聚偏氟乙烯多孔膜结构及其聚合物锂离子电池隔膜的性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
隔膜是锂离子电池的重要组成部分,聚偏氟乙烯(PVDF)由于具有良好的热稳定性、力学性能、化学和电化学稳定性而比较适合作为隔膜材料。Tellcordia公司开发的多孔基质相转变-活化技术是目前制备锂离子电池隔膜的主要方法。该技术包括多孔膜骨架的制备和活化形成(隔膜/聚合物电解质)体系两步。在以往的研究中,多孔膜骨架通常是采用浸没沉淀技术获得,该方法存在不容易实现多孔膜的结构可控性,并且所制备多孔膜的力学强度不够理想以及膜孔径分布宽等缺点。用热致相分离技术制备多孔膜,不仅比较容易控制膜的聚集态结构和膜孔结构,而且所制备的多孔膜具有力学强度较好、孔径分布比较窄等优点。但是目前几乎没有将其应用在锂离子电池隔膜方面的报导。本文采用热致相分离技术制备PVDF多孔膜、PVDF-HFP多孔膜、PVDF/PMMA以及PVDF/PEO-PPO-PEO共混多孔膜,并将多孔膜浸入电解液中活化得到(隔膜/聚合物电解质)体系。
     研究了碳酸乙烯酯、三乙酸甘油酯、环丁砜和邻苯二甲酸二丁酯这四种稀释剂对多孔膜结构和性能的影响,实验结果表明热致相分离过程中,聚合物/稀释剂体系发生固-液分相。相比而言,环丁砜是比较适合作为PVDF的稀释剂,因为用该稀释剂不仅能够制备出力学性能较好的多孔膜、而且还能够制备出PVDF共混多孔膜。
     以环丁砜为稀释剂,采用热致相分离技术制备了PVDF多孔膜,研究了聚合物分子量、聚合物初始浓度、淬冷速率以及萃取剂等工艺参数对多孔膜的聚集态结构、膜孔结构以及力学性能等方面的影响。并将多孔膜浸入电解液活化得到(隔膜/聚合物电解质)体系,考察了多孔膜的聚集态结构和膜孔结构对电导率和吸液率的影响。发现在一定条件下制备的多孔膜具有比较好的力学性能以及贯通性良好的孔结构,基于这种膜活化得到的(隔膜/聚合物电解质)体系,电导率超过1.0×10~(-3)S/cm(20℃)、电化学稳定窗口为0~4.7 V(vs Li~+/Li),电导率与温度的关系符合阿仑尼乌斯方程。计算表明,无定形区对(隔膜/聚合物电解质)体系的吸液率的贡献为33~46%,而对电导率的贡献只占7.4~19.3%,这说明载流子的迁移主要发生在充满电解液的孔隙中。
     采用PVDF-HFP共聚物来降低PVDF的结晶度,用热致相分离技术制备了PVDF-HFP多孔膜,研究了聚合物初始浓度和淬冷速率对多孔膜的聚集态结构、膜孔结构以及力学性能等方面的影响。并将多孔膜浸入电解液活化得到(隔膜/聚合物电解质)体系,研究了多孔膜的聚集态结构和膜孔结构对电导率和吸液率的影响。实验结果表明,多孔膜中球状粒子与网状孔结构共存。比较了PVDF与PVDF-HFP为基质的两种(隔膜/聚合物电解质)体系的性能,发现PVDF-HFP体系具有更高的电导率(2.93×10~(-3)S/cm,20℃)和更好的保液能力。电导率与温度的关系符合VTF方程。计算表明,无定形区对(隔膜/聚合物电解质)体系的吸液率的贡献为50~60%,对电导率的贡献为30~40%,这说明载流子在被电解液溶胀的无定形区中的迁移不能忽略。
     根据PMMA与PVDF具有较好的相容性,并能降低PVDF的结晶度、增大吸液率。采用共混手段,利用热致相分离技术制备了PVDF/PMMA共混多孔膜,研究了聚合物质量配比和淬冷速率对共混多孔膜的聚集态结构、膜孔结构以及力学性能等方面的影响。实验结果表明,随共混膜中PMMA比例的增加,共混膜的结晶度降低、孔隙率升高,但力学性能降低。与PVDF多孔膜相比,共混多孔膜经电解液活化后,保液能力增强、电导率增大(2.59×10~(-3)S/cm,20℃)。电化学稳定窗口为0~4.5V(vs Li~+/Li)。
     利用PEO-PPO-PEO共聚物中的PPO链段与PVDF有较好的相容性,且两端的PEO链段与电解液具有良好的亲和性,采用共混手段,用热致相分离技术将其与PVDF共混制备锂离子电池隔膜,考察了聚合物质量配比和淬冷速率对共混多孔膜的聚集态结构、膜孔结构以及力学性能等方面的影响。实验结果表明,共混入PEO-PPO-PEO后,球状粒子形状变规整。体系在非等温结晶过程中存在着二次结晶(熔融-再结晶),二次结晶随共混膜中PEO-PPO-PEO比例的增加而变强,这说明PVDF与PEO-PPO-PEO之间存在相互作用。与PVDF多孔膜相比,共混多孔膜经电解液活化后,保液能力增强、吸液率明显增加、电导率增大(2.94×10~(-3)S/cm,20℃)。电化学稳定窗口为0~4.5V(vs Li~+/Li),电导率与温度的关系满足阿仑尼乌斯方程。
     将多孔膜活化后组装成电池,测试表明,PVDF-HFP共聚物、PVDF/PMMA、PVDF/PEO-PPO-PEO体系的循环性能和放电容量优于PVDF体系。
Separator is an important part in lithium ion battery,Poly(vinylidene fluoride) (PVDF) is a kind of suitable material to be used as separator due to its excellent thermal stability,mechanical properties,chemical and electrochemical stability.At present,the main technology to prepare separator for lithium ion battery is microporous matrix phase inversion-activation method explored by Tellcordia Co.Ltd. This technique is composed of two steps:the preparation of microporous matrix and activation.In previous studies,microporous matrix was usually obtained by immersion precipitation process.This technique is not only difficult to control porous structure of membrane,but also not excellent mechanical properties and wide pore size distribution.The main advantages of thermally induced phase separation process (TIPS) are easily porous structure control,good mechanical properties and narrow pore size distribution.However,little researches have been carried out to apply microporous membranes prepared via TIPS process in separator of lithium ion battery. In this work,PVDF and PVDF-HFP microporous membranes,PVDF/PMMA and PVDF/PEO-PPO-PEO blend porous membranes were prepared via TIPS process and (separator/polymer electrolyte) systems based on microporous membranes were prepared by activation.
