煤层气富集区非地震综合物探技术及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震勘探方法在常规油气勘探中发挥了重要作用,在煤层气的勘探中,地震勘探也还处于探索试验阶段。勘探实践证明,在地震勘探条件较差的地区,常规的地震勘探方法也遇到了不少挑战,而且大面积的地震勘探,特别是三维地震勘探,成本极高,与煤层气的经济勘探与开发不相适应。非地震勘探方法技术,种类多样,并且各具优势,是地球物理勘探技术体系中重要组成部分。包括重力、磁法、电法以及电磁法等,勘探成本低廉,容易形成多方法、多参数、多尺度综合勘探的技术优势,开展煤层气非地震勘探技术试验,实现煤层气的经济勘探开发具有重要意义。
     为适应煤层气经济勘探和评价需求,在国家重大科技专项——大型油气田及煤层气开发项目的支持下,专门开展煤层气地球物理勘探技术研究,以期提出有效的勘探方法技术及其组合,实现煤层气富集区经济预测与评价。本文主要是开展煤层气富集区非地震综合物探方法技术的探索性研究。主要从以下几个方面开展研究工作,以期获得比较全面、系统性的认识。
     首先,对前人关于煤层气勘探与开发相关地质理论和勘探实践成果进行总结,为开展煤层气综合物探技术机理研究提供了较好的地质理论基础。
     根据煤层气藏的定义,总结了煤层气藏与常规天然气的显著差异,煤层气生成,运移、富集的一般规律,以及影响煤层气富集的多种因素;分析了区域构造、局部构造及地下水及其动力条件与煤层气富集之间的密切关系,总结了导致煤层气富集与贫化的地质结构模型。
     其次,根据煤层气运移、渗漏一般规律与特点,开展了煤层气非地震勘探技术机理与探测模式研究。
     详细分析了煤层气的渗漏特点,分析了渗漏过程中在上覆地层中产生的物理或化学变化,总结了煤层气藏上覆地层中特殊次生矿物形成过程,及其在上覆地层中的分布规律;结合煤层气藏的自身特点,对常规油气藏地电化学“烟囱效应”模型进行修正,获得了煤层气藏地电化学探测结构模型;根据地面高精度磁测和激发极化的方法原理,以及煤层气藏上覆地层中特殊次生矿物的特性,提出采用地面高精度磁测和激发极化相结合方法,通过探测煤层气富集区上覆地层中的特殊次生矿物引起的物探异常分布,间接开展煤层气富集区的勘探模式;根据获得的地电化学探测结构模型,详细分析了在煤层气藏上方可能形成的磁异常和激发极化异常特征,提出了异常处理与解释过程中需要注意的相关问题。
     根据影响煤层气富集相关的区域和局部构造,地下水的分布及其动力学特征出发,提出采用可控源音频大地电磁测深法(Controlled Source Audio-frequencyMagnetoTellurics,CSAMT)进行煤层气有利富集区的勘探,并提出了几个典型CSAMT法勘探地质-地球物理模型;并提出通过探测地下水、构造等煤层气富集与逸散的外部条件,间接探测或推断煤层气的有利富集区;特别指出,在煤层气CSAMT探测中不仅要重视气藏的构造因素,也应重视地下水的分布因素,这是与采用CSAMT进行常规油气藏勘探的不同之处。
     然后,根据煤层气勘探资料处理解释需要,针对时间域激发极化法和可控源音频大地电磁法,开展正演数值模拟与数据处理解释方法研究。
     针对时间域激发极化法,根据复杂地电结构模型特点和二维有限单元法数值模拟需要,提出并实现了复杂计算区域非结构化三角网格自适应剖分方法;针对点源二维地电问题,利用有限单元法实现了带地形时间域激发极化2.5维正演模拟和反演方法研究;利用电位互换原理和电位线性叠加法分别实现快速正演和反演中偏导数的计算,有效提高了计算速度;根据提出的煤层气藏地电化学探测结构模型,开展激发极化异常特征研究,理论模型试验结果表明视极化率参数基本不受地形影响。
     在偶极源一维CSAMT正演的基础上,利用电磁场叠加原理,完成了双极源CSAMT正演模拟和反演研究;详细比较了偶极源与双极源CSAMT视电阻率曲线特点;为提高反演的效率和精度,采用约束-优化地电参数作为初始模型,采用阻尼最小二乘法实现双极源一维CSAMT的反演,采用有限单元法完成了线源二维CSAMT正演模拟,为进一步开展二维反演奠定了基础。
     第四,开展煤层气综合物探技术试验,总结勘探方法与技术的应用效果。
     选择山西和顺煤层气勘探区,开展了综合物探技术试验。勘探试验证明,地面高精度磁测弱负异常“亮点”集中分布区与煤层气有利富集区有较好的对应关系;大面积的视极化率平面异常区与煤层气有利富集区有较好的对应关系,且不同地质条件表现相同,而视电阻率异常在不同的地质条件下有不同表现;“烟囱效应”在地面产生的面积性异常位置会受到局部开放性断裂和陷落柱影响;视极化率测深结果能较好地展示“烟囱效应”在地层中的垂向分布,结合极化率异常垂向分布特征,能较好推断面积性高极化异常与深部煤层气藏的对应关系;电阻率测深能较好反映地下含水层的位置及分布,但勘探深度和分辨率受较浅部低阻层影响较大;CSAMT方法能很好地给出地下深部电性结构分布,结合钻井和测井获得的地层电性特征,可较好推断地下地层展布特征,推断结果与已知地震剖面吻合良好;研究表明,可以根据剖面的电性分布特征推测地层含水及富水分布区,以及断裂、褶皱发育部位,推测煤层气相对富集区,也可以为煤层气排采井位的布设提供参考依据。
     最后,根据煤层气综合物探技术试验效果,总结并提出了煤层气综合物探技术模式。
     以地面高精度磁测为先导,利用区域磁异常获得区块大致构造分区,利用局部异常的正负弱磁异常集中区圈定大致有利区范围;以CSAMT长剖面测量验证和控制区块地层的宏观展布格局,以及地下水的整体分布特点,划分有利富集区段;在有利富集区段采用三维或拟三维CSAMT测量,获得地层平面展布特点和局部构造分布,推断煤层气有利富集范围;在有利富集范围内,以极化率面积测量确定高极化异常部位,辅以极化率测深,修正平面异常,综合三种方法的共同异常部位推测圈定煤层气有利富集部位;实现多方法、多参数、多尺度、多角度综合探测。
     通过煤层气富集区非地震综合地球物理勘探试验研究,认为非地震方法在分辨率方面虽然与地震无法媲美,但可以利用多方法、多参数、多尺度的优势,从不同的侧面反映煤层气相对富集区的特征,由于非地震勘探具有成本优势,可实现煤层气富集区经济勘探与快速评价。或为地震精细勘探提供有利目标区,也可以作为煤层气地震勘探方法的有效补充和参考。
Seismic exploration method plays an important role in conventional gasexploration, but for coalbed methane (CBM) exploration, seismic exploration is stillin the experimental stage, and in seismic exploration areas with poor conditions,conventional seismic exploration method also met a lot of challenges. The cost oflarge areas of seismic exploration, especially the3-D seismic exploration is very high;it does not meet the need of the economic exploration and development of CBM.Non-seismic exploration techniques, with species diversity, and each has itsadvantages, including gravity, magnetic method, electic method and electromagneticmethod and so on, are all the important part of geophysical exploration technologysystem. With low cost, easy to form advantages of multi-method, many parameters,multi-scale, integrated exploration technicals, and carry out the non-seismicexploration technology experiment research for CBM exploration, to realize the CBMeconomical exploration and development has important significance.
