含激电效应的CSAMT二维正演与联合反演应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CSAMT法勘探采用人工建立的交变电场作为激发源会使地下极化介质产生激发极化效应,受此影响电流场作用范围内的大地电阻率应是一个与供电频率相关的复电阻率。然而在实际CSAMT的数据采集和处理过程中,认为大地电阻率与发射频率无关,这会给数据处理结果带来较大的误差,影响CSAMT法的探测精度。
     为此,本文以岩矿石的激发极化特性为基础,对稳定电流场以及交变电流场作用下的岩矿石的激发极化特性进行了研究,并基于岩矿石激发极化效应的Cole-Cole模型,讨论了岩矿石的复电阻率与Cole-Cole模型参数之间的关系;研究了复电阻率的虚分量、实分量、振幅及相位的频谱特性。结果表明:复电阻率振幅的频谱特性与实分量的频谱特性是相似的,即二者随频率的增大而减小,在频率较低时,二者均趋于直流电阻率值,而在频率较高时趋于无极化率时的初值;相位频谱特性与虚分量的频谱特性是相似的,即二者均随着充电率值的增大而增大,在频率较低和频率较高时相位与虚分量的数值皆趋于零,且在某个频率点处达到极值,而虚分量极值的大小只与时间指数有关(与时间指数成反比),相位的极值不仅与时间指数有关还与充电率和频率相关系数有关。
     在上述工作基础上,本文采用均匀半空间的Cole-Cole模型,研究了CSAMT电磁场各分量、视电阻率和相位与相关参数的关系,得到了充电率对正演结果的影响最大,频率相关系数次之,且时间指数影响最小的结论;研究了CSAMT电场Ex分量和磁场Hy分量在不同参数下随频率的变化特征,给出了①当固定模型的频率相关系数及时间指数参数而改变充电率参数时,电场Ex分量的实部和虚部的正演结果均为负值,其曲线的变化规律是相同的;②Ex分量的正演结果在低频段比较接近,而在高频段与充电率的大小是密切相关的,即充电率越大,正演结果值越小;③正演结果结果表明,磁场Hy的实部与参数的变化无关,不同参数下的虚部随频率变化,其规律是与电场Ex分量相似的。
     本文通过建立的三层电阻率模型,对极化层位于不同层位时的视电阻率、视相位、视电阻率比值和视相位比值的曲线特征进行了研究。结果表明:不同电阻率模型的视电阻率比值和视相位比值的异常反应最为直观,且二者曲线的形态相似,而前者曲线极值点所对应的频率略高,由此可知视电阻率比值和视相位比值异常只与极化层的深度和极化率大小有关,而与模型的电阻率无关。
     其次本文对4个经典2D模型进行了含激发极化效应的CSAMT2D正演模拟,得出视电阻率、视相位和视电阻率比值、视相位比值能更直观地反应异常的特性,且视电阻率出现异常时的频率比视相位出现异常时的频率高,视电阻率比值出现异常时的频率比视相位比值出现异常时的频率高。
     通过上述研究,本文提出了CSAMT与IP测深数据联合反演的方法,并用已知模型的正演结果数据进行验证,发现当介质存在激发极化特性时,联合反演比常规的CSAMT反演能更准确地反映异常体的位置和范围,由此表明联合反演方法具有一定应用前景。
     最后将该方法应用于浙江某铜多金属矿CSAMT及IP测深数据的反演,划分出了有利成矿带的位置、范围,推断了断层F5和F6的位置。通过布置K002号钻孔进行验证,与反演结果基本吻合,证明了该联合反演方法的有效性。
In the exploration of controlled source audio-frequency magnetotellurics method (CSAMT),the artificial established alternative electric field, as the excitation source, will make hypogeal polarization medium produce induced polarization effect, owing to which the current earth resistivity in fact is a plural complex number to the line frequency. However, the earth resistivity is simply considered as a real number that is irrelated to the frequency while people collect and deal with the data in practice. Obviously, the change of real numbers to complex one will bring huge error to the data.