     Ethylene carbonate,triacetin,sulfolane and dibutyl phthalate were introduced to research the effect on porous structure and properties of microporous membranes.The result indicated that solid-liquid phase separation occurred for polymer/diluent system during TIPS process.Sulfolane is a good candidate for PVDF,because not only microporous membranes with good mechanical properties,but also PVDF-based blend membranes can be obtained using sulfolane as the diluent.
     PVDF microporous membranes were prepared and the influences of polymer molecular weight,polymer concentration,quenching condition and extractant on the aggregation structure,porous structure and mechanical properties were studied. (Separator/polymer electrolyte) system was obtained by activation.How the aggregation structure and porous structure influence ionic conductivity and electrolyte uptake were investigated.It was found that microporous membranes with spherulites prepared at certain condition processed good mechanical properties and well-interconnected porous structure.Ionic conductivity was beyond 1.0×10~(-3)S/cm at 20℃,electrochemical stability was in the range of 0~4.7 V(vs Li~+/Li ),logσand 1/T showed a linear variation and followed Arrhenius-type behavior.The contribution of amorphous domains to electrolyte uptake and ionic conductivity is in the range of 33~44%and 7.4~19.3%,which means that the transfer of carrier ions is mainly through pores filled electrolyte.
     PVDF-HFP was used to decreases the crystallinity of PVD,PVDF-HFP prepared via TIPS process.Polymer concentration and quenching condition were used to control the aggregation structure,porous structure and mechanical properties of microporous membranes.(Separator/polymer electrolyte) system was obtained by activation.The effects of aggregation structure and porous structure on ionic conductivity and electrolyte uptake were investigated.The experimental results showed that compared with PVDF system,PVDF-HFP system has higher ionic conductivity(2.93×10~(-3)S/cm,20℃) and better electrolyte maintenance,logσand 1/T followed VTF equation.The contribution of amorphous domains to electrolyte uptake and ionic conductivity is in the range of 50~60%and 30~40%,which means that the transfer of carrier ions within the gel phase should not be ignored.
     Considering the good compatibility between PMMA and PVDF,the addition of PMMA will decrease the crystallinity of PVDF and increase electrolyte uptake. PVDF/PMMA blend microporous membranes were prepared via TIPS process.The effects of polymer weight fraction and quenching condition on the aggregation structure,porous structure and mechanical properties of microporous membranes were studied.The experimental results revealed that the addition of PMMA decreased the crystallinity,mechanical properties and increased porosity.Compared with PVDF microporous membrane,after activation,the blend membranes processed higher ionic conductivity(2.59×10~(-3)S/cm,20℃) and better electrolyte maintenance.The electrochemical stability was in the range of 0~4.5V(vs Li~+/Li).
     Due to good compatibility between PVDF and PPO segment,and good affinity between PEO and liquid electrolyte,PVDF/PEO-PPO-PEO blend microporous membranes were prepared via TIPS process.The effects of polymer weight fraction and quenching condition on the aggregation structure,porous structure and mechanical properties of microporous membranes were studied.The experimental results revealed that spherulites became regular with the addition of PEO-PPO-PEO. It was found that secondary crystallization existed in the process of non-isothermal crystallization and enhanced by increasing PEO-PPO-PEO content,which meant that there existed interaction between the two polymers.Compared with PVDF microporous membrane,after activation,the blend membranes processed higher ionic conductivity(2.59×10~(-3)S/cm,20℃) and better electrolyte maintenance.The electrochemical stability was in the range of 0~4.5V(vs Li~+/Li).logσand 1/T followed Arrhenius-type behavior.
     The cell measurement revealed that the charge-discharge efficiency and discharge capacity of PVDF-HFP,PVDF/PMMA and PVDF/PEO-PPO-PEO system were better than that of PVDF system.
引文
[1]徐又一,徐志康等.高分子膜材料.化学工业出版社,北京,2005.
    [2]朱利平.聚醚砜、聚醚砜酮多孔膜的结构可控制备及其表面改性,浙江大学博士学位论文,2007.
    [3]时钧,袁权,高丛堦.膜技术手册,化学工业出版社,北京,2001.
    [4]胡云光.膜生物反应器在石油化工中的应用.石油化工,1994,6:400-406.
    [5]薛德明.膜分离技术在医药食品工业中的应用.中国海洋药物,1994,5:247-253.
    [6]尹沛松.微孔膜滤器在医药工业中的应用.过滤与分离,1998,4:32-34.
    [7]顾瑾,郑成.膜分离在生物工程应用中存在的问题及对策.合肥工业大学学报(自然科学版),1998,2:102-108.
    [8]徐又一.聚烯烃中空纤维膜及其分离新技术在环保工程中的开发、应用.中国环保产业,1996,Z1:38-40.
    [9]Abraham K.M.,Alamgir M.,Hoffman D.K.Polymer electrolytes reinforced by Celgard membrane.J.Electrochem.Soc.,1995,142:683-687.
    [10]郑领英.国外膜技术在食品工业中的应用现状和发展动向.水处理技术,1994,5:247-253.
    [11]孙晓辉,郝建飞,王竞.膜技术在醋酸生产中的应用.中国调味品,1995,4:6-7.
    [12]宋锦安.膜分离及应用.化学工程师,1995,3:28-29.
    [13]于丁一,陈培祺,呼丙辰.我国膜法海水淡化技术现状与发展前景.给水排水,1994,8:15-18.