     In order to adapt to the need of CBM economic exploration and evaluation, Withthe support of state major science and technology, the special projects of large oil andgas fields and CBM development project, the special research of CBM integratedgeophysical exploration technology was carried out. And in order to put forwardeffective method in the exploration of technology and their combination, realize theCBM enrichment region economic forecast and evaluation. This paper is intended tocarry out the non-seismic integrated geophysical exploration methods research forCBM enrichment region exploration. Hope to obtain more comprehensive andsystemic cognition, mainly aspects of research are as followed.
     First of all, the achievements of CBM exploration and development of geologicaltheory and practice exploration was summarized, and it provided a fairly goodgeological theory basis for the mechanism research by using the integrated geophysical exploration techniques for CBM exploration.
     According to the definition of CBM reservoir, summarized the CBM ofsignificant differences with conventional gas reservior, the generation, and the generalrule of CBM migration and enrichment, and the influence factors of CBM enrichment;Analyzed the regional geological structure, local geological structure, groundwaterdistribution and its dynamic conditions and the close relationship between the CBMenrichment; and the CBM enrichment and dilution geological structure model wassummarized.
     Secondly, according to CBM migration, the general rules and characteristics ofCBM seepage, and carried out the research of exploration mechanism and detectionmodel for the CBM exploration by using non-seismic methods.
     The CBM seepage characteristics and the physical or chemical change of theoverlying strata in CBM leakage process was detailed analyzed. And summarized thespecial secondary minerals forming processing in the overlying strata of CBMenrichment region, and the distribution law in the overlying strata; Combined with thecharacteristics of CBM reservoir, the model of electrochemical "chimney effect" ofconventional reservoir was revised, obtain the electrochemical detecting structuremodel for CBM exploration; According to the principle of the high-accuracy precisionground magnetic survey and Induced Polarization(IP) method, and the characteristicsof the secondary special mineral of CBM overlying strata, proposed by using thehigh-accuracy precision ground magnetic survey and IP method combining to detectethe special secondary minerals distribution to detecte the CBM enrichment regionindirectly, According to the electrochemical detection structure model, thecharacteristics of magnetic anomaly and IP anomaly may form above CBM reservoirwere analyzed in detail, and put forward some related issues of which need to payattention in the data processing and interpretation process.
