贻贝蛋白中ACE抑制肽的制备及其构效关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
贻贝(Mytilus sp.),属软体动物门(Mollusca)瓣鳃纲(Lanellibranchia)异柱目(Anisomyaria)贻贝族(Mytilacea)贻贝科(Mytidea),是一种蛋白质含量较高的贝类水产。我国是目前世界上贻贝产量最大的国家,年产量超过60万吨。而由于加工技术落后,我国有90%的贻贝用于生鲜、冷冻制品的出口,导致贻贝的附加值低下,蛋白质资源浪费严重。本论文以紫贻贝为原料,对其蛋白质组成、营养价值、酶解特性进行系统分析,并对贻贝分离蛋白的提取及酶解制备ACE抑制肽进行了研究,旨在为贻贝的深度开发和利用提供理论依据和有效途径,实现贻贝资源的高效增值。
     论文首先就贻贝粉的化学组成、脂肪酸及矿物质元素含量进行分析。结果表明其化学组成为:水分5.02%,灰分13.09%,脂肪7.04%,蛋白质48.44%,碳水化合物23.75%;脂肪酸分析结果表明:贻贝中含有丰富的PUFA(31.09%),其中含量最高的为EPA和DHA,其含量分别为12.21%和7.18%,饱和脂肪酸中含量最高的为棕榈酸(29.95%),单不饱和脂肪酸中棕榈油酸最为丰富(10.07%);而且,紫贻贝中含有丰富的Ca、Mg、A1、Fe、Zn和Se等元素。
     采用95%乙醇作为脱脂溶剂,将贻贝粉脱脂得到贻贝蛋白,其蛋白质含量高达60.23%。通过Osborne法分析其蛋白组成发现:贻贝蛋白中碱溶性蛋白含量最高(40.78%),其次是水溶性蛋白(24.59%)和醇溶性蛋白(6.88%),盐溶性蛋白含量最低(1.62%)。氨基酸分析表明,贻贝蛋白及其各个蛋白级分的氨基酸构成比较平衡,均含有丰富的谷氨酸、天冬氨酸、赖氨酸和丝氨酸,且必需氨基酸比例较高。营养特性分析表明,碱溶性蛋白的氨基酸评分(111.25)最高、蛋白质功效比最高,醇溶蛋白的生物价最高,碱溶性蛋白(65.44)次之。综合评价,贻贝蛋白中碱溶性蛋白的营养价值最高。
     考察不同蛋白酶对贻贝蛋白的酶解效果,结果表明:碱性蛋白酶Alcalase是生产贻贝蛋白ACE抑制肽的最适用酶,其水解贻贝蛋白4h后水解度(DH)为20.68%。较其它五种蛋白酶的作用,其酶解物的蛋白质回收率(PR)最高(85.77%),ACE抑制活性最强(IC50为66.34μg/mL)。且酶解产物主要分布在相对分子量为200-1000 Da的区间(54.36%)。
     比较不同蛋白级分对酶解物ACE抑制活性的贡献程度,确定碱溶性蛋白是赋予贻贝蛋白酶解物ACE抑制活性的优势蛋白级分。根据贻贝蛋白组成特点及其对ACE抑制活性的贡献度,确定采用碱溶酸沉工艺制备贻贝分离蛋白(MEPI)并优化了工艺条件,在优化的工艺条件下(料液比1:30,pH11.5,温度35。C,提取2.5小时,酸沉pH值为3.5),蛋白提取率为81.74%,蛋白质含量为74.32%。
     以DH和IC50-1为评价指标,通过单因素试验和响应面分析(RSM)确定Alcalase酶解MEPI制备ACE抑制肽的最佳酶解条件为:[E]/[S]=1.73%、pH9.2,温度56.8℃。在此条件下酶解所得产物的DH为25.4%,ACE抑制的IC50为35.21μg/mL。稳定性实验结果表明:MEPI酶解物在常规的食品加工条件下(20-100℃、pH2-10)具有良好的稳定性,且能在很大程度上抵抗消化酶的水解作用。并且,结果表明其是ACE的竞争性抑制剂。
     探讨了DH对酶解物的化学组成、相对分子量分布、氨基酸组成及ACE抑制活性的影响,结果表明:随着DH的增大,蛋白质含量缓慢增加;相对分子量范围在200-1000 Da的组分含量显著增加而后维持恒定;疏水性氨基酸、芳香族氨基酸及支链氨基酸的含量显著增加,酸性氨基酸的含量显著下降。这在一定程度上解释了DH对酶解物活性的影响趋势:随着DH的增加,酶解物的ACE抑制活性逐渐增强,但当酶解进行到一定程度,酶解物活性呈稳定或略微下降趋势。对水解过程进行动力学拟合表征,结果表明:MEPI的DH和水解产物的ACE抑制率的动力学回归方程为:DH=-4.24195+5.43497 1n(T-2.73073),R2=0.9934;而ACE抑制率随时间变化的回归方程为I(%)=47.68838+0.91943T-0.00559T2+1.30899×10-5 T3-1.06897×10-8T4,R2=0.8384。研究了料液浓度、操作压力、操作温度对膜通量的影响以及超滤膜对酶解物活性的影响,根据结果选择10 KD的超滤膜对MEPI酶解物进行超滤分离(料液浓度15 g/L、操作压力20 psi、操作温度25℃);而后采用Sephadex G-10凝胶色谱、Sephadex LH-20凝胶色谱和半制备RP-HPLC等分离手段从MEPI酶解物中分离出VW、LGW和MVWT三种活性较强的ACE抑制肽,对应的IC50值分别为1.7μM、30.0μM、143.3μM;且均属于抑制剂类型。
     以VSHE描述子进行结构表征,比较了PLS、SVM和PCA-SVM对不同氨基酸残基数目的ACE抑制肽的建模结果。结果显示:对于ACE抑制二肽,三个模型结果相当;对于ACE抑制三肽,SVM模型和PCA-SVM模型的拟合能力明显优于PLS模型,而预测能力相当;对于ACE抑制四肽、五肽和六肽,SVM模型和PCA-SVM模型的拟合能力及预测能力尤其显著。同时发现,ACE二肽中,C末端氨基酸较N端氨基酸对其活性的影响更为明显;ACE抑制三肽的中间位置的氨基酸对其ACE抑制活性的影响最为显著;对于ACE抑制四肽,N端的三个氨基酸残基对其活性的影响较为明显;而对于ACE抑制五肽和六肽,C端的四个或五个氨基酸残基对其活性的影响较为显著。
