. Hench, R. J. Splinter, W. C. Allen, et al. Bonding mechanisms at the interface of ceramic prosthetic materials. Journal of Biomedical Materials Research. 1971 ;5(6): 117-141.
    2. Kokubo T, Ito S, Sakka S, et al. Formation of a high-strength bioactive glass-ceramic in the system MgO-CaO-SiO2-P2O5. Journal of Materials Science. 1986;21(2):536-540.
    3. Kokubo T. Surface chemistry of bioactive glass-ceramics. Journal of Non-Crystalline Solids. 1990;120(1-3):138-151.
    4. Hench LL. Bioceramics: from concept to clinic. Journal of the American Ceramic Society. 1991;74(7):1487-1510.
    5. Makoto O, Hench LL. Formation of calcium phosphate films on silicate glasses. J Non-Cryst Solids. 1980;38-39(Part 2):673-678.
    6. Kokubo T. Bioactive glass ceramics: properties and applications. Biomaterials. 1991;12(2):155-163.
    7. Ebisawa Y, Kokubo T, Ohura K, et al. Bioactivity of CaO-SiO2-based glasses:in vitro evaluation. J Mater Sci Mater Med. 1990;V1(4):239-244.
    8. Ohura K, Nakamura T, Yamamuro T, et al. Bone-bonding ability of P2O5-free CaO-SiO2 glasses. J Biomed Mater Res. 1991;25(3):357-365.
    9. Ohtsuki C, Kokubo T, Yamamuro T. Mechanism of apatite formation on CaO-SiO2-P2O5 glasses in a simulated body fluid. Journal of Non-Crystalline Solids. 1992;143:84-92.
    10. Kokubo T, Kushitani H, Ohtsuki C, et al. Effects of ions dissolved from bioactive glass-ceramic on surface apatite formation. Journal of Materials Science: Materials in Medicine. 1993 ;4(1): 1-4.
    11. Cho SB, Miyaji F, Kokubo T, et al. Apatite-forming ability of silicate ion dissolved from silica gels. Journal of Biomedical Materials Research. 1996;32(3):375-381.
    12. Pereira MM, Hench LL. Mechanisms of hydroxyapatite formation on porous gel-silica substrates. Journal of Sol-Gel Science and Technology. 1996;V7(1):59-68.
    13. Keeting PE, Oursler MJ, Wiegand KE, et al. Zeolite A increases proliferation, differentiation, and transforming growth factor beta production in normal adult human osteoblast-like cells in vitro. J Bone Miner Res. 1992;7(11):1281-1289.
    14. Chou L, Al-Bazie S, Cottrell D, et al. Atomic and Molecular Mechanisms Underlyingthe Osteogenic Effects of Bioglass?Materials. In: LeGeros RZ, LeGeros JPPO, editors. Ceramics in medicine: Bioceramics; 1998 Nov; New York; NY: Singapore; World Scientific; 1998; 1998. p. 265-268.
    15. Xynos ID, Edgar AJ, Buttery LD, et al. Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45 S5 dissolution. J Biomed Mater Res. 2001;55(2):151-157.
    16. De Aza PN, Luklinska ZB, Anseau M, et al. Morphological studies of psedowollastonite for biomedical application. J Microsc. 1996;182(Pt 1):24-31.
    17. Tsuru K, Hayakawa S, Ohtsuki C, et al. Ultrasonic implantation of calcium metasilicate glass particles into PMMA. J Mater Sci Mater Med. 1998;9(8):479-484.
    18. Liu X, Ding C, Chu PK. Mechanism of apatite formation on wollastonite coatings in simlated body fluids. Biomaterials. 2004;25(10):1755-1761.
    19. De Aza PN, Luklinska ZB, Anseau MR, et al. Bioactivity of pseudowollastonite in human saliva. J Dent. 1999;27(2):107-113.
    20. Sarmento C, Luklinska ZB, Brown L, et al. In vitro behavior of osteoblastic cells cultred in the presence of pseudowollaustonite ceramic. J Biomed Mater Res A. 2004;69(2):351-358.
    21. Ni S, Chang J, Chou L, et al. Comparison of osteoblast-like cell responses to calcium silicate and tricalcium phosphate ceramics in vitro. J Biomed Mater Res B. 200;80(1):174-183.
    22. Dufrane D, Delloye C, McKay IJ, et al. Indirect cytotoxicity evaluation of pseudowollastonite. J Mater Sci Mater Med. 2003;14(1):33-38.