     According to the influence factors of CBM enrichment, such as regional andlocal geological structures, the distribution of the groundwater, the dynamiccharacteristics of groundwater, and proposed by using Controlled Source Audiofrequency MagnetoTelloric (CSAMT) method to prospect the CBM favorableenrichment region, and proposed several typical geological models for CBMexploration; And put forward the CBM prospecting technical mode by detectinggroundwater, structure of CBM enrichment and dilution external conditions toprospect the CBM favorable enrichment region; Special points out that in thedetection of CBM by using CSAMT not only need pay attention to the reservoir structure factors, also need to pay attention to the groundwater distribution, it was thedifference of prospecting CBM reservoir and conventional gas reservoir by usingCSAMT method.
     Thirdly, according to the needs of data processing and explaining of CBMexploration, for the time domain IP and CSMT method to carry out the forwardmodeling and the data processing and interpretation method research
     For the time domain IP method, according to the characteristics of the complexgeoelectrical model and the need of2-D finite element forward modeling, proposedand implemented the complex calculation region unstructured triangular grid adsptivemesh method; For2-D point source geoelectrical problem, by using of finite elementmethod to carry out the2.5-D time domain IP forward modeling and inversion methodresearch with terrain; Use of potential swap principle and potential lineartransformation method to realize the fast forward modeling and inversion, Accordingto the CBM electrochemical exploration structure model which was proposed, andcarried out IP anomaly characteristics study, the theoretical model test results showthat the polarizability parameter was not effected on the topographic.
     Based on the1-D dopole source CSAMT, use of the electromagnetic fieldsuperposition principle to achive the bipolar source CSAMT forward modeling andinversion; and then compared the apparent resistivity curves of dipole source andbipolar source CSAMT. In order to improve the precision and efficiency of inversion,use of the constraint and optimization geoelectric parameters as the initial model, byusing the least-square method to realize CSAMT bipolar source inversion, andcompleted the line source two-dimensional finite element forward modeling studies, itlaid the foundation for two-dimensional inversion of CSAMT.
     Fourth, carry out the integrated geophysical exploration technique experiment forCBM, and summarized the method and technology application effect.
     Select the Heshun CBM exploration area to carry out the integrated geophysicalexploration technique experiment. And it proved that the weak positive and negativemagnetic anomalies "bright spot" concentration distribution area of the high-accuracyprecision ground magnetic survey was corresponded to the CBM favorable enrichmentregion; Large area of polarizability abnormal area and CBM favorable enrichmentregion has good corresponding relation, and for different geological conditions thepolarizability has the same performance; the apparent resistivity anomalies indifferent geological conditions have different performance; The "chimney effect" inthe area of the ground which produced the IP abnormal position was influenced by local open fracture and collapse columns; the results of polarization sounding wasbetter demonstrate the "chimney effect" in the stratum in the vertical distribution, andcombined with the vertical distribution of polarization anomaly, we can infer that therelationship between the plane anomaly of high polarization and the deep CBMreservoirs; The resistivity sounding technique can be better reflect the position anddistribution of the underground aquifer, however, the shallower low resistivity layerwas grater affect on its exploration depth and resolution. CSAMT method can give thedeep underground electrical structure and its distribution, combined with the electricalcharacteristics of each layer that obtained by drilling and well logging, can better inferthe distribution characteristics of underground stratas, The CSAMT inferred resultwas in good agreement with the known seismic profiles. Studies have shown that wecan accord the electrical distribution characteristics of CSAMT section to infer thedistribution of aquifer area, water-rich area, the fracture and fold, and then tospeculate the CBM relatively enrichment region, it also can provide the geophysicalreference for CBM well arrangement.
     Finally, according to the results of the integrated geophysical CBM explorationtechnique experiment, this paper presents the integrated geophysical explorationtechnique mode for CBM enrichment region exploration.
     The high-accuracy precision ground magnetic survey as the guide and accordingto the regional magnetic anomaly to get the roughly constructed partition of CBMexploration block; according to the concentrated distribution area of positive andnegative weak magnetic anomaly in local magnetic anomaly map to delineategenerally favorable CBM enrichment region; by using of CSAMT long profilemeasurements to control and verify the macro strata and the groundwater distributioncharacteristics, and divide the favorable segment of CBM enrichment region; Infavorable CBM enrichment region, by using3-D or fake3-D CSAMT survey, obtainthe planar distribution characteristics of stratus, and the local geological structuredistribution, so as to give favorable CBM enrichment area; In the favorableenrichment area, by using the IP survey to determine the high polarization anomalyarea, and with the polarization sounding, to correct the IP planar anomalies,combination the three methods of common anomalies to delineate the favorable CBMenrichment region; to realizate the multi-method, more parameters, multi-scale andperspectives, integrated geophysical detection for CBM enrichment region.
     Through the non-seismic integrated geophysical exploration experimentalresearch for CBM enrichment region, we considered that although the resolution of non-seismic methods can not be comparable with the seismic exploration method, butcan use its advantages of multi-method, many parameters, multi-scale from differentsides to relative the characteristics of CBM enrichment region, it can be also used asthe effectively complement and reference for seismic method, or to provide thefavorable target for seismic fine exploration. In addition, as the advantages of theexploration cost, may realize the CBM economical exploration and evaluation.
引文
[1]张全国.国内外煤层气的开发与进展[J].中国沼气.1999,17(2):42~44.
    [2]黄盛初,刘文革,赵国泉.中国煤层气开发利用现状及发展趋势[J].中国煤炭,2009,35(1):5~10.