    [14]裴玉新,沈新元,王庆瑞.血液净化用高分子膜的现状及发展.膜科学与技术,1998,18:10-13.
    [15]高丛堦.膜技术与相关海洋产业.海洋通报,1997,4:44-51.
    [16]张春芳.热致相分离法制备聚偏氟乙烯微孔膜的结构控制及性能研究.浙江大学博士学位论文,2006.
    [17]Hwang S.T.,Kammermeyer K.Membranes in Separation.New York:Wiley,1975.
    [18]Bungay P.M.,Lonsdale H.K.Synthetic Membranes:Science,Engineering and Applications.Holland:D Reidei Publishing Co.1998.
    [19]Govind R.,Zhao R.Proceedings on International Conference of Membrane.New York:Wiley.1989.
    [20]Biesheuvel P.M.,Verweij H.Design of ceramic membrane supports:permeability,tensile strength and stress.J.Membr.Sci.,1999,156:141-152.
    [21]Druin M.L.,Loft J.T.,Piovan S.G.Novel opened-celled microporous film.US patent NO.3801404,1972.
    [22]Shen L.Q.,Xu Z.K.,Xu Y.Y.Preparation and characterization of microporous polyethylene hollow fiber membranes.J.Appl.Polym.Sci.,2002,84:203-210.
    [23]Reuvers A.J.,Smolders C.A.,Formation of membranes by means of immersion precipitation.Part Ⅱ.The mechanism of formation of membranes prepared from the system cellulose acetate-acetone-water.J.Membr.Sci.,1987,34:67-86.
    [24]Reuvers A.J.,Van den Berg J.W.A.,Smolders C.A.,Formation of membranes by means of immersion precipitation.Part Ⅰ.A model to describe mass transfer during immersion precipitation.J.Membr.Sci.,1987,34:45-65.
    [25]Lau W.W.Y.,Guiver M.D.,Matsuura T.,Phase separation in polysulfone/soivent/water and polyethersulfone/solvent/water system..J.Membr.Sci.,1991,59:219-227.
    [26]Yilmaz L.,Mchugh A.J.,Analysis of nonsolvent-solvent-polymer phase diagrams and their relevance to membrane formation modeling.J.Appl.Polym.Sci.,1986,31:997-1018.
    [27]左丹英.溶液相转化法制备PVDF微孔膜过程中的结构控制及其性能研究.浙江大学博士学位论文.2005.
    [28]Zeman L.,Fraser T.Formation of air-cast cellulose-acetate membrane.2.Kinetics of demixing and microvoid growth.J.Membr.Sci.,1994,87:267-279.
    [29]Zeman L.,Fraser T.Formation of air-cast cellulose-acetate membrane.1.Study of macrovoid formation.J.Membr.Sci.,1993,84:93-101.
    [30]Strathmann H.Production of Microporous Media by Phase Inversion Process.New York,ACS Symp,Ser.,1985.
    [31]Wienk I.M.,Boom R.M.,Beerlage M.A.M.,Bulte A.M.W.,Smolders C.A.,Strathmann H.,Recent advances in the formation of phase inversiom membranes made from amorphous or semi-crystalline polymers.J.Membr.Sci.,1996,113:361-371.
    [32]Lloyd D.R.Microporous membrane formation via thermally-induced phase separation.Ⅰ.Solid-liquid phase separation.J.Membr.Sci.,1990,52:239-261.
    [33]Lloyd D.R.,Kim S.S.,Kinzer K.E.Microporous membrane formation via thermally-induced phase separation Ⅱ.Liquid-liquid phase separation.J.Membr.Sci.,1991,64:1-11.
    [34]Matsuyama H,Maki T,Teramoto M,Asano K.Effect of polypropylene molecular weight on porous membrane formation by thermally induced phase separation.J Membr Sci.,2002,204:323-328.
    [35]Matsuyama H,Ohga K,Maki T.Porous cellulose acetate membrane prepared by thermally induced phase separation.J.Appl.Polym.Sci.,2003,89:3951-3955.
    [36]王熊,郭宏,郭维奇.膜分离技术在食品加工水处理中的应用.中国食品工业,1995,11:23-25.
    [37]Yang Z.F.,Guha A.K.,Sirkra K.K.,Novel membrane-based synergistic metal extraction and recovery processes.Ind.Eng.Chem.Res.,1996,35:1383-1394.
    [38]徐荣安.膜技术在饮用水深度处理中的应用.水处理技术,1999,5:249-254.
    [39]王静,张雨山.超滤膜和微滤膜在污(废)水处理中的应用研究现状及发展趋势.工业水处理,2001,3:4-8.
    [40]吴志超,陈绍伟,赵一德.超滤技术在水污染控制中的应用.上海环境科学,1997,12:29-31.
    [41]何桂华.聚砜中空纤维超滤膜在油田注入水处理中的应用.膜科学与技术,1998,2:29-31.
    [42]王世昌,周清,王志.海水淡化与反渗透技术的发展趋势.膜科学与技术,2003,4:162-171.
    [43]陈益棠,陈雷.高回收率反渗透-纳滤海水淡化成本.水处理技术,2004,5:251-254.
    [44]Castro A.J.Methods for making microporous products.US Patent NO.4247498.1981.
    [45]Gu.M.H,Zhang.J,Wang.X.L,Formation of poly(vinylidene fluoride)(PVDF) membranes via thermally induced phase separation.Desalination,2006,192:160-167.
    [46]Smith.S.Microporous PVDF films and methods of manufacturing.WO 030564,2005.
    [47]Ji G.L.,Zhu B.K.,Cui Z.Y.PVDF porous matrix with controlled microstructure prepared by TIPS process as polymer electrolyte for lithium ion battery,Polymer,2007,48:6415-6425.
    [48]Cui Z.Y,Du C.H.,Xu Y.Yi.Preparation of Porous PVdF Membrane via Thermally Induced Phase Separation Using Sulfolane.J.Appl.Polym Sci.,2008,108:272-280.