    23. De Aza PN, Luklinska ZB, Martinez A, et al. Morphological and structural study of pseudowollastonite implants in bone. J Microsc. 2000;197(Pt 1):60-67.
    24. De Aza PN, Luklinska ZB, Anseau MR, et al. Transmission electron microscopy of the interface between bone and pseudowollastonite implant. J Microsc. 2001;201(1):33-43.
    25. Siriphannon P, Kameshima Y, Yasumori A, et al. Influence of preparation conditions on the microstructure and bioactivity of alpha-CaSiO(3) ceramics: formation of hydroxyapatite in simulated body fluid. J Biomed Mater Res. 2000;52(1):30-39.
    26. Wen SL, Ramdas S, Jefferson DA. Chain-ring interconversion in metasilicates. J Chem Soc Chem Commun. 1981(14):662-663.
    27. Voron'ko YK, Sobol AA, Ushakov SN, et al. Phase Transformations and Melt Structureof Calcium Metasilicate. Inorganic Materials. 2002;V38(8): 825-830.
    28. De Aza PN, Guitian F, Merlos A, et al. Bioceramics-simulated body fluid interfaces: pH and its influence of hydroxyapatite formation. Journal of Materials Science: Materials in Medicine. 1996;V7(7):399-402.
    29. Cortes DA, Medina A, Escobedo JC, et al. Effect of wollastonite ceramics and bioactive glass on the formation of a bonelike apatite layer on a cobalt base alloy. J Biomed Mater Res A. 2004;70(2):341-346.
    30. L. Brown, Z. Luklinska, P. N. De Aza, et al. Mechanism of Osteoinduction by Pseudowollastonite (psW) Ceramic. 7th World Biomaterials Congress; 2004 6 April; Sydney; 2004.
    31. Sahai N, Anseau M. Cyclic silicate active site and stereochemical match for apatite nucleation on pseudowollastonite bioceramic-bone interfaces. Biomaterials. 2005;26(29):5763-5770.
    32. M.R. Anseau , N. Sahai, Swaddle TW. Understanding the action of Silicate-based bioactive ceramics at the osteoblastic level. 190th Meeting of the Belgian Society of Biochemistry and Molecular Biology; 2005 May 27; Brussels; 2005.
    33. Takadama H, Kim HM, Kokubo T, et al. Mechanism of Biomineralization of Apatite on a Sodium Silicate Glass: TEM-EDX Study In Vitro. Chemistry of Materials. 2001;13(3):1108-1113.
    34. Liu X, Ding C, Wang Z. Apatite formed on the surface of plasma-sprayed wollastonite coating immersed in simulated body fluid. Biomaterials. 2001;22(14):2007-2012.
    35. Liu X, Ding C. Plasma sprayed wollastonite/TiO2 composite coatings on titanium alloys. Biomaterials. 2002;23(20):4065-4077.
    36. Liu X, Ding C. Reactivity of plasma-sprayed wollastonite coating in simulated body fluid. J Biomed Mater Res. 2002;59(2):259-264.
    37. Fernandez-Pradas JM, Serra P, Morenza JL, et al. Pulsed laser deposition of pseudowollastonite coatings. Biomaterials. 2002;23(9):2057-2061.
    38. De Aza PN, Fernandez-Pradas JM, Serra P. In vitro bioactivity of laser ablation pseudowollastonite coating. Biomaterials. 2004;25(11): 1983-1990.
    39. Almanza JM, Escobedo JC, Ortiz JC, et al. Bioactivation of a cobalt alloy by coating with wollastonite during investment casting. J Biomed Mater Res A. 2006;78(1):34-41.
    40. Oyane A, Kawashita M, Nakanishi K, et al. Bonelike apatite formation onethylene-vinyl alcohol copolymer modified with silane coupling agent and calcium silicate solutions. Biomaterials. 2003;24(10): 1729-1735.
    41. Xue W, Liu X, Zheng X, et al. In vivo evaluation of plasma-sprayed wollastonite coating. Biomaterials. 2005;26(17):3455-3460.
    42. Saravanapavan P, Jones JR, Verrier S, et al. Binary CaO-SiO(2) gel-glasses for biomedical applications. Biomed Mater Eng. 2004;14(4):467-486.
    43. Sepulveda P, Jones JR, Hench LL. Bioactive sol-gel foams for tissue repair. Journal of Biomedical Materials Research. 2002;59(2):340-348.