    [3]胡省三.中国煤炭工业发展与环保工程.见:中美能源会议论文集[C],1995.
    [4]崔若飞,陈同俊,钱进,等.煤层气地震勘探技术[A].叶建平,范志强,主编.中国煤层气勘探开发利用技术进展[M].北京:地质出版社,2006,155~162.
    [5]何展翔,贺振华,王绪本,等.油气非地震勘探技术的发展趋势[J].地球物理学进展,2002,17(3):473~479.
    [6]冯三利.我国煤层气开发利用现状、产业发展机遇与前景.叶建平,范志强,主编.中国煤层气勘探开发利用技术进展[M].北京:地质出版社,2006:2~8.
    [7]桑树勋,秦勇,傅雪海,等.陆相盆地煤层气地质:以准噶尔、吐哈盆地为例.徐州:中国矿业大学出版社,2001,10.
    [8]赵庆波,孙粉锦,李五忠.世界煤层气工业发展现状[M].北京:地质出版社,1997.
    [9]王红岩,刘洪林,赵庆波,等.煤层气富集成藏规律[M].北京:石油工业出版社,2005,3.
    [10]闫宝珍.沁水盆地煤层气富集机理及主控特征[D].北京:中国矿业大学(北京)2008.
    [11]刘焕杰,秦勇,桑树勋,等.山西南部煤层气地质[M].徐州:中国矿业大学出版社,1998,3.
    [12]张秉铭,滕吉文,张中杰.地震勘探在煤层气勘探中的应用[A].21世纪中国煤层气产业发展与展望—第三届全国煤层气学术研讨会论文集[C],2002,12.
    [13]张赛珍,李英贤,周季平,等.激发极化法探测油气田-异常成因及其与油气藏关系的探讨[J].地球物理学报,1986,29(6):597~612.
    [14]赵改善.非地震物探方法在油气勘探中应用的现状[J].地矿部石油物探研究所科技情报室,1987,9.
    [15]王家映.石油电法勘探[M].石油工业出版社,1992.
    [16]聂馨五,周安昌,杨冠鼎,等.激发极化法探测油气田-效果及异常模式探讨[J].地球物理学报,1987,30(4):412~422.
    [17]钱瘦石.激发极化法勘探油气藏的效果分析及改进意见[J].石油地球物理勘探,1991,26(3):349~360.
    [18]钱善章.用激电法直接找油应受地质条件的约束[J].石油物探,1985,24(1):38~48.
    [19]董春山.油气田上激电异常的成因[J].石油地球物理勘探,1987,22(2):156~162.
    [20] B.M.别列兹金,等.应用激发极化法预测含油气性[J].石油物探译丛,1982,(1):51~56.
    [21]吴广耀.直接找油电法勘探的研究[J].地质科技情报,1983,(1):67~76.
    [22] Zonge K. L.. Hydrocarbon exploration using induced polarization, apparent resistivity andelectromagnetic scattering,Presented at the fifty-first annual international meeting and exposition.SEG,1981.
    [23] Pirson,陆邦干,等译.磁电勘探直接找油找气(译文集).地质出版社,1980.
    [24] Donovan T J, Forgey R L, Rorberts A, Aeromagnetic detection of diagenetic magnetiteover oil fields. AAPG,1979,63.
    [25] Reynolds R L, Fishman N S, Wanty R B,et al, Iron sulfide minerals at Cement oil field,Oklahoma:implications for magnetic detection of oil fields,Geophysical Society of AmericaBulletin,1990,102(3).
    [26] Henderson R,Yoshi M,Richard W,Direct indication of hydrocarbons from magnetic,Exploration Geophysics,1984,15.
    [27] Donovan T J,Hendricks J D,Robert A,et al,Low-altitude aeromagnetic reconnaissancefor petroleum in Arctic National wildlife Refuge,Alaska,Geophysics,1984,49(8).
    [28] Reynolds R L,Webring M,Grauch V J S,et al,Magnetic forward models of Cement oilfield,Oklahoma, based on rock magnetic,alchemical,and petrologic, constraints. Geophysics,1990,55(3).
    [29] Saunders D F,Burson K: R,Branch K F,et al, Alabama Ferry field detectable byhydrocarbon microseepage and related alteration. Oil and Gas Journal,1989,(6).
    [30] Elmore R D,Mark C L,Remagnetization of the Rush Spring Formation,Cement,Oklahoma:Inplication for dating hydrocarbon migration and aeromagnetic exploration. Geology,1990,18.
    [31]刘庆生.磁法直接找油气研究的现状与进展[J].地质科技情报,1991,10(4):89~95.
    [32]刘庆生、张昌达、曲赞,等.自生磁铁矿与烃运移之间相互关系的研究[J].地球科学一中国地质大学学报,1991,16(5):565~571.
    [33]刘庆生.微磁方法寻找油气藏的基本原理与应用[M].中国地质大学出版社,1996.
    [34]刘庆生.西藏羌塘盆地地表土壤磁性、地球化学及矿物学特征与烃运移相互关系的研究[J].地球科学一中国地质大学学报,1996,21(6):221~226.