    [49]Hiatt W.C.,Vitzthum G.H.,Wagener K.B.,Gerlach K.,Josefiak C.Microporous membranes via upper critical temperature phase separation,in:Lloyd D.R.(Ed.),Materials Science of Synthetic Membranes,ACS Symp.Ser.NO.269,American Chemical Scociety,Washington,DC,1985.
    [50]Kesting R.E.Phase inversion membranes,in:Lloyd D.R.ed,Materials science of synthetic membrane.ACS Symp Ser No269,Washington DC:American Chemical Society,1985.
    [51]Kim S.S.,Lloyd D.R.Microporous membrane formation via thermally-induced phase separation.Ⅲ.Effect of thermodynamic interactions on the structure of isotactic polypropylene membranes.J.Membr.Sci.,1991,64:13-29.
    [52]Matsuyama H.,Berghmans S.,Batarseh M.T.,Lloyd D.R.Effects of thermal history on anisotropic and asymmetric membranes formed by thermally induced phase separation.J.Membr.Sci.,1998,142:27-42.
    [53]Matsuyama H.,Berghmans S.,Lloyd D.R.Formation of anisotropic membrane via thermally induced phase separation.Polymer,1999,40:2289-2301.
    [54]Atkinson P.M,Lloyd D.R.Anisotropie flat sheet membrane formation via TIPS:atmospheric convection and polymer molecular weight effects.J.Membr.Sci.,2000,175:225-238.
    [55]Frommer M.A.,Lancet D.,The mechanism of membrane formation.Ⅴ.The structure of membranes and its relation to their preparation conditions,Polym.Prep.,1971,12:245-252.
    [56]唐娜.热致相分离聚丙烯平板微孔膜的研制及其膜蒸馏特性研究.天津大学博士论文,2003.
    [57]阮文祥 王建黎,热致相分离法制备聚合物微孔材料,高分子通报,2006,2:24-29.
    [58]Flory P.J.Princles of Polymer Chemistry.New York,Comell University Press,1953.
    [59]Kurata M.Thermodynamic of polymer sulution.London.Harwood Academic,1982.
    [60]Burghardt W.R.Phase diagrams for binary polymer systems exhibiting both crystallization and limited liquid-liquid miscibility.Macromolecules,1989,22:2482-2486.
    [61]Kamide K.,Iijma H.,Matsuda S.,Thermodynamics of formation of porous polymeric membrane by phase separation method Ⅰ.Nucleation and growth of nuclei.Polym.J.,1993,25:1113-1131.
    [62]Fu.J.T.,John.M.The roles of phase separation mechanism and coarsening in the formation of poly(methyl methacrylate) asymmetric membranes,Macromolecules,1990,23:775-783.
    [63]Tsai F.J.,Torkelso J.M.Microporous poly(methylmethacrylate) membranes:effect of a low-viscosity solvent on the formation mechanism.Macromolecules,1990,23:4983-4989.
    [64]McMaster L.P.Aspects of liquid-liquid phase transition phenomena in multicomponent polymeric systems.Adv.Chem.Ser.,1975,142:43-49.
    [65]McGuire K.S.,Laxminarayan A.,Lloyd D.R.Kinetics of droplet-growth in liquid-liquid phase separation of polymer-diluent systems:experimental results.Polymer,1995,36:4951-4960.
    [66]Guo H.F.,Laxminarayan H.F.,Caneba G.T.,Sole K.Morphological studies of late-stage spinodal decomposition in polystyrene-cyclohexanol systems.J.Appl.Polym.Sci.,1995,55:753-760.
    [67]Bush P.J.,Pradham D.,Ehrlich P.Lamerllar structure and organization in polyethylene gels crystallized from supercdtical solution in propane.Macromolecules,1991,24:1439-1440.
    [68]Lemstra P.J.,Van Aerle N.A.J.M.,Bastiaansen C.W.M.Chain extended polyethylene.Polym.J.,1987,19:85-91.
    [69]Chatani Y.,Shimane Y.,Inagaki T.,Ijitsu T.,Yukinari T.,Shikuma H.Structural study on syndiotactic polystyrene:2.crystal structure of molecular compound with toluene.Polymer,1993,34:1620-1666.
    [70]Binder K.Spinodal decomposition,in Haasen P.(Ed).Materials Science and Technology,A Comprehensive Treatement.New York,1991.Cahn J.W.Spinodal decomposition.Trans.Metali.Soc.AIME,1968,242:166-175.
    [71]Ronner J.A.,Groot W.S.,Smolders C.A.Inversigation of liquid-liquid demixing and aggregate formation in a membrane forming system by means of pulse-induced critical scattering(PICS).J.Membr.Sci.,1989,42:27-36.
    [72]郭炳焜,徐徽,王先友,肖立新.锂离子电池.中南大学出版社,湖南,2002年.
    [73]操建华,锂离子电池中聚合物电解质多孔膜的制备及其结构与性能研究.浙江大学博士学位论文.2005.
    [74]Fenton D.E,Parker J.M.,Wright P.V.Complexes of alkali metal ions with poly(ethylene oxide).Polymer,1973,14:589-591.
    [75]Feuilade G.,Perche P.Ion-conductive macromolecular gel and membranes for solid lithium cells.J Appl Electrochem,1975,5:63-67.
    [76]Armand M.B.,Chabagno J.M.,Duclot M.In:Vashista P,Mundy J M,Shenoy G K.Eds.Fast ion transport in solids.Elsevier,New York,1979,p.131-136.
    [77]Armand M.B.Polymer solid electrolytes-an overview.Solid State Ionics,1983,9-10:745-754.
    [78]Armand M.B.In:Sequeira C A C,Hooper A(Eds),Solid State Batteries,NATO-ASI Series,Ser.E101,Martinus Nijhoff Publ,Dortrecht,1985,p.63.
    [79]Kazunori O.,Yokokawa M.Cycle performance of lithium ion rechargezble battery.10th Int.Seminar of Primary and Secondary Battery Technology Applications.1-4 Mar.1993,Deerfield Beach,FL,USA,Florida Education Seminars,Boca Raton,FL.