    44. Lin KL, Chang J, Zeng Y, et al. Preparation of macroporous calcium silicate ceramics. Mater Lett. 2004;58(15):2109-2113.
    45. Lin KL, Zhai WY, Ni SY, et al. Study of the mechanical property and in vitro biocompatibility of CaSiO3 ceramics. Ceram Int. 2005;31(2):323-326.
    46. Ni S, Chang J, Chou L. A novel bioactive porous CaSiO3 scaffold for bone tissue engineering. J Biomed Mater Res A. 2006;76(1): 196-205.
    47. Zhao L, Chang J. Preparation and characterization of macroporous chitosan/wollastonite composite scaffolds for tissue engineering. J Mater Sci Mater Med. 2004;15(5):625-629.
    48. Li H, Chang J. Preparation and characterization of bioactive and biodegradable wollastonite/poly(D,L-lactic acid) composite scaffolds. J Mater Sci Mater Med. 2004;15(10):1089-1095.
    49. Li H, Chang J. Fabrication and characterization of bioactive wollastonite/PHBV composite scaffolds. Biomaterials. 2004;25(24):5473-5480.
    50. H.Y.Li, J.Chang. In vitro degradation of porous degradable and bioactive PHBV/wollastonite composite scaffolds. Polymer Degradation and Stability. 2005;87(2):301-307.
    51. Li XK, Chang J. Preparation and characterization of bioactive collagen/wollastonite composite scaffolds. J Mater Sci Mater Med. 2005;16(4):361-365.
    52. Rodriguez-Lorenzo LM, Carrodeguas RG, Rodriguez MA, et al. Development of wollastonite-poly(ethylmethacrylate co-vinylpyrrolidone) based materials for multifunctional devices. JBiomedMaterResA. 2007(Online ahead of print).
    53. De Aza PN, Guitian F, De Aza S. Bioeutectic: a new ceramic material for human bone replacement. Biomaterials. 1997;18(19):1285-1291.
    54. Huang X, Jiang D, Tan S. Apatite formation on the surface of wollastonite/tricalciumphosphate composite immersed in simulated body fluid. J Biomed Mater Res B Appl Biomater. 2004;69(1):70-72.
    55. Lin KL, Chang J, Lu JX, et al. Fabrication and Characterization of β-Ca3(PO4)2/CaSiO3 Composite Bioceramics. Journal of Inorganic Materials (in Chinese). 2006;21(6): 1429-1434.
    56. Tong J, Ma YH, Jiang M. Effects of the wollastonite fiber modification on the sliding wear behavior of the UHMWPE composites. Wear. 2003;255(1-6):734-741.
    57. Risbud M, Saheb DN, Jog J, et al. Preparation, characterization and in vitro biocompatibility evaluation of poly(butylene terephthalate)/wollastonite composites. Biomaterials. 2001;22(12):1591-1597.
    58. Chikara O, Toshiki M, Masanobu K, et al. Design of novel bioactive materials through organic modification of calcium silicate. Journal of the European Ceramic Society. 2007;27(2-3): 1527-1533.
    59. Okada K, Hasegawa F, Kameshima Y, et al. Bioactivity of CaSiO(3)/poly-lactic acid (PLA) composites prepared by various surface loading methods of CaSiO(3) powder. J Mater Sci Mater Med. 2007.
    60. Hench LL, Jones JR, Sepulveda P. Chapter1:Bioactive Materials for Tissue Engineering Scaffolds. In: Polak JM, Hench LL, Kemp P, editors. Future strategies for tissue and organ replacement. 1ST ed. London : Imperial College Press: River Edge, NJ, 2002. p. 3-24 in 427P.
    61. Li P, Ohtsuki C, Kokubo T, et al. Effects of ions in aqueous media on hydroxyapatite induction by silica gel and its relevance to bioactivity of bioactive glasses and glass-ceramics. Journal of Applied Biomaterials. 1993;4(3):221-229.
    62. Brink M, Turunen T, Happonen RP, et al. Compositional dependence of bioactivity of glasses in the system Na2O-K2O-MgO-CaO-B2O3-P2O5-SiO2. Journal of Biomedical Materials Research. 1997;37(1):114-121.
    63. Roman J, Padilla S, Vallet-Regi M. Sol-Gel Glasses as Precursors of Bioactive Glass Ceramics. Chemistry of Materials. 2003;15(3):798-806.