    [35]刘庆生.某些油田地表土壤的磁性与烃运移相互关系的研究[J].地球物理学报,1996,39(6):804~812.
    [36]刘庆生.塔北雅克拉地区油气藏上方“烟筒效应”的磁学与矿物学证据[J].地球科学一中国地质大学学报,1996,21(1):93~98.
    [37]刘庆生,徐文凯.江汉盆地马王庙油田自生磁铁矿与烃运移之间相互关系的研究[J].地球学报,1996,17(增刊):84~90.
    [38]刘庆生,廖齐乔,曲赞,等.非常规综合物化探方法寻找油气藏的基础理论研究中的几个问题[J].中国地质大学学报,1999,24(6):613~618.
    [39]蔡振京.松江盆地高精度航空磁洲的效果[J].石油地球物理劫探,1987,22(6):677~683.
    [40]王家林.非地震油气物探的进展及其特点[J].上海地质,1997,(1):5~9.
    [41]郑秀芬,李金铭.油气电法勘探综述[J].地球物理学进展,1997,12(2):89~96.
    [42]何展翔.非地震技术的进步与发展趋势[J].石油地球物理勘探,2000,35(3):354~361.
    [43]何展翔.应用于油气预测中的电磁测深法[A].见:第五届国际电磁学术讨论会论文集
    [C].北京:2000.
    [44]何展翔,贾进斗,苟量.非地震技术在油气勘探开发中的作用[J].石油勘探与开发,2001,28(4):70~72.
    [45]何展翔,王绪本.时频电磁测深法[A].见:第十八届中国地球物理年会年刊[C].2002.
    [46]吕友生.建场测深法在油气勘探中的应用[J].石油地球物理勘探,1994,29(6):754~757.
    [47]金祖发.用于油气勘探的固定源建场测深法,《电法勘探新进展》,地质出版社,1996.
    [48]裘慰庭.俄罗斯地球物理勘探技术[A].见:石油物探新技术系列调研成果[C].北京:石油工业出版社,1996.
    [49] W.H.Pelton,S.H.Ward,P.G.Hallof,et al,张曙红.用多频激发极化法鉴别矿物和去除感应耦合(摘译)[J].中国非金属矿工业导刊.1986,(01):49~54.
    [50]吴之训,崔先文.复电阻率(CR)法直接探测油气藏的效果[A].第十三届国际地质大会论文[C].1996.
    [51]崔先文,何展翔,刘雪军,等.频谱激电法在大港油田的应用[J].石油地球物理勘探,2004,39(增刊):101~105.
    [52] S.J.Pirson,陆邦干,译.磁电勘探直接找油气(译文集),地质出版社,1980.
    [53]王一新,金祖发.应用自然电场法寻找油气藏的试验,石油地球物理勘探,1983,(1):74~79.
    [54] H.N.雷赫林斯基,崔艳霞,译.寻找和圈定油气藏的的差分标定法,石油物探局第五地质调查处,1992.
    [55]何展翔.直接圈定油气藏的新方法一电场差分法介绍,石油物探局第五地质调查处,1992.
    [56]任俞.电法勘探圈划油气藏的新技术一差分标定法简介[J].国外油气勘探,1991,3(2):84~95.
    [57]刘菘,鲁永康.电场差分法研究及应用[A].见:第十五届中国地球物理年会年刊
    [C].1999.
    [58] A.S.Orange.Magnetotelluric Ezploration for Hydrocarbon Procccding of the IEEE,1989,77(2).
    [59]刘国栋.地壳上地慢电导率探测.地球物理学中的新技术,科学出版社,1989.
    [60] K.L.Zonge.Controlled Source Audio-frequency Magnetotellurics,Nabigham,M.N(Ed),EM Method in Applied Geophysics,V.2,SEG..
    [61]李国治.地球物理方法直接找油气[J].勘探地球物理进展,1989,(6):53~63.
    [62]熊识仲,周虬.我国石油电法勘探的回顾和展望[J].石油地球物理勘探,1983,(3):197~206.
    [63]鲁新便.大地电磁测深法在塔里木盆地油气勘探中的应用[J].石油地球物理勘探,第6期,1995.
    [64] L.J.Huges,等.在内华达州特拉普泉油田使用可控源大地电磁资料作构造图[J].国外石油地球物理勘探,1987,(2).
    [65]江汶波,何展翔,王绪本,等.高频电磁法在表层结构调查中的应用[J].石油地球物理勘探,2001,36(增刊),60~66.
    [66] Michael Wilt,马迪生,译.用于开发和开采的电磁法技术现状[J].国外油气勘探,1999,11(2):230~234.
    [67] Tasci M T.Elcetromagnetic imaging in exploration for oil and gas tarps:recent discoveries,App1.Emer.Tceh:Uncon.Methods Exp1.Pet.Natural Gas V [J].The Leading Edge,1997,16(3):345-349.
    [68] Wilt M.Electormagnetic methods for development and production,state of the art[J].TheLeading Edge,1998,17(4):487~490.
    [69]郭新顺,潘作枢.非地震找油气方法分类及油气垂向迁移探讨[J].西安地质学院学报,1996,18(3):77~83.