     In order to solve the problem, starting with the induced polarization characteristic (IPC) of rock ores, this thesis makes a thorough analysis on IPC in the field of stable electric current and alternating electric current in the first place. Then based on the Cole-Cole model of IPE, it explains the relationship between complex resistivity and the parameter of Cole-Cole model. Also, it expatiates the characteristic of real component, imaginary component, amplitude and phase for the complex resistivity. A conclusion can be drawed as follows: The frequency spectrum characteristic of complex resistivity amplitude is similar with that of real component. Both decrease with increasing frequency. They will tend towards direct current resistivity ρ0when frequency is low;(1-η)ρ0, when high. Likewise, the frequency spectrum characteristic of phase and that of imaginary component resemble with each other. Both increase with the increasing charging rate values. The numerical value of them will incline to zero when the frequency is both high and low, and an extreme will be obtained in a certain middle frequency. The extreme of imaginary component is only related to time constant, inversely proportional to time constant (τ). Nevertheless, the extreme of phase is related to charging rate (m), time constant (τ) and frequency exponent (c).
     The regulations of the impact of symmetrical semi-space Cole-Cole model parameter change on various component, apparent resistivity and apparent phase in CSAMT magnetic field imply some enlightenments as follows:Firstly, the data of the real part and imaginary part of direct gravimetric in electric field Ex are both negative numbers. The laws of curve are the same. Secondly, the value of the real part of magnetic field Hy maintained fixed. By contraries, the values of imaginary part vary with the change of frequency. Among the four parameters of Cole-Cole model, the impact of charging rate on forward result is the most intense one, then the frequency, the time constant ranks in the end.
     As for three layers of resistivity models, this thesis also probes deeply into the abnormal feature of specific value for the curve of apparent resistivity, apparent phase, and the ratio of them. In a conclusion, both apparent resistivity and apparent phase of different resistivity models present out of the way intuitionally. Moreover, the configurations of these two curves resemble with each other. And the frequency of apparent resistivity ratio extreme is a bit higher than that of apparent phase ratio. As is educed from the above passage, it is the depth of polarization layer and the scale of polarization ratio, that have something to do with the ratio of apparent resistivity and apparent phase, but have nothing to do with the resistivity models.
     This thesis also analyzes the CSAMT2D forward modeling of IPE for single low resistivity medium model, single high resistivity medium model, dual resistance medium one and fault's. It is noticed that the consideration of IPE of medium makes the abnormity of forward modeling data more distinct than that showed without consideration of IPE. And likewise, apparent resistivity, apparent phase, and the ratio of them can intuitively reflect the characteristic of abnormity. The abnormity of apparent resistivity is more frequent than that of apparent phase. Similarly, the same thing happens on the ratio of apparent resistivity and apparent phase.
     A thought of joint inversion between CSAMT and induced polarization (IP) sounding has been put forward. It is discovered that whenever the medium is characterized by IPE, the data of joint inversion can fix the position and scope more exactly than those of CSAMT, which proves the superiority of joint inversion. The theory of joint inversion has been put into practice in the joint inversion of a Zhejiang cuprum polymetallic ore CSAMT and IP sounding. The position and scale of metallogenic belt have been marked off; the spots of fault of F5and F6have also been deduced. The experiment on ZK002drill hole discloses that Ⅰ、Ⅱ、Ⅲ、Ⅳ copper ore bodies are indigenous to crypto explosive breccia chimney and the F5and F6faults certainly exist. In a word, the joint inversion method is effectively feasible through the practical engineering.
引文
[1]Tikhonov, A.N., Determination of the electrical characteristics of the deep state the earth's crust [J].Dok.Akad.Nauk, USSR.1950,73(2):295-297.
    [2]Cagniard, L. Basic Theory of the Magnetotellurics method of geophysical prospecting [J]. Geophysics,1953,18:605-635.
    [3]Strangway D.W., Shift C.M., Holmer R.C.. The application of audio-frequency Magnetotellurics (AMT) to mineral exploration[J]. Geophysics,1973,38 (6): 1159-1175.
    [4]Goldstein M.A., Strangway D.W.. Audio-frequency Magnetotellurics with a grounded electric dipole source [J]. Geophysics,1975,40 (4):669-683.
    [5]Zonge, K.L, Hughes, L.J. Controlled source audio-frequency Magnetotellurics in Electromagnetic Methods in Applied Geophysics, ed. Nabighian, M.N[C]. Society of Exploration Geophysicists,1991,2:713-809.
    [6]Zonge, K. L. Broad Band Electromagnetic Systems[C]. In Practical Geophysics Ⅱ for the Exploration Geologist. Ed, Richard Van Blaricom, Northwest Mining Association.1992:439-523.