    [80]Gozdz A.S.,Schmutz C.N.,Taraseon J.M.Rechargeable lithium intercalation battery with hybrid polymeric electrolyte,US Patent No 5296318,1994.
    [81]Gozdz A.S.,Schmutz C.N.,Tarascon J.M.,Warren P C.Method of making an electrolyte activatable lithium-ion rechargeable battery cell.US Patent No 5456000,1995.
    [82]Gozdz A.S.,Schmutz C.N.,Tarascon J.M.,Warren P C.Polymeric electrolytic cell separator membrane.US Patent No 5418091,1995.
    [83]Pankaj A.,Zhang Z.M.Battery Separators.Chem.Rev,2004,104:4419-4429.
    [84]Song J.Y.,Wang Y.Y.,Wan C C.Conductivity study of porous plasticized polymer electrolytes based on poly(vinylidene fluoride)-A comparison with polypropylene separators.J Electrochem Sci,2000,147(9):3219-3225.
    [85]Song J.Y.,Wang Y.Y.,Wan C.C.Review of gel-type electrolytes for lithium-ion batteries.J Power Sources,1999,77:183-197.
    [86]李铁军.锂离子电池用聚丙烯微孔薄膜.中国塑料,2004,18(5):1-5.
    [87]Venugopal G,Moore,Howard J.Characterization of micmp0mus separators for lithium-ion batteries.J.Power Sources,1999,77:34-39.
    [88]Penner R.M.,Martin C.R.Electronically conductive composite polymer membranes.J Electrochem Soc,1986,133:310-315.
    [89]Appetecchi G.B.,Passedni S.Poly(ethyleneoxide)-LiN(SO_2CF_2CF_3)_2 polymer electrolytes Ⅱ.characterization of the interface with lithium.J Electrochem Soc,2002,149:A891-897.
    [90]Villano P.,Carewska M.,Appetecchi G.B.,Passerini S.Poly(ethyleneoxide)-LiN(SO_2CF_2CF_3)_2polymer electrolytes Ⅲ.test in batteries.J Electrochem Soc,2002,149:A1282-1285.
    [91]Capiglia C.,Imanishi N.,Takeda Y.,Henderson W.A.,Passerini S.Poly (ethyleneoxide)-LiN(SO_2CF_2CF_3)_2 polymer electrolytes Ⅳ.Raman characterization.J Electrochem Soc, 2003,150: A525-531.
    [92] Abraham K. M., Alamgir M. , Hoffman D. K. Polymer electrolytes reinforced by Celgard membranes. J Electrochem Soc, 1995,142:683-687.
    [93] Troffkin H. J., Burton M. R., Spotnitz R. M., Giovannoni R. T., Guo Y. Process of making a battery separator. US Patent, No 5240655, 1993.
    [94] Shino M., Yamamoto T., Fukunage O., Yamamori H. Process for making microporus polyethylene hollow fibers. US Patent No 4530809,1985.
    [95] Kamada K., Minami S., Toshida K. Porous polypropylene hollow filaments and method making the same. US Patent No 4055696,1977.
    [96] Gozdz A. S., Schmutz N., Tarascon J. M., Warren P. C. Method of making polymeric electrolytic cell separator membrane. US Patent, No 5607485,1997.
    [97] Jiang Z., Carroll B., Abraham K. M. Studies of some Poly(vinylidene fluoride) electrolytes. Electrochim. Acta, 1997,42: 2667-2677.
    [98] Periasamy P., Tatsumi K., Shikano M., Fujieda T., Sakai T., Saito Y., Mizuhata M., Kajinami A., Deki S. An electrochemical investigation on Polyvinylidene fluoride-based gel polymer electrolytes. Solid State Ionics, 1999,126: 285-292.
    [99] Abbrent S., Plestil J., Hlavata D., Lindgren J., Tegenfeldt J., Wendsjo A. Crystallinity and morphology of PVDF-HFP-based gel electrolytes. Polymer, 2001,42:1407-1416.
    [100] Manuel S.A., Karan R.T., Renganathan N.G., Pitchumani S., Muniyandi N., Ramamoorthy P. A. study on polymer blend electrolytes based on PVC/PMMA with lithium salt. J. Power Sources, 1999,81-82:752-758..
    [101] Capiglia C., Saito Y., Yamamoto H., Kageyama H., Mustarelli P. Transport properties and microstructure of gel polymer electrolytes. Electrochim. Acta, 2000,45:1341-1345.
    [102] Ravaine D, Souquet J. L. A thermodynamic approach to ionic conductivity in oxide glasses Part 1. Correlation of the ionic conductivity with the chemical potential of alkali oxide in oxide glasses. Phy Chem Glasses, 1977, 18:27-37.
    [103] Ravaine D, Souquet J L.A thermodynamic approach to ionic conductivity in oxideGlasses Part2. A statistical model for the variations of the chemical potential of the constituents in binary alkali glasses. Phy Chem Glasses, 1978,19:115-120.
    [104] Wright P V. Electrical conductivity in ionic complexes of poly (ethylene oxide). Br Polym J, 1975,7:319-331.
    [ 105] Song J Y, Cheng C L, Wan C C. Microstructure of poly (vinylidene fluoride )-based polymer electrolyte and its effect on transport properties. J Electrochem Soc, 2002,149(9): A1230-A1236.
    [106] Siekierski M, Wieezorek W, Przyluski J. AC conductivity studies of composite polymeric electrolytes. Electrochimica Acta, 1998,43: 1339-1342.
    [107] Cohen M H, Turnbull D. Free-volume model of the amorphous phase: glass transition. J Chem Phys, 1961,34:120-125.
    [108] Cohen M H, Turnbull D. On the free-volume model of the liquid-glass transition. J Chem Phys, 1970,52:3038-3041.
    [109] Wang Z L, Tang Z Y. Characterization of the polymer electrolyte based on the blend of poly (vinylidene fluoride-co-hexafluoropropylene) and poly(vinyl pyrrolidone) for lithium ion battery. Mater Chem Phys, 2003, 82:16-20.