    [70]黎民,余华琪,齐小平,等.利用非地震资料综合研究鄂尔多斯盆地姬塬地区油气有利区[J].中国石油勘探,2002,7(4):65~69.
    [71]李明潮.煤层气及其勘探开发[M].北京:地质出版社,1996.
    [72]钱凯,赵庆波,王泽成.煤层甲烷勘探开发理论与实验测试技术[M].北京:石油工业出版社.1997.
    [73]张新民,庄军,张遂安.中国煤层气地质与资源评价[M].北京:科学出版社,2002.
    [74]宋岩,刘洪林,柳少波,等.中国煤层气成藏地质[M].北京:科学出版社,2010.
    [75] Yang R. T.,and Saunders J. T.,Adsorption of gases on coals and heated-treated coals atelevated temperature and pressure,Fuel,1985,64:616~620.
    [76] Ruppel T. C, Grein C. T, and Bienstock D.,Adsorption of methane/ethane mixtures on drycoal at elevated pressure. Fuel,1972,51.
    [77]刘洪林,王红岩.煤储层割理评价方法[J].天然气工业,2000,20(4):27~29.
    [78]关德师.煤层甲烷的特征与富集[J].新疆石油地质,1996,17(01):80~84.
    [79]马东民,史纪敦,张守刚.沁南地区煤层气解吸特征实验研究[J].西安科技大学学报,2008,27(4):581~583.
    [80]苏现波,陈江峰,孙俊民.煤层气地质学与勘探开发[M].北京:科学出版社.2001.
    [81]苏现波,刘保民.煤层气的赋存状态及影响因素[J].焦作工学院学报,1999,18(13):157~160.
    [82]宋岩,柳少波,洪峰.煤层气成藏地质条件及气藏类型.宋岩,张新民,等著.煤层气成藏机制及经济开采理论基础[M].北京:科学出版社,2005:1~9.
    [83]宋岩,秦胜飞,赵孟军.中国煤层气成藏的两大关键地质因素[J].天然气地球科学,2007,18(4):545~552.
    [84]陈振宏,贾承造,宋岩,等.构造抬升对高、低煤阶煤层气藏储集层物性的影响[J].石油勘探与开发,2007,34(4):461~464.
    [85]魏书宏,韩少明.沁水煤田南部煤层气构造控气特征研究[J].煤田地质与勘探,2003,31(3):30~31.
    [86]王凤国,李兰杰,徐德红.华北地区煤层含气性影响因素探讨[J].焦作工学院学报(自然科学版),2003,22(2):88~90.
    [87]赵孟军,宋岩,苏现波,等.决定煤层气地球化学特征的关键地质时期[J].天然气工业,2005,25(1):51~54.
    [88]张国辉,韩军,宋卫华.地质构造形式对瓦斯赋存状态的影响分析[J].辽宁工程技术大学学报,2005,24(l):19~22.
    [89]张宏,姚艳斌,刘大锰,等.红阳煤田煤层气赋存特征及有利区预测[J].煤炭科学技术,2008,36(3):92~95.
    [90]李贵中,王红岩,吴立新,等.煤层气向斜控气论[J].天然气工业,2005,25(1):26~28.
    [91]孙义娟,张新生.河北省开平煤田煤层气成藏条件浅析[J].中国煤层气,2009,6(1):22~27.
    [92]叶建平,武强,王子和.水文地质条件对煤层气赋存的控制作用[J].煤炭学报,2001,26(5):459~462.
    [93]高瑞琪,赵政璋.中国油气新区勘探(第七卷中国煤层气勘探)[M],北京:石油工业出版社,2001.
    [94]傅雪海,秦勇,著.多相介质煤储层渗透率预测理论与方法[M].徐州:中国矿业大学出版社,2003,11.
    [95]刘洪林,李景明,王红岩,等.水动力对煤层气成藏的差异性研究[J].天然气工业,2006,26(3):35~37.
    [96]周志成,王念喜,段春生.煤层水在煤层气勘探开发中的作用[J].天然气工业,1999,19(4):23~25.
    [97]倪小明,苏现波,张小东.煤层气开发地质学[M].北京:化学工业出版社,2009,12.
    [98]池卫国.沁水盆地煤层气的水文地质控制作用[J].石油勘探与开发,1998,25(3):15~18.
    [99]高洪烈.论煤层气与地下水[J].中国煤田地质,1998,10(4):45~48.
    [100]赵庆波.煤层气区评价参数及勘探方向[J].石油勘探与开发,1997,(3):6~10.
    [101]秦胜飞,宋岩,唐修义,等.水动力条件对煤层气含量的影响—煤层气滞留水控气论[J].天然气地球科学,2005,16(2):149~152.
    [102]降文萍,崔永君,张群,等.煤表面与CH4,CO2相互作用的量子化学研究[J].煤炭学报,2006,31(2):237~240.
    [103]王妙月,王谦身,石昆法.天然气直接探测技术机理基础研究[J].天然气地球科学,1996,7(6):1~65.
    [104]甘贵元,余瑞娟,崔俊.油气藏中烃类渗漏与特态矿物的形成[J].新疆石油地质,2005,26(6):707~710.