    [7]Cagniard, L. Basic theory of the Magnetotellurics method of geophysical prospecting [J]. Geophysics,1953(18):605-653.
    [8]Wannamaker, P.E. Tensor CSAMT survey over the Sulphur Springs thermal area, Valleys Caldera, New Mexico, U.S.A.:Part Ⅰ. Implications for the structure of the western caldera [J]. Geophysics,1997a,62 (2),451-465.
    [9]Wannamaker, P.E. Tensor CSAMT survey over the Sulphur Springs thermal area. Valleys Caldera, New Mexico, U.S.A.:Part Ⅱ. Implications for CSAMT methodology[J]. Geophysics,1997b,62 (2),466-476.
    [10]Ce'cile Savin,Michel Ritz.et al. Hydrothermal system mapped by CSAMT on Karthala volcano, Grande Comoro Island, Indian Ocean[J], Journal of Applied Geophysics,2001,48(3):143-152.
    [11]底青云,张庚利,石昆法等CSAMT法和高密度电法探测地下水资源[J].地球物理学进展,2001,16(3):53-58.
    [12]刘宏,刘东琴CSAMT勘探方法在寻找地热中的应用[J].物探装备,2002,12(2):129-132.
    [13]张青杉,穆建强CSAMT与地热勘查[J].地质找矿从论,2003,18(z1):184-187.
    [14]徐新学,夏训银,刘俊昌,张进国.MT及CSAMT方法在城市地热资源勘探中的应用[J],桂林工学院学报,2004,7:278-231.
    [15]朱国器,何军,王同庆CSAMT在柳州沙塘地区地热资源远景评价的应用[J],工程地球物理学报,2010,7(2):138-144.
    [16]何世豪,王斌,郭守钧,张洪银CSAMT法在海北某地地热勘探中的应用[J].青海科技,2010,17(3):21-23.
    [17]邓国泉,程云涛CSAMT在福建贵安地热勘查中的应用[J].物探与化探,201 1,35(6):751-755
    [18]杜炳锐.电法在深部地热勘查中的应用研究[D].成都:成都理工大学,2011.
    [19]黄力军,孟银生,陆桂福.可控源音频大地电磁测深在深部地热资源勘查中的应用[J].物探化探计算技术,2007,29(s2):60-64
    [20]刘瑞德,黄力军,孟银生.可控源音频大地电磁测深法在地热田勘查中应用效果初探[J].工程地球物理学报,2007,4(2):86-90
    [21]王卫江.新疆干旱地区地下水资源勘查地球物理方法优选研究[D].吉林:吉林大学,2007.
    [22]武斌,曹俊兴,邹俊,黄金宝,音频大地电磁测深法在康定小热水地热勘查研究中应用[J].物探化探计算技术,2011,31(5):506-510.
    [23]张新军,刘海生,刘鸿福,余传涛CSAMT法在山西断陷盆地榆次城区寻找地热中的应用(J).资源与产业,2010,12(6),141-145.
    [24]Yu C.T., LIU H.F*, ZHANGX.J.. CSAMT investigations in the faulted basin geothermal field, Shanxi, China (C),2011 International Symposium on Water Resource and Environmental Protection (ISWREP), xi'an,2011.5.