    64. De Aza PN, Luklinska ZB. Effect of glass-ceramic microstructure on its in vitro bioactivity. Journal of Materials Science: Materials in Medicine. 2003;14(10):891-898.
    65. Iimori Y, Kameshima Y, Yasumori A, et al. Effect of solid/solution ratio on apatite formation from CaSiO3 ceramics in simulated body fluid. J Mater Sci Mater Med. 2004;15(11):1247-1253.
    66. Iimori Y, Kameshima Y, Okada K, et al. Comparative study of apatite formation on CaSiO3 ceramics in simulated body fluids with different carbonate concentrations. J Mater Sci Mater Med. 2005;16(1):73-79.
    67. Cüneyt Tas A. Synthesis of biomimetic Ca-hydroxyapatite powders at 37°C in synthetic body fluids. Biomaterials. 2000;21(14): 1429-1438.
    68. De Aza PN, De Aza AH, Herrera A, et al. Influence of Sterilization Techniques on the In Vitro Bioactivity of Pseudowollastonite. J Am Ceram Soc. 2006;89(8):2619-2624.
    69. Porter AE, Patel N, Skepper JN, et al. Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics. Biomaterials. 2003;24(25):4609-4620.
    70. Mastrogiacomo M, Corsi A, Francioso E, et al. Reconstruction of extensive long bone defects in sheep using resorbable bioceramics based on silicon stabilized tricalcium phosphate. Tissue Eng. 2006;12(5): 1261-1273.
    71. Hollinger JO, Kleinschmidt JC. The critical size defect as an experimental model to test bone repair materials. J Craniofac Surg. 1990;1(1):60-68.
    72. Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4(7):518-524.
    73. Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering: state of the art and future trends. Macromol Biosci. 2004;4(8):743-765.
    74. Hing KA. Bioceramic Bone Graft Substitutes: Influence of Porosity and Chemistry. International Journal of Applied Ceramic Technology. 2005;2(3):184-199.
    75. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920-926.
    76. Kneser U, Schaefer DJ, Polykandriotis E, et al. Tissue engineering of bone: the reconstructive surgeon's point of view. J Cell Mol Med. 2006;10(1):7-19.
    77. Laurencin CT, Ambrosio AM, Borden MD, et al. Tissue engineering: orthopedic applications. Annu Rev Biomed Eng. 1999;1:19-46.
    78. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21(24):2529-2543.
    79. Agrawal CM, Ray RB. Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res. 2001;55(2):141-150.
    80. Leong KF, Cheah CM, Chua CK. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials.2003;24(13):2363-2378.
    81. Yang S, Leong KF, Du Z, et al. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 2001;7(6):679-689.
    82. Vunjak-Novakovic G, Freed LE. Culture of organized cell communities. Adv Drug DelivRev. 1998;33(1-2): 15-30.
    83. Maqut V, Jerome R. Design of macroporous biodegradable polymer scaffold for cell transplantation. Mat Sci Forum. 1997;250:15-42.
    84. Burg KJ, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering. Biomaterials. 2000;21(23):2347-2359.
    85. Holy CE, Shoichet MS, Davies JE. Engineering three-dimensional bone tissue in vitro using biodegradable scaffolds: Investigating initial cell-seeding density and culture period. J Biomed Mater Res. 2000;51(3):376-382.
    86. Davies JE. Mechanisms of Endosseous Integration. Int J Prosthodont. 1998;11(5):391-401.
    87. Davies JE. In vitro modeling of the bone/implant interface. The Anatomical Record. 1996;245(2):426-445.
    88. Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J. 2001 ;10 Suppl 2:S96-101.
    89. Hench W. Osteoinduction. In: DF W, editor. Definitions in biomaterials In: Progress in Biomedical Engineering. Amsterdam, Netherlands: Elsevier Science B.V., 1987. p. p29.
    90. Reis RL, Cohn D. Polymer Based Systems on Tissue Engineering, Replacement and Regneration. 1st ed. Dordrecht, The Netherlands: Kluwer Academic Publishers, 20e02.
    91. LeGeros RZ. Properties of Osteoconductive Biomaterials: Calcium Phosphates. Clin Orthop Relat Res. 2002;395:81-98.
    92. Mikos AG, Thorsen AJ, Czerwonka LA, et al. Preparation and Characterization of Poly(L-Lactic Acid) Foams. Polymer. 1994;35(5):1068-1077.
    93. Thomson RC, Yaszemski MJ, Powers JM, et al. Fabrication of biodegradable polymer scaffolds to engineer trabecular bone. J Biomater Sci, Polym Ed. 1996;7(1):23-38.