    [110] Bruce P G, Gray F M. In: Bruce P G (Eds) Solid State Electrochemistry. Cambridge University Press, Cambridge, 1995, p.119-162.
    [111] Chung N K, Kwon Y D, Kim D. Thermal, mechanical, swelling, and electrochemical properties of poly(vinylidene fluoride)-co-hexafluoropropylene/poly(ethylene glycol) hybrid-type polymer electrolytes. J Power Sources, 2003, 124: 148-154.
    [112] Watanabe M, Sammi K, Ogata N. Correlation between ionic conductivity and the dynamic mechanical property of polymer complexes formed by a segmented polymer poly (urethane urea) and lithium perchlorate. Macromolecules, 1986,19:815-819.
    [113] Murata K, Izuchi S, Yoshihisa Y. An overview of the research and development of solid polymer electrolyte batteries. Electrochimica Acta, 2000,45: 1501-1508.
    [114] Fenton D E, Parker J M, Wright P V. Complexes of alkali metal ions with poly(ethylene oxide). Polymer, 1973,14: 589-591.
    [115] Feuilade G, Perche P. Ion-conductive macromolecular gel and membranes for solid lirhium cells. J Appl Electrochem, 1975, 5: 63-67.
    [116] Armand M B, Chabagno J M, Duclot M. In: Vashista P, Mundy J M, Shenoy G K. Eds. Fast ion transport in solids, Elsevier, New York, 1979, p. 131-136.
    
    [117] Armand M B. Polymer solid electrolytes- an overview. Solid State Ionics, 1983, 9-10:745-754..
    [118] Armand M B. In: Sequeira C A C, Hooper A (Eds), Solid State Batteries, NATO-ASI Series, Ser. E101, Martinus Nijhoff Publ, Dortrecht, 1985, p.63.
    [119] Killis A, LeNest J F, Gandini A, Cheradame H, Cohen J P. Correlation among transport properties in ionically conducting cross-linked networks. Solid State Ionics, 1984, 14: 231-237.
    [120] Hall P G, Davies G R, McIntyre J E, Ward I M, Bannister D J, Brocq K M F L. Ionically conductive ion contg. polymer comprising backbone and dependent alkylene oxide. Polym Commun, 1986,27: 98-105.
    [121] Vallee A, Besner S, Prud'homme J. Comparative study of poly(ethylene oxide) electrolytes made with LiN(CF_3SO_2)_2, LiCF_3SO_3 and LiClO_4: Thermal properties and conductivity behaviour. Electrochim Acta, 1992,37: 1579-1583.
    [122] Ito Y, Kanehori K, Miyauchi K, Kudo T. Ionic conductivity of electrolytes formed from PEO-LiCF_3SO_3 complex with low molecular weight poly (ethylene glycol). J Mat Sci, 1987, 22: 1845-1849.
    [123] Watanabe M, Kanaba M, Nagoka K. Ionic conductivity of hybrid film composed of polyacrylonitrile-ethylene carbonate. J Polym Sci Polym Phys Ed, 1983, 21: 939-945.
    [124] Peramunage D, Pasquariello D M, Abraham K M. Polyacrylonitrile-based electrolytes with ternary solvent mixtures plasticizers. J Electrochem Soc, 1995, 142:1789-1798.
    [125] Bohnke O, Rousselot C, Gillet P A, Truche C. Gel electrolyte for solid state electrochromic cell. J Electrochem Soc, 1992, 139: 1862-1865.
    [126] Jiang Z, Carroll B, Abraham K M. Studies of some poly (vinylidene fluoride) electrolytes. Electrochimica Acta, 1997,42 (17): 2667-2677.
    [127] Arascon J-M, Gozdz A S, Schmutz C, Shokooh F, Warren P C. Performance of Bellcore's plastic rechargeable Li-ion batteries. Solid State Ionics, 1996, 86-88: 49-54.
    [128] Abraham K M, Alamgir M. Li~+-conductive solid polymer electrolytes with liquid-like conductivity. J Electrochem Soc, 1990, 137:1657-1662.
    
    [129] Abraham K M, Alamgir M. Solid electrolytes, US Patent No 5219679, 1993.
    [130] Bohnke O, Frand G, Rezrazi, Rousselot C, Truche C. Transition metal derivatives of low oxidation state phosphorus oxoacids: synthetic pathways and structure studies. Solid State Ionics, 1993,66:97-109.
    [131] Bohnke O, Frand G, Rezrazi, Rousselot C, Truche C. Fast ion transport in new lithium electrolytes gelled with PMMA 2. Influence of lithium salt concentration. Solid State Ionics, 1993,66:105-112.
    [132] Magistris A, Quartarone E, Mustarelli P, Saito Y, Kataoka H. PVDF-based porous polymer electrolytes for lithium batteries. Solid State Ionics, 2002,152-153:347-354.
    [133] Feuilade G, Perche P. Ion-conductive macromolecular gel and membranes for solid lirhium cells. J Appl Electrochem, 1975,5:63-67.
    [134] Koichi T, Hiroyuki O, Eishun T. A mechanism of ionic conductivity of poly (vinylidene fluoride)-lithium perchlorate hybrid films. Electrochimica Acta, 1983,28(6): 833-837.
    [135] Eishun T, Hiroyuki O, Koichi T. Conduction of lithium ions in Polyvinylidene fluoride and its derivatives-I. Electrochimica Acta, 1983, 28(5): 591-595.
    [136] Pasquier A D, Warren P C, Gozdz A S, Amatucci G G. Plastic PVDF-HFP electrolyte laminates prepared by a phase-inversion process. Solid State Ionics, 2000,135:249-257.
    [137] Caravanier M C, Montigny B C, Lemordant D. Absorption ability and kinetics of a liquid electrolyte in PVDF-HFP copolymer containing or not SiO_2. J Power Sources, 2002, 107: 125-132.
    [138] Huang H, Wunder S L. Preparation of microporous PVDF based polymer electrolyte. J Power Sources, 2001,97-98: 648-653.