    [25]刘红涛,杨秀瑛,于昌明等.用VLF、EH4和CSAMT方法寻找隐伏矿--以赤峰柴胡栏子金矿床为例[J].地球物理学进展,2004,19(2):276-285
    [26]李金都,王学潮.南水北调西线工程区活动断层技术探测研究[J].岩石力学与工程学报,2004,23(17):2932-2936
    [27]王立群,刘国兴等,大功率激电和CSAMT法在敦化团北地区查找锡钼矿的应用[J].吉林大学学报(地球科学版),2008,11(s1):4-8
    [28]柳建新,郭荣文等CSAMT法在西北深部探矿中的应用研究[J].矿产与地质,2008,23(2),261-265
    [29]柳建新,王浩等CSAMT在青海锡铁山隐伏铅锌矿中的应用[J].工程地球物理学报,2008,3(3),274-279
    [30]李帝铨,底青云,王光杰等CSAMT探测断层在北京新区规划中的应用[J].地球物理学进展,2008,23(6):1963-1969
    [31]王大勇,李桐林等,CSAMT法和T EM法在铜陵龙虎山地区隐伏矿勘探中的应用[J].吉林大学学报(地球科学版),2009,43(6):1134-1139
    [32]王艳,林君等,CSAMT法深部低阻分辨能力及方法研究[J].中国矿业大学学报,2009,38(1):86-91
    [33]于泽新,敖颖锋等CSAMT法在辽西康杖子区深部探矿中的应用[J].地质与勘探,2009,45(5):600-605
    [34]迟永坤,李凤之CSAMT法在深部铜锌矿体勘查中的应用[J].吉林地质,2010,29(1):84-86
    [35]张建奎,可控源音频大地电磁测深找铅锌矿的应用[J].物探与化探,2010,34(2):167-170
    [36]陆大进,薛国强等CSAMT法在石台老山隐伏矿勘探中的应用效果,石油仪器,2011,25(2):45-49
    [37]魏明君,赵金洲等CSAMT在河南某铝土矿区深部勘查中的应用[J].物探与化探,2011,35(5):600-604
    [38]林金波.可控源音频大地电磁法在浙江某铜多金属矿的应用研究[D].太原:太原理工大学,2011
    [39]Chuan-Tao Yu, Hong-Fu Liu Deep Copper deposit Exploration by CSAMT in Jiang-Shao fault zone, SEG expend abstract,2011,10.
    [40]黄鹤年CSAMT法结合推覆构造在水井坑井田含煤区中应用[J].西部探矿工程,2009,21(3):137-141
    [41]邓洪亮,谢向文.陈玲CSAMT法探测深长埋隧洞中隐伏断层的技术应用[J].南水北调与水利科技,2007,5(2):12-15
    [42]朱金华,冒我冬,白锦琳,李华CSAMT法在断层含水性评价中的应用[J].物探与化探,2011,35(4):569-573
    [43]余传涛,刘鸿福等CSAMT法在煤矿隐伏断层探测中的应用[J].CT理论与运用.2010,19(1):28-33
    [44]马志飞.可控源音频大地电磁法探测煤田隐伏断层的应用研究[D].太原:太原理工大学,2009.
    [45]董泽义,汤吉,周志明.可控源音频大地电磁法在隐伏活动断裂探测中的应用[J].地震地质,2010,32(03):442-453
    [46]Spies, B.R. A field occurrence of sign reversals with the transient electromagnetic method [J]. Geophysical prospecting,1980,28(4),620-632.
    [47]Pelton, W.H., Ward, S.H., Hallof, P.G., Sill, W.R., Nelson, P.H... Mineral discrimination and removal of inductive coupling with multifrequency IP [J]. Geophysics,1978,43(3),588-609.
    [48]Sidorov, V.A., Yakhin, A.M.,. Induced polarization of rocks in TEM soundings[J]. Izv. AN SSSR. Ser. Fizika Zemli,1979,11:46-52.
    [49]Thomas P. Gruszka James R. Wait. Interaction of induced polarization and electromagnetic effects in borehole probing[J], Geoexploration,1989,25(4) 267-277.
    [50]A.A. Kaufman, S. Geoltrain,R.N. Knoshaug. Influence of induced polarization in inductive methods, Geoexploration,1989,26(2):75-93
    [51]殷长春,刘斌.瞬变电磁法三维问题正演及激电效应特征研究[J].地球物理学报,1994,37(S2):486-492.
    [52]王隆平,温佩琳.论TEM法中的IP效应[J].中南工业大学学报[J].1998,,29(3):208-210.
    [53]El-Kaliouby, H.M., et al. Optimum negative response of a coincident-loop electromagnetic system above a polarizable half-space[J]. Geophysics,1997,62(1): 75-79.
    [54]Ghorbani, A., Camerlynck, C., Florsch, N., Cosenza, P., Revil, A.. Bayesian inference of the Cole-Cole parameters from time-and frequency-domain induced polarization[J]. Geophysical Prospecting,2007,55(3):589-605.
    [55]Khesin, B., Alexeyev V., Eppelbaum, L.. Rapid methods for interpretation of induced polarization anomalies[J], Journal of Applied Geophysics,1997,37(2): 117-130.
    [56]孙鸿雁.磁性源瞬变电磁测量中激电效应作用规律的探讨[J],物探与化探,1 998,22(1):49-54.
    [57]韩玉雷.瞬变电磁激发极化效应的应用[J],工程地球物理学报.2006,3(5):366-369.