    94. Gomes ME, Ribeiro AS, Malafaya PB, et al. A new approach based on injection moulding to produce biodegradable starch-based polymeric scaffolds: morphology, mechanical and degradation behaviour. Biomaterials. 2001;22(9):883-889.
    95. Mooney DJ, Baldwin DF, Suh NP, et al. Novel approach to fabricate porous sponges ofpoly(D,L-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials. 1996;17(14):1417-1422.
    96. F Shen, YL Cui, L F Yang, et al. A study on the fabrication of porous chitosan/gelatin network scaffold for tissue engineering. Polymer International. 2000;49(12): 1596-1599.
    97. Dietmar W. Hutmacher , Thorsten Schantz , Iwan Zein, et al. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res. 2001;55(2):203-216.
    98. Landers R, Mülhaupt R. Desktop manufacturing of complex objects, prototypes and biomedical scaffolds by means of computer-assisted design combined with computer-guided 3D plotting of polymers and reactive oligomers. Macromol Mater Eng. 2000;282(1):17-21.
    99. Chu TMG, Halloran JW, Hollister SJ, et al. Hydroxyapatite implants with designed internal architecture. J Mater Sci: Mater Med 2001;12(6):471-478.
    100. Hench LL, Polak JM. Third-generation biomedical materials. Science. 2002;295(5557):1014-1017.
    101. Lin KL, Chang J, Wang Z. Fabrication and the characterisation of the bioactivity and degradability of macroporous calcium silicate bioceramics in vitro. J Inorg Mater. 2005;20(3):692-698.
    102. Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: An update. Injury. 2005;36(S1):S20-27.
    103. Patel ZS, Mikos AG. Angiogenesis with biomaterial-based drug- and cell-delivery systems. J Biomater Sci Polym Ed. 2004;15(6):701-726.
    104. Smith L. Ceramic-Plastic Material as a bone substitute. Arch Surg. 1963(87):653-661.
    105. Hulbert SF, Morrison SJ, Klawitter JJ. Tissue reaction to three ceramics of porous and non-porous structures. J Biomed Mater Res. 1972;6(5):347-374.
    106. Klawitter JJ, Bagwell JG, Weinstein AM, et al. An evaluation of bone growth into porous high density polyethylene. J Biomed Mater Res. 1976;10(2):311-323.
    107. Lin KL, Chang J, Lu JX, et al. Properties of β-Ca3(PO4)2 bioceramics prepared using nano-size powders. Ceram Int. 2007;33(4):979-985.
    108. Dobrucki LW, Sinusas AJ. Imaging angiogenesis. Curr Opin Biotechnol. 2007;18(1):90-96.
    109. van Lenthe GH, Hagenmuller H, Bohner M, et al. Nondestructive micro-computed tomography for biological imaging and quantification of scaffold-bone interaction in vivo.Biomaterials. 2007;28(15):2479-2490.
    110. Ohsawa K, Neo M, Okamoto T, et al. In vivo absorption of porous apatite- and wollastonite-containing glass-ceramic. J Mater Sci Mater Med. 2004;15(8):859-864.
    111. Hench LL, Polak JM. Third-generation biomedical materials. Science. 2002;295(5557):1014-1017.
    112. Ho ST, Hutmacher DW. A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials. 2006;27(8): 1362-1376.
    113. El-Ghannam A. Bone reconstruction: from bioceramics to tissue engineering. Expert Rev Med Devices. 2005;2(1):87-101.
    114. Ripamonti U, Van den Heever B, Van Wyk J. Expression of the osteogenic phenotype in porous hydroxyapatite implanted extraskeletally in baboons. Matrix (Stuttgart, Germany). 1993;13(6):491-502.
    115. Yamasaki H, Sakai H. Osteogenic response to porous hydroxyapatite ceramics under the skin of dogs. Biomaterials. 1992;13(5):308-312.
    116. Yang Z, Yuan H, Tong W, et al. Osteogenesis in extraskeletally implanted porous calcium phosphate ceramics: variability among different kinds of animals. Biomaterials. 1996;17(22):2131-2137.
    117. Yuan H, De Bruijn JD, Li Y, et al. Bone formation induced by calcium phosphate ceramics in soft tissue of dogs: a comparative study between porous alpha-TCP and beta-TCP. Journal of materials scienceMaterials in medicine. 2001;12(1):7-13.