    [139] Prosini P P, Villano P, Carewska M. A novel intrinsically porous separator for self-standing lithium-ion batteries. Electrochimica Acta, 2002,48: 227-233.
    [140] Kim K. M., Ko J. M., Park N. G., Ryu K. S., Chang S. H. Characterization of poly(vinylidenefluoride-co-hexafluoropropylene)-based polymer electrolyte filled with rutile TiO_2 nanoparticles. Solid State Ionics, 2003,161: 121-131.
    [141] Lee K H, Lee Y G, Park J K, Seung DY. Effect of silica on the electrochemical characteristics of the plasticized polymer electrolytes based on the P (AN-co-MMA) copolymer. Solid State Ionics, 2000,133:257-263.
    [142] Song J Y, Cheng C L, Wan C C. Microstructure of poly(vinylidene fluoride )-based polymer electrolyte and its effect on transport properties. J Electrochem Soc, 2002, 149(9): A1230-A1236.
    [143] Wang H P, Huang HT, Wunder S L. Novel microporous poly (vinylidene fluoride) Blend electrolytes for Lithium-ion batteries. J Electrochem Soc, 2000,147(8): 2853-2861.
    [144] Huang H, Wunder S L. Ionic conductivity of microporous PVDF-HFP/PS polymer blends. J Electrochem Soc, 2001,148(3): A279-A283.
    [145] Cheng C L, Wan C C, Wang Y Y. Microporous PVdF-HFP based gel polymer electrolytes reinforced by PEGDMA network. Electrochem Commun, 2004,6: 531-535.
    [146] Liu X J, Kusawake H, Kuwajima S. Preparation of a PVDF-HFP/polyethylene composite gel electrolyte with shutdown function for lithium-ion secondary battery. J Power Sources, 2001, 97-98:661-663.
    [147] Sung H, Wang Y, Wan C C. Preparation and characterization of poly (vinyl chloride-co-vinyl acetate)-based gel electrolyte for Li-ion batteries. J Electrochem Soc, 1998, 145(4): 1207-1211.
    [148] Choi N S, Park J K. New polymer electrolytes based on PVC/PMMA blend for plastic lithium-ion batteries. Electrochimica Acta, 2001,46:1453-1459.
    [149] Kim D W, Sum Y K. Polymer electrolytes based on acrylonitrile-methyl methacrylate-styrene terpolymers for rechargeable lithium-polymer batteries.J Electrochem Soc,1998,145:1958-1962.
    [150]Ma.W,Zhang.J,Wang.X.L,Effect of PMMA on crystallization behavior and hydrophilicity of poly(vinylidene fluoride)/poly(methyl methacrylate) blend prepared in semi-diluent solutions,Appl.Surface Sci.,2007,253:8377-8388.
    [151]Benedetti E.,Catanorchi S.,Alessio A.D.,Moggi G.,Vergamini P.,Pracella M.,Ciardelli F.FTIR-microspectroscopy and DSC studies of poly(vinylidene fluoride).Polym.Int,1996,41:35-41.
    [152]Genies C.,Mercier R.,Siklion B.,Petiaud P.,Comet N.,Gebel G.,Pineri M.Stability study of sulfonated phthalic and naphthalenic polyimide structures in aqueous medium.Polymer,2001,42:5097-5105.
    [153]Gao J.G.,Yu M.S.,Li Z.T.,Nonisothermal crystallization kinetics and melting behavior of bimodal medium density polyethylene/low density polyethylene blends,Euro.Polym.J.,2004,44:1533-1538.
    [154]Kuribayashi I.Characterization of composite cellulosic separators for rechargeable lithium-ion batteries.J.Power Sources,1996,63(87):96-99
    [155]Dong W.K.,Jang M.,Jong H.Chun.Electrochemical performances of lithium-ion cells,prepared with polyethylene oxide coated separators,Electrochem Commun,2001,3:535-538.
    [156]Yang Y,Cheng H,Hong H Y.Preparation of new composite separators for lithium-ion batteries,CN,NO 1192941,2003.
    [157]Saito Y.,Kataoka H.,Quartarone E.,Mustarelli P.Carrier migration mechanism of physically cross-linked polymer gel electrolytes based on PVDF membranes,J.Phys,Chem.B.2002,106:7200-7208.
    [158]石万聪.增塑剂及其应用.化学工业出版社,北京,2002年.
    [159]Barton A.F.M.CRC Handbook of Solubility Parameters and other Cohesion Parameters,2~(nd)Edition,CRC Press,Boca Raton,1991.
    [160]Gu M H,Zhang J.,Xia.Y.,Wang X.L.Poly(vinylidene fluoride) Crystallization Behavior and Membrane Structure Formation Via Thermally Induced Phase Separation with Benzophenone Diluent,J.Macro.Sci.Part B.2008,47:180-191.
    [161]张翠兰,王志,李凭力,热致相分离法制备聚丙烯微孔膜,膜科学与技术,2000,20(60):36-41.
    [162]计根良.热致相分离法制备PVDF微孔膜的结构控制与性能研究.浙江大学博士学位论文.2008.
    [163]Kim S S,Lim G B A,Microporous membrane formation via thermally induced phase separation.Ⅴ.Effect of diluent mobility and crystallization on the structure of isotactic polypropylene membrane,J Membr Sci,1991,64:41-53.
    [164]Kim S S,Lloyd D R,Microporous membrane formation via thermally induced phase separation.Ⅲ.Effect of thermodynamic interactions on the structure of isotactic polypropylene membranes,J Membr Sci,1991,64:13-29.
    [165]Lim G B A,Kim S S,Microporous membrane formation via thermally induced phase separation.Ⅳ.Effect of isotaetie polypropylene crystallization kinetics on membrane structure,J Membr Sci,1991,64:31-40.
    [166]Kataoka H.,Saito Y.,Sakai T.Conduction Mechanisms of PVDF-Type Gel Polymer Electrolytes of Lithium Prepared by a Phase Inversion Process,J Phys Chem B.2000,104:11460-11464.