    [105] Foote R S. Correlations of borehole roch magnetic properties with oil and gas productingareas [J].Association of petroleum Geochemical Explorationists Bulletin,1987,3(1):114~134.
    [106]蒋涛,陈浙春.烃类垂向微渗漏及其地表异常显示[J].物探与化探,2003,27(2):92~96.
    [107]李媛媛,杨宇山,刘天佑,等.巴彦浩特盆地烃渗漏蚀变带“磁亮点”的识别[J].地质科技情报,2002,21(3):108~112.
    [108]杨宇山,李媛媛,刘天佑.高阶统计量在地震弱信号及“磁亮点”识别中的应用[J].石油地球物理勘探,2005,40(1):103~107.
    [109]陈进超,王绪本,王丽坤.煤层气非地震综合物探技术机理,《中国地球物理2010—中国地球物理学会第二十六届年会,中国地震学会第十三次学术大会论文集》,2010,10.
    [110]汤井田,何继善.可控源音频大地电磁法及其应用[M].长沙:中南大学出版社,2005.
    [111]朱金华,冒我冬,白锦琳,等.CSAMT法在断层含水性评价中的应用[J].物探与化探,2011,35(4):569~572.
    [112]底青云,王妙月,石昆法,等.高分比率V6系统在矿山顶板涌水隐患中的应用研究[J].地球物理学报,2002,45(5):744~748.
    [113]于昌明,石昆法,高宇平.CSAMT法在四台矿402盘区陷落柱构造探测中的应用[J].地球物理学进展,1996,11(2):137~147.
    [114]底青云,伍法权,王光杰,等.地球物理综合勘探技术在南水北调西线工程深埋长隧洞勘察中的应用[J].岩石力学与工程学报.2005,24(20):3631~3638.
    [115]底青云,王妙月.煤层上覆地层含水不均匀性电法勘探的可能性[J].地球物理学进展,2003,18(4):707-710.
    [116]江乐玉,雷宛.地球物理数据处理教程[M].北京:地质出版社,2006.
    [117]简宪华,崔汉国,曹茂春.带内边界约束散乱数据的Delaunay三角剖分算法研究[J].计算机工程,2001,27(5):105~106.
    [118]胡恩球,张新访,向文,等.有限元网格生成方法发展综述[J].计算机辅助设计与图形学学报,1997,9(4):378~383.
    [119]邓曙光,陈明,郑智华,等.带岛区约束数据域的Delaunay三角剖分通用算法研究[J].测绘学报,2007,32(5):63~64.
    [120]陈进超,王绪本,熊鹏,等.一种含约束条件的二维自适应三角剖分新算法[J].物探化探计算技术,2009,31(1):74~77.
    [121]陈进超.时间域激电二维有限元数值模拟[D].成都理工大学,2009,6.
    [122]康海贵,张宏伟,郇彩云.一种两维区域三角剖分算法的改进及其应用[J].水道港口,2007,28(6):387~390.
    [123]佘红伟.二维区域网格剖分算法研究[D].西安:西北工业大学,2003.
    [124] GUEZIEC. A. Surface Simplification inside a Tolerance Volume [R]. New York: IBMResearch Division T,1997.
    [125]程世才,林国成,王永浩.二维有限元网格全自动生成方法—AFM法[J].哈尔滨工业大学学报,1995,27(4):103~107.
    [126]程志平.电法勘探教程[M].北京:冶金工业出版社,2007.
    [127]周熙襄,钟本善.电法勘探数值模拟技术[M].成都:四川科学技术出版社,1986.
    [128]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [129]刘尔烈.有限单元法及程序设计[M].天津:天津大学出版社,1999.
    [130]段本春,朱永盛.最优化波数在点源二维有限元正演计算中的应用[J].物探与化探,1994,18(3):186~191.
    [131]徐世浙.有限元法及其在物探中的应用简介[J].物探化探计算技术,1982,4(23):86~106.
    [132]阮百尧,村上裕,徐世浙.电阻率/激发极化法数据的二维反演程序[J].物探化探计算技术,1999,21,116~125.
    [133]阮百尧.视电阻率对模型电阻率的偏导数矩阵计算方法[J].地质与勘探,2001,37(6):39~41.
    [134]黄俊革.三维电阻率/极化率有限元正演模拟与反演成像[D].中南大学,2003,7.
    [135] Yamashita,Hollof.CSAMT case histories with a multi-channel CSAMT system anddiscussion of near-field data correction [J]. Phoenix Geophys Ltd,1985.
    [136] Wait J R. Geo-Electromagnetism[M]. New York,Academic press,INC,1982.
    [137] Ward S H, Hohmann G W. Electromagnetic theory for geophysical applications, inNabighian, M. N., Ed., Electromagnetic methods in applied geophysics[J].Soc. Expl.Geophys,1988.
    [138]汤井田,何继善.频率测深中磁场水平分量计算的新方法[J].物化探计算技术,1993,15(1):543~551.
    [139]龚强,胡祥云,孟勇良.基于快速汉克尔变换算法的CSAMT一维正演[J].煤田地质与勘探,2008,36(1):71~73.
    [140] Chave A D. Numerical integration of related Hankel transforms by quadrature and coninuedfraction expansion [J].Geophysics,1983,48(12):1671~1686.