    118. Qu SX, Guo X, Weng J, et al. Evaluation of the expression of collagen type I in porous calcium phosphate ceramics implanted in an extra-osseous site. Biomaterials. 2004;25(4):659-667.
    119. Le Nihouannen D, Daculsi G, Saffarzadeh A, et al. Ectopic bone formation by microporous calcium phosphate ceramic particles in sheep muscles. Bone. 2005;36(6):1086-1093.
    120. Kondo N, Ogose A, Tokunaga K, et al. Osteoinduction with highly purified beta-tricalcium phosphate in dog dorsal muscles and the proliferation of osteoclasts before heterotopic bone formation. Biomaterials. 2006;27(25):4419-4427.
    121. Yuan H, van Blitterswijk CA, de Groot K, et al. Cross-species Comparison of Ectopic Bone Formation in Biphasic Calcium Phosphate (BCP) and Hydroxyapatite (HA) Scaffolds. Tissue Engineering. 2006;12(6): 1607-1615.
    122. Yuan H, de Bruijn JD, Zhang X, et al. Bone induction by porous glass ceramic made from Bioglass (45S5). J Biomed Mater Res. 2001;58(3):270-276.
    123. Carlisle EM. Silicon: a possible factor in bone calcification. Science. 1970;167(916):279-280.
    124. Xynos ID, Hukkanen MV, Batten JJ, et al. Bioglass 45S5 stimulates osteoblast turnover and enhances bone formation In vitro: implications and applications for bone tissue engineering. Calcif Tissue Int. 2000;67(4):321-329.
    125. Gao T, Aro HT, Ylanen H, et al. Silica-based bioactive glasses modulate expression of bone morphogenetic protein-2 mRNA in Saos-2 osteoblasts in vitro. Biomaterials. 2001;22(12):1475-1483.
    126. Peelen JGJ, Rejda BV, de Groot K. Preparation and properties of sintered hydroxylapatite. Ceramurgia International. 1978;4(2):71-74.
    127. Hench LL. Bioceramics. Journal of the American Ceramic Society. 1998;81(7):1705-1728.
    128. Hench LL. Bioactive ceramics. Ann NY Acad Sci. 1988;523(1):54-71.
    129. Jarcho M, Kay JF, Gumaer KI, et al. Tissue, cellular and subcellular events at a bone-ceramic hydroxylapatite interface. J Bioeng. 1977;1(2):79-92.
    130. Hench LL. The story of Bioglass?. J Mater Sci Mater Med. 2006;17(11):967-978.
    131. Blakeslee KC, Condrate RA. Vibrational Spectra of Hydrothermally Prepared Hydroxyapatites. Journal of the American Ceramic Society. 1971;54(11):559-563.
    132. Rejda BV, Peelen JG, de Groot K. Tri-calcium phosphate as a bone substitute. J Bioeng. 1977;1(2):93-97.
    133. Daculsi G. Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute. Biomaterials. 1998;19(16): 1473-1478.
    134. Kokubo T, Ito S, Huang ZT, et al. Ca,P-rich layer formed on high-strength bioactive glass-ceramic A-W. J Biomed Mater Res. 1990;24(3):331-343.
    135. Lee KY, Park M, Kim HM, et al. Ceramic bioactivity: progresses, challenges and perspectives. Biomedical Materials. 2006;1(2):31-37.
    136. Ducheyne P, Qiu Q. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials. 1999;20(23-24):2287-2303.
    137. Kokubo T, Kim HM, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials. 2003;24(13):2161-2175.
    138. Kokubo T, Kim HM, Kawashita M, et al. Process of calcification on artificial materials. Zeitschrift fur Kardiologie. 2001;90(S2):86-91.
    139. Xynos ID, Edgar AJ, Buttery LD, et al. Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Biophys Res Commun. 2000;276(2):461-465.
    140. Schepers EJG, Ducheyne P. Bioactive glass particles of narrow size range for the treatment of oral bone defects: a 1-24 month experiment with several materials and particle sizes and size ranges. Journal of Oral Rehabilitation. 1997;24(3):171-181.
    141. Ducheyne P, Livingston T, Shapiro I, et al. Surface-Modified Bioactive Glass Particles as Microcarriers in a Microgravity Environment. Tissue Engineering. 1997;3(3):219-229.
    142. Yuan H, Kurashina K, de Bruijn JD, et al. A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials. 1999;20(19):1799-1806.