    [167]Xi J Y,Qiu X P,Li J,PVDF-PEO blends based mivroporous polymer electrolyte:Effect of PEO on pore configurations and ionic conductivity,J.Power Sources,2005,157:501-506.
    [168]李为立.锂离子电池用凝胶聚合物电解质的设计、制备与表征.浙江大学博士学位论文.2007.
    [169]Hou.X.P,Siow.K.S.Mechanical properties and ionic conductivities of plasticized polymer electrolytes based on ABS/PMMA blends,Polymer,2000,41:8689-8696.
    [170]Cao J.H.,Zhu B.K.,Xu Y.Y.,Structure and ionic conductivity of porous polymer electrolytes based on PVDF-HFP copolymer membranes,J.Membr.Sci.2006 266:446-453.
    [171]Kikuko H.,Etsuo A.,Toshinori B.NMR Studies on poly(ethylene oxide)-based Polymer Electrolytes with Different Cross-Linking Doped with LiN(SO_2CF_3)_2.Restricted Diffusion of the Polymer and Lithium lon and Time-Dependent Diffusion of the Anion,Macromolecule,36:2785-2792.
    [172]Rajendran.S,Mahendran.O.Thermal and ionic conductivity studies of plasticized PMMA/PVDF blend polymer electrolytes,Euro Polym J.,2002,38:49-55.
    [173]Fong R.,yon Sacken U.,Dahn J.R.Studies of lithium intercalation into carbons using nonaqueous electrochemical-cells.J.Electrochem.Soc.,1990,137:2009-2013.
    [174]Tarascon J.M.,Guyomard D.Li metal-free rechargeable batteries based on Li_(1+x)Mn_2O_4 cathodes (0≤x≤1) and carbon anodes.J.Electrochem.Soc.,1991,138:2864-2868.
    [175]Cheng C.L.,Wan C.C.,Wang Y.Y.Preparation of porous,chemically cross-linked,PVDF-based gel polymer electrolytes for rechargeable lithium batteries.J.Power Sources,2004,134:202-210.
    [176]程琥,杜洪彦,杨勇.新型锂电池用复合隔膜的制备及其电化学性能表征.电化学,2004,10:303-306.
    [177]阮文祥,热致相分离法制备聚合物微孔材料,高分子通报,2006,2:24-28.
    [178]Smole M.S.,Zipper P.The influence of different treatment media on the structure of PET fibres.Mat.Res.Innovat.2002,6:55-59.
    [179]Alizadeh A.,Richardson L.,Xu J.,McCartney S.,Marand H.,Cheung Y.W.,Chum S.Influence of structural and topological constraints on the crystallization and melting behavior of polymers.1.Ethylene/1-Octene copolymers.Macromolecules,1999,32:6221-6235.
    [180]Marand H.,Alizadeh A.,Farmer R.,Desai R.,Velikov V.Influence of structural and topological constraints on the crystallization and melting behavior of polymers.2.Poly(arylene ether ether ketone).Macromolecules,2000,33:3392-3403.
    [181]Alizadeh A.,Sohn S.,Quinn J.,Marand H.,Shank L.C.,Darrell ller H.Influence of structural and topological constraints on the crystallization and melting behavior of polymers:3.Bisphenol a polycarbonate.Macromoleeules,2001,34:4066-4078.
    [182]C.Magrega,A.Marigo,Influence of annealing and chain defects on the melting behavior of PVDF,Eur Polym J.39(2003) 1713-1718.
    [183]Stephan A.M.,Renganathan N.G,Gopukumar S.,Teeters D.Cycling behavior of poly(vinylidene-hexafluoropropylene)(PVDF-HFP) membranes prepared by phase inversion method.Mater.Chem.Phys.,2004,85:6-11
    [184]Kalyana Sundaram N.T.,Subramania A.Microstrueture of PVdF-co-HFP based electrolyte prepared by preferential polymer dissolution process.J.Membr.Sci.,2007,289:1-6
    [185]Cao J.H.,Zhu B.K.,Ji G.L.Xu Y.-Y.Preparation and characterization of PVDF-HFP microporous flat membranes by supercritical CO_2 induced phase separation.J.Membr.Sci., 2005,266:102-109
    [186]Nicotera I.,Coppola L.,Oliviero C.,Castriota M.,Cazzanelli E.Investigation of ionic conduction and mechanical propertie of PMMA-PVdF blend-based polymer electrolytes.Solid State Ionics,2006,177:581-588.
    [187]Rajendran S.,Kannan R.,Mahendran O.An electrochemical investigation on PMMA/PVdF blend-based polymer electrolytes.Mater.Lett.,2001,46:172-179.
    [188]Wu C.G.,Lu M.I.,Chuang H.J,PVdF-HFP/P123 hybrid with mesopores:a new matrix for high-conducting,low-leakage porous polymer electrolyte,Polymer,2005,46:5929-5938.
    [189]Wang Y.J.,Kim D.PEGDA/PVdF/F127 gel type polymer electrolyte membranes for lithium secondary batteries,J.Power Sources,2007,166:202-210.
    [190]Dmoszy R.C.,Alamo R.,Edwards C.O.Tthermoreversible gelation and crystallization of homopolymers and copolymers,Macromolecules,1986,19:310-316.
    [191]Matsuyama H.,Iwatavi T.,Kitamara Y.Formation of porous poly(ethylene-co-vinyl alcohol)membrane via thermally induced phase separation,J.Appl.Polym Sci,2001,79:2449-2455.
    [192]Pu.W H.,He.W M.Preparation of PVDF-HFP microporous membrane for Li-ion batteries by phase inversion.J Membr Sci.,2007,272:11-14.
    [193]Ji.G.L.,Zhu.B.K.,Cui.Z.Y.PVDF porous matrix with controlled microstrueture,prepared by TIPS process as polymer electrolyte for lithium ion battery,Polymer,2007,48:6415-6425.
    [194]朱利平.聚醚砜、聚醚醚酮多孔膜的结构可控制备及其表面改性.浙江大学博士学位论文.2007.
    [195]何曼君,陈维孝,董西侠.高分子物理.复旦大学出版社,上海,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700