    [141]翁爱华,王雪秋.利用数值积分提高一维模型电偶源电磁测深响应计算精度[J].西北地震学报,2003,25(3):193~197.
    [142]朱凯光,林君,程德福.基于MATLAB的高频谐变电磁场的数值计算[J].电波科学学报,2002,17(3):224~228.
    [143]张辉,李桐林等.利用高斯求积和连分式展开计算电磁张量格林函数积分[J].地球物理学进展,2005,19(3):667~670.
    [144] Zonge K L, Hughes L J. Controlled source audio frequency magnetotellurics, in Nabighian,M. N., Ed., Electromagnetic methods in applied geophysics [J] Soc.Expl. Geophys,1991.
    [145]万乐,罗延钟,马瑞花,等.CSAMT一维正演的快速近似计算[M].中国地球物理学会年刊.北京:地震出版社,1993.
    [146]殷长春.可控源音频磁大地电流法一维正演及精度评价[J].长春地质学院学报1994,24(4):438~453.
    [147]王若,王妙月.一维全资料CSAMT反演[J].石油地球物理勘探.2007,42(1):107~144.
    [148] Maurer H M, Discussion on:magnetotelluric survey at the "Results of a controlled-sourceaudio frequency Puhimau thermal area,Kilauea Volcano, Hawaii," Bartel, L. C., and Jacobson, R.D., authors[J].Geophysics,1988,53:724~725.
    [149] Boerner D E, Kurtz R D, Jones A G. Orthogonality in CSAMT and MTmeasurements[J].Geophysics,1993,58:924~934.
    [150].Routh P S,Oldenburg D W. Inversion of controlled source audio frequency magnetoteluricdata for a horizontal layered earth[J].Geophysics,1999,64(6):1689~1697.
    [151]谭捍东,舒晴,朗静.电偶源激发下水平层状介质电场分布特征与反演研究[J].石油地球物理勘探,2004,39(增刊):110~113.
    [152]王光杰,王勇,李帝铨,等.基于遗传算法CSAMT反演计算研究[J].地球物理学进展,2006,21(4):1285~1289.
    [153]周俊杰,强建科,汤井田,等.具有干预机制的CSAMT数据一维最优化反演[J].地震地质,2010,32(3):454~463.
    [154] A.A.考夫曼,G.V.凯勒,王建谋,译.频率域与时间域电磁测深[M].北京:地质出版社,1987.
    [155] Guptasarma D, Singh B. New digital linear filters for Hankel J0and J1transforms[J].Geophysical Prospecting.1997,45:745~762.
    [156]尚晓通,双极源CSAMT一维全区反演[D].长春:吉林大学,2008,5.
    [157]阮百尧.电阻率激发极化法测深数据的一维最优化反演方法[J].桂林工学院学报,1999,19(4):321~325.
    [158] Hohmann G W.Electromagnetic scattering by conductors in the earth near a line source ofcurrent[J].Geophysics,1971,36(1):101~131.
    [159]陈小斌,胡文宝.有限元直接迭代法及其在线源频率域电磁响应计算中的应用.地球物理学报,2002:45(1):119-130.
    [160]阎述,陈明生.线源频率电磁测深二维正演(一)[J].煤田地质与勘探,1999,27(5):60~62.
    [161]阎述,陈明生.线源频率电磁测深二维正演(二)[J].煤田地质与勘探,1999,27(6):56~59.
    [162]陈明生,严又生.二维水平电偶源变频测深阻抗视电阻率有限元正演计算.地球物理学报,1987,30(2):201-208.
    [163]胡建德,阎述,陈明生,等.线电流源声频大地电磁测深二维正演计算及其响应特点.现代地质,1997,11(2):203-210.
    [164]徐世浙.地球物理中的有限单元法.北京:科学出版社,1994.
    [165]王妙月,底青云,王若。磁化强度矢量反演方程及二维模型正演研究.地球物理学报,2004,47(3):528-534.
    [166] Cutler R.T. A tomagraphic solution to the travel-time problem in general inversionseismology.Advance in Geophysical Data Processing,1995,2(1):199-221.
    [167] Mitsuhata Y.2-D electromagnetic modeling by finite-element method with a dipole sourceand topography.Geophysics,2000,65(2):465-475.
    [168]王若,王妙月,底青云.频率域线源大地电磁法有限元正演模拟[J].地球物理学报,2006,49(6):1858~1866.
    [169]张继锋,汤井田,喻言,等.基于二次插值的线源可控源有限元数值模拟[J].吉林大学学报(地球科学版),2009,39(5):929~935.
    [170]底青云,王妙月,王若,等.长偶极大功率可控源电磁波响应特征研究[J].地球物理学报,2008,51(6):1917~1928.
    [171]底青云,王光杰,王妙月,等.长偶极大功率可控源激励下目标体电性参数的频率响应[J].地球物理学报,2009,52(1):275~280.
    [172]底青云,王若.可控源音频大地电磁数据正反演及方法应用[M].北京:科学出版社,2008.
    [173]雷达.起伏地形下CSAMT二维正反演研究与应用[J].地球物理学报,2010,53(4):982~993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700