    [58]Kozhevnikov. N.O.,Antonov. E.Yu, Joint inversion of IP-affected TEM data[J]. Russian Geology and Geophysics,2009,50(2),136-142.
    [59]Carlos Flores, Sergio A. Peralta-Ortega. Induced polarization with in-loop transient electromagnetic soundings:A case study of mineral discrimination at El Arco porphyry copper, Mexico[J], Journal of Applied Geophysics, 2009,68(3):423-436.
    [60]岳建华,杨海燕.巷道边界条件下矿井瞬变电磁响应研究[J].中国矿业大学学报,2008,37(2):152-156.
    [61]薛国强,李貅,郭文波等.从瞬变电磁测深数据到平面电磁波场数据的等效转换[J].地球物理学报,2006,49(5):1539-1545.
    [62]G. Q. Xue, Y. J. Yan,X. LI.control of wave-form dispersion effect and applications in tem imaging technique for identifying underground objects[J]. Journal of geophysics and engineering,,2011,8(3):195-201.
    [63]Ken Yoshioka, Michael S.. Zhdanov. Three-dimensional nonlinear regularized inversion of the induced polarization data based on the Cole-Cole model[J] Physics of the Earth and Planetary Interiors,2005,150(1-3):29-43.
    [64]吴汉荣,王式铭.利用天然电磁场进行激发极化法测量的可能性[J].物探与化探,1978,(1):62-64
    [65]罗延钟,张胜业,熊彬.天然场源激电法的可行性[J].地球物理学报,2003,46(1):25-130.
    [66]Morrison,H.F.,Gasperikova,E.. Mapping of induced polarization using nature fields[C],66th annual international SEG meeting. Expanded Abstracts,1996. 603-606.
    [67]李勇,天然场源激电信息的提取研究[D].桂林:桂林工学院,2007.
    [68]Yang Jin, Liu Zhaoping, Wang long. Effectiveness of natural field induced polarization for detecting poly metallic deposits[J].Earth Science Frontiers, 2008,15(3):217-221.
    [69]陈清礼.天然场源激电法基础理论研究[D].北京:中国地质大学(北京).2001.
    [70]李金铭,陈清礼,杨冠鼎.极化水平层上天然场源激电测深的理论研究[J].物探与化探,2003,27(4):280-283.
    [71]陈清礼,胡文宝,李金铭.由MT资料反演真谱参数的基本原理[J].石油天然气学报(江汉石油学院学报),2006,28(6):61-64.
    [72]曹中林,何展翔,昌彦君.MT激电效应的模拟研究及在油气检测中的应用[J].地球物理学进展,2006,21(4):1252-1257.
    [73]岳安平,底青云,石昆法.从CSAMT信号中提取IP信息的探讨[J].地球物理学进展,2007,22(6):1925-1930.
    [74]刘磊,昌彦君,曹中林.可极化大地上CSAMT激发极化效应的研究[J].工程地球物理学报,2008,5(6):686-689.
    [75]汤井田,黄磊,余灿林,席玉萍.CSAMT法中极化层的视电阻率响应[J].工程地球物理学报,2008.125(6):648-651.
    [76]黄磊CSAMT中的IP效应提取[D].长沙:中南大学.2009.
    [77]Xu Wen-dong, Lin Jun. Research on the IP Parameters extraction from MT data[C].Changsha:IEEEICMTMAZO10,2010,111:979-982.
    [78]胡建德.瞬变电磁侧深和直流电磁测深资料的联合反演[J].石油地球物理勘探,1959,24(5):549-558.
    [79]Vozoff K, Jupp DLB.. Effective Search for a buried layer:An approach to experimental design in geophysics[J].Exploration Geophysics,1977,8(2):6-15.
    [80]Raiche AP, Jupp DLB. Rutter H.et al. The joint use of Coincident loop transient electromagnetic and schlumberger sounding to resolve layered structures[J]. Geophysics,1985,50(20):1618-2627.
    [81]Sasaki Y. Two-dimensional Joint inversion of Magnetotellurics and dipole-dipole resistivity data[J]. Geophysics,1986,54(2):254-262
    [82]Meju MA. Joint inversion of TEM and distorted MT soundings:Some effective practical considerations[J].Geophysics 1996.61 (1):56-65.