    143. Fujibayashi S, Neo M, Kim HM, et al. Osteoinduction of porous bioactive titanium metal. Biomaterials. 2004;25(3):443-450.
    144. Takemoto M, Fujibayashi S, Neo M, et al. Osteoinductive porous titanium implants: effect of sodium removal by dilute HCl treatment. Biomaterials. 2006;27(13):2682-2691.
    145. Nashimoto M, Matsuzaka K, Yoshinari M, et al. The effect of surface pore size on the differentiation of rat bone marrow cells: morphological observations and expression of bone related protein mRNA. The Bulletin of Tokyo Dental College. 2004;45(4):201-211.
    146. Ripamonti U, Crooks J, AN K. Sintered porous hydroxyapatites with. intrinsic osteoinductive activity: geometric induction of bone formation. S Afr J Sci. 1999;95(8):335-343.
    147. Ripamonti U. Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models. Biomaterials. 1996;17(1):31-35.
    148. Yuan H, Yang Z, Li Y, et al. Osteoinduction by calcium phosphate biomaterials. Journal of materials scienceMaterials in medicine. 1998;9(12):723-726.
    149.Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop Relat Res. 1981(157):259-278.
    150. Jell G, Stevens MM. Gene activation by bioactive glasses. J Mater Sci Mater Med. 2006;17(11):997-1002.
    151. Carlisle EM. Silicon: A Possible Factor in Bone Calcification. Science. 1970;167(3916):279-280.
    152. Schwarz K, Milne DB. Growth-promoting Effects of Silicon in Rats. Nature. 1972;239(5371):333-334.
    153. Revell PA. Histomorphometry of bone. J Clin Pathol. 1983;36(12):1323-1331.
    154. Ni S, Chang J, Chou L. A novel bioactive porous CaSiO3 scaffold for bone tissue engineering. J Biomed Mater Res A. 2006;76A(1): 196-205.
    155. Ni S, Lin K, Chang J, et al. β-CaSiO3/β-Ca3(PO4)2 composite materials for hard tissue repair: In vitro studies. J Biomed Mater Res A. 2008;85A(1):72-82.
    156. Vogel M, Voigt C, Knabe C, et al. Development of multinuclear giant cells during the degradation of Bioglass particles in rabbits. J Biomed Mater Res A. 2004;70(3):370-379.
    157. Teramoto H, Kawai A, Sugihara S, et al. Resorption of apatite-wollastonite containing glass-ceramic and beta-tricalcium phosphate in vivo. Acta Med Okayama. 2005;59(5):201-207.
    158. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27(15):2907-2915.
    159. Hench LL, Paschall HA. Histochemical responses at a biomaterial's interface. J Biomed Mater Res. 1974;8(3):49-64.
    160. Arinzeh TL, Tran T, McAlary J, et al. A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation. Biomaterials. 2005;26(17):3631-3638.
    161. Frayssinet P, Trouillet JL, Rouquet N, et al. Osseointegration of macroporous calcium phosphate ceramics having a different chemical composition. Biomaterials. 1993;14(6):423-429.
    162. Sugimoto T, Kanatani M, Kano J, et al. Effects of high calcium concentration on the functions and interactions of osteoblastic cells and monocytes and on the formation of osteoclast-like cells. J Bone Miner Res. 1993;8(12): 1445-1452.
    163. Farley JR, Hall SL, Tanner MA, et al. Specific activity of skeletal alkaline phosphatase in human osteoblast-line cells regulated by phosphate, phosphate esters, and phosphate analogs and release of alkaline phosphatase activity inversely regulated by calcium. J Bone Miner Res. 1994;9(4):497-508.
    164. Maeno S, Niki Y, Matsumoto H, et al. The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials. 2005;26(23):4847-4855.
    165.Sripanyakorn S, Jugdaohsingh R, Thompson RPH, et al. Dietary silicon and bone health. Nutrition Bulletin. 2005;30(3):222-230.
    166. Reffitt DM, Ogston N, Jugdaohsingh R, et al. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone. 2003;32(2):127-135.
    167. Messing RA. Molecular inclusions. Adsorption of macromolecules on porous glass membranes. JAm Chem Soc. 1969;91(9):2370-2371.
    168. Lobel KD, Hench LL. In vitro adsorption and activity of enzymes on reaction layers of bioactive glass substrates. J Biomed Mater Res. 1998;39(4):575-579.
    169. Lu JX, Flautre B, Anselme K, et al. Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo. J Mater Sci Mater Med. 1999;10(2): 111-120.