    [83]Tezkan B.,Goldman M., Greinwald S., et al. A joint application of radio Magnetotellurics and transient Electromagnetics to the investigation of a waste deposit in cologne[J]. Journal of Applied Geophysics,1996,34(2):199-212.
    [84]Fernando A. Montero Santos, Andre Dupis et al..1D joint inversion of AMT and resistivity data acquired over a graven[J] Journal of Applied Geophysics, 1997,38(2):115-129
    [85]Sharma SP, Kaikkonen P. Appraisal of equivalence and suppression Problems in 1D EM and DC measurements using global optimization and joint inversion[J]. Geophysical prospecting,1999,47(2):219-249.
    [86]Yang C.H, Tong L.T, Huang C.F.. Combined application of DC and TEM to sea-water intrusion mapping[J]. Geophysics,1999,64(2):417-425.
    [87]Abubakar, A., Vanden Berg P.M. Joint inversion of electrode and induction logging data[C].Expanded Abstracts of 62nd EAGE Conference and Exhibition, 2000. D0004
    [88]邓荣来,刘天佑等.重磁联合反演及重磁与MT综合解释巴彦浩特盆地火成岩[J].石油物探.2002.41(2):222-225
    [89]Verma S.K,地震和MT数据联合反演在复杂地区油气勘探中的作用[J],石油地球物理勘探,2004,39(s),148.
    [90]敬荣中、鲍光淑,一种基于数据融合的地球物理数据联合反演方法—以VES和MT为例[J].地球物理学报,2004,47(1):143-150.
    [91]Moorkamp, M.,Jones, A.G., Eaton, D.W.,Joint inversion of teleseismic receiver functions and Magnetotellurics data using a genetic algorithm:Are seismic velocities and electrical conductivities compatible [J].Geophysical Research Letters,2007,7(34):296-312.
    [92]于鹏,王家林,吴健生等.重力与地震资料的模拟退火约束联合反演[J].地球物理学报,2007,50(2):529-538.
    [93]杨云见,何展翔,王绪本等AMT、TEM、VES地层响应特征模拟分析及其联合反演探讨[J],地球物理学进展,2008,34(5):1550-1555.
    [94]杨云见,何展翔,王绪本等.直流电测深法与中心回线瞬变电磁法联合反演[J].物探与化探,2008,32(4):442-445.
    [95]陈晓,于鹏,张罗磊.大地电磁与地震正则化同步联合反演[J].地震地质,2010,32(3):402-408.
    [96]Knutur Arnason, Hjalmar Eysteinsson, Gylfi Pall Hersir. Joint 1D inversion of TEM and MT data and 3D inversion of MT data in the Hengill area, SW Iceland [J], Geothermics,2010,39 (1):13-34.
    [97]Moorkamp, Max, et al.. A framework for 3-D joint inversion of MT, gravity and seismic refraction data [J]. Geophysical Journal International,2011,184 (1) 477-493.
    [98]Miorelli, F.. Joint laterally constrained inversion of CSEM and MT data [C]. Society of Petroleum Engineers,73rd European Association of Geoscientists and Engineers Conference and Exhibition,2011-Incorporating SPE EUROPEC,2011: 665-669.
    [99]Pejman Shamsipour, Denis Marcotte, Michel Chouteau.3D stochastic joint inversion of gravity and magnetic data [J]. Journal of Applied Geophysics,2012, 79:27-37.
    [100]何继善等.可控源音频大地电磁法[M].长沙:中南工业大学出版社,1990.
    [101]徐汶东CSAMT中的IP效应影响及应用研究[D].吉林:吉林大学,2011.
    [102]朱占升,谭捍东.考虑激电效应的二维大地电磁正演[J].工程地球物理学,201 1,8(4):433-437.
    [103]石昆法.可控源音频大地电磁法理论与应用[M].北京:科学出版社,1999.
    [104]孙鸿雁.可控源音频大地电磁法地形影响及校正方法的对比研究与应用[D].北京:中国地质大学(北京),2005.
    [105]何明峰,CSAMT法在深埋长大隧道勘察中的应用与研究[D].成都:西南交通大学,2010.
    [106]丁柱,童茂松,潘涛.岩石复电阻率Dias模型及其参数求取方法[J].物探化探计算技术,2005,27(2):135-137.
    [107]童茂松,丁柱.岩石复电阻率频谱模型参数的反演[J].测井技术,2006,30(4):303-30.