    170. Zeltinger J, Sherwood JK, Graham DA, et al. Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng. 2001;7(5):557-572.
    171. O'Brien FJ, Harley BA, Yannas IV, et al. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials. 2005;26(4):433-441.
    172. Miranda P, Saiz E, Gryn K, et al. Sintering and robocasting of beta-tricalcium phosphate scaffolds for orthopaedic applications. Acta Biomater. 2006;2(4):457-466.
    173. Yang S, Leong K-F, Du Z, et al. The Design of Scaffolds for Use in Tissue Engineering. Part II. Rapid Prototyping Techniques. Tissue Engineering. 2002;8(1):1-11.
    174. Li X, Li D, Wang L, et al. Osteoblast cell response to beta-tricalcium phosphate scaffolds with controlled architecture in flow perfusion culture system. J Mater Sci Mater Med. 2008.
    175. De Aza PN, Guitian F, De Aza S. Bioeutectic: a new ceramic material for human bone replacement. Biomaterials. 1997;18(19):1285-1291.
    176. Rickard DJ, Kassem M, Hefferan TE, et al. Isolation and characterization of osteoblast precursor cells from human bone marrow. J Bone Miner Res. 1996;11(3):312-324.
    177. Ciapetti G, Cenni E, Pratelli L, et al. In vitro evaluation of cell/biomaterial interaction by MTT assay. Biomaterials. 1993;14(5):359-364.
    178. Pautke C, Vogt S, Tischer T, et al. Polychrome labeling of bone with seven different fluorochromes: enhancing fluorochrome discrimination by spectral image analysis. Bone. 2005;37(4):441-445.
    179. Taboas JM, Maddox RD, Krebsbach PH, et al. Indirect solid free form fabrication oflocal and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. Biomaterials. 2003;24(1):181-194.
    180. Li X, Li D, Lu B, et al. Design and fabrication of CAP scaffolds by indirect solid free form fabrication. Rapid Prototyping Journal. 2005;11(5):312-318.
    181. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26(27):5474-5491.
    182. Gibson LJ. The mechanical behaviour of cancellous bone. J Biomech. 1985;18(5):317-328.
    183. Kotobuki N, Kawagoe D, Nomura D, et al. Observation and quantitative analysis of rat bone marrow stromal cells cultured in vitro on newly formed transparent beta-tricalcium phosphate. J Mater Sci Mater Med. 2006;17(1):33-41.
    184. Kasten P, Luginbuhl R, van Griensven M, et al. Comparison of human bone marrow stromal cells seeded on calcium-deficient hydroxyapatite, beta-tricalcium phosphate and demineralized bone matrix. Biomaterials. 2003;24(15):2593-2603.
    185. Amaral M, Costa MA, Lopes MA, et al. Si(3)N(4)-bioglass composites stimulate the proliferation of MG63 osteoblast-like cells and support the osteogenic differentiation of human bone marrow cells. Biomaterials. 2002;23(24):4897-4906.
    186. Bosetti M, Cannas M. The effect of bioactive glasses on bone marrow stromal cells differentiation. Biomaterials. 2005;26(18):3873-3879.
    187. Bushinsky DA. Metabolic alkalosis decreases bone calcium efflux by suppressing osteoclasts and stimulating osteoblasts. Am J Physiol. 1996;271(1 Pt 2):F216-222.
    188. Sarmento C, Luklinska ZB, Brown L, et al. In vitro behavior of osteoblastic cells cultured in the presence of pseudowollastonite ceramic. J Biomed Mater Res A. 2004;69(2):351-358.
    189. Jell G, Stevens MM. Gene activation by bioactive glasses. Journal of materials scienceMaterials in medicine. 2006;17(11):997-1002.
    190. Johnson KD, Frierson KE, Keller TS, et al. Porous ceramics as bone graft substitutes in long bone defects: a biomechanical, histological, and radiographic analysis. J Orthop Res. 1996;14(3):351-369.
    191. Kuboki Y, Jin Q, Takita H. Geometry of carriers controlling phenotypic expression in BMP-induced osteogenesis and chondrogenesis. J Bone Joint Surg Am. 2001;83-A Suppl 1(Pt2):S105-115.
    192. T DR, JL S, JL R, et al. Performance of hydroxyapatite bone repair scaffolds created via three-dimensional fabrication techniques. J Biomed Mater Res A. 2003;67A(4): 1228-1237.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700