    [108]何继善,熊彬,鲍力知等.激发极化观测中电磁耦合的时间特性[J].地球物理学报,2008,51(3):886-893.
    [109]傅良魁.激发极化法[M].北京:地质出版社,1982.
    [110]柳建新,西部特殊地貌景观区双频激电法方法及应用研究[D].长沙:中南大学,2006.
    [111]克罗马夫.B.A..激发极化法电法勘探[M].北京:地质出版社,1983.
    [112]马丽娟.铀矿床上的激发极化特性[J].桂林冶金地质学院学报,1984,1:89-91.
    [113]傅良魁.体极化介质激发极化法理论研究[J].地球物理学报,1987,30(1): 80-90.
    [114]何继善.双频激电电法原理[M].北京:高等教育出版社,2006.
    [115]傅良魁,傅平,邓明.激发极化法基础理论研究—确定二次极化电流的新方法[J].地球物理学报,1990,33(6):722-732.
    [116]罗延钟,张桂青.频率域激电法原理[M].北京:地质出版社,1988.
    [117]万鹏.频谱激电法中Cole-Cole模型频谱特性分析[J].内蒙古石油化工,2006,32(5):69-72.
    [118]傅良魁.复电阻率法异常的频谱及空间分布规律[J].地质与勘探,1981,2:86-93.
    [119]罗延钟,吴之训.谱激电法中频率相关系数的应用[J].地球物理学报,1992,35(4):490-500.
    [120]刘崧.谱激电法[M].武汉:中国地质大学出版社,1998.
    [121]陈儒军,伪随机多频电磁法观测系统研究[D].长沙:中南大学,2003.
    [122]陈儒军,何继善,多频激电相对相位谱研究[J].中南大学学报(自然科学版),2004,35(1),106-112.
    [123]刘春明,伪随机激电多参数谱法研究[D].长沙:中南大学,2006.
    [124]岳安平,底青云,王妙月等.油气藏MT激电效应一维正演研究[J].石油地球物理勘探,2009,44(3):364-370.
    [125]殷长春.可控源音频大地地磁法一维正演及精度评价[J].长春地质学院学报,1994,24(4):438-453
    [126]万乐,罗延钟CSAMT一维正演的快速近似计算[M].中国地球物理学会年刊,北京:地震出版社,1993.
    [127]岳安平,底青云,王妙月等.含激电效应的CSAMT一维正演研究[J].地球物理学报,2009,52(7):1937-1946.
    [128]王文娟,地球物理反演中病态矩阵方程正则化解算方法研究[D].成都:成都理工大学,2010.
    [129]童孝忠.大地电磁测深有限单元法正演与混合遗传算法正则化反演研究[D].长沙:中南大学,2008.
    [130]许建荣,起伏地形条件下大地电磁测深二维正反演研究及应用[D].长沙:中南大学,2008.
    [131]Smith, J. T., Booker, J. R.. Rapid inversion of two and three-dimensional Magnetotellurics data [J]. J Geophysics,1991,96 (B3):3905-3922.
    [132]谭捍东.大地电磁三维正反演问题研究[D].北京:中国地质大学,2000.
    [133]Lu, X., Ynsworth, M., et al.. Rapid relaxation inversion of CSAMT data [J]. Geophys. J. int.,1999,138 (2):381-392.
    [134]Boerner, D. E., Wright, J. A., Thurlow, J. G., et al.. Tensor CSAMT studies at the buchans mine in central New found land [J]. Geophysics,1993,58 (1):12-19.
    [135]王若,王妙月.可控源音频大地电磁数据的反演方法[J].地球物理学进展,2003,18(6):197-202.
    [136]底青云,王若等.可控源音频大地电磁数据正反演及方法应用[M].北京:科学出版社,2008.
    [137]胡广耀,胡建德.大地电磁资料的二维连续模型自动反演[J].地球科学,1990,15(s1):23-36.
    [138]Basokur, A. T., Rasmussen, T. M., Kaya, C., et al.. Comparison of induced-polarization and controlled-source audio-Magnetotellurics methods for massive chalcopyrite exploration in a volcanic area [J]. Geophysics,1997,62 (6) 1087-1096.
    [139]于昌明CSAMT方法在寻找隐伏金矿中的应用[J].地球物理学报,1998,41(1):133-138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700