     并且,采用贻贝中的ACE抑制肽对模型进行检验,结果表明:本论文所建ACE抑制肽的QSAR模型能够对已知结构的ACE抑制肽的活性进行准确预测,其中,SVM模型与PCA-SVM模型的预测结果最为准确。
Mytilus edulis, a species of shellfish, is good resource of protein and favorite to Chinese. It belongs to phylum Mollusca, class Lanellibranchia, order Anisomyaria, tribe Mytilacea, family Mytidea. China has become the biggest producer of mussel in the world and its total annual yield is over 600000 tons. However, due to limitations in further processing technology,90% of them are traded in live, fresh, frozen, and dried forms. Therefore, mussel has a low commercial value and the waste of mussel protein is rather serious in China. In this thesis, protein composition, nutritional value and hydrolysis characteristic of mussel protein were evaluated. In addition, the preparation of mussel protein isolate (MEPI) and the production of angiotensinⅠ-converting enzyme (ACE) inhibitory peptides from MEPI by enzymatic hydrolysis were also studied. The purpose of this work was to provide some useful academic information and novel effective approach for deep processing of mussel protein, and to develop some high value-added products for human consumption.
     The chemical composition of the mussel powder was analyzed as follows:5.02% moisture, 13.09% ash,7.04% fat,48.44% protein and 23.75% polysaccharide. The results of fatty acids determination with GC and minerals analysis with ICP-MS showed that PUFA accounted for 31.09% of total fatty acids amounts and the contents of EPA and DHA were highest (12.21% and 7.18%, respectively). Palmitic acid was the major saturated fatty, and palmitoleic acid was the major monounsaturated fatty acid. Their contents were determined as 29.95% and 10.07%, respectively. Also, the mussel was an excellent source of minerals, such as Ca, Mg, Al, Fe, Zn and Se.
     The effect of four solvents on the defatting of mussel powder was studied. The results showed that 95% ethanol was the most suitable solvent. Four protein fractions (albumin, globulin, prolamine and glutelin) from defatted mussel powder (mussel protein) were fractionated by using the method of Osborne and then characterized by amino acid analysis and SDS-PAGE. Glutelin was the major fraction (40.78%) extracted, followed by albumin (24.59%), prolamine(6.88%), and globulin(1.62%). These protein fractions showed an excellent balance of amino acid, with a relatively high level of Glu, Asp, Lys and Ser. All the estimated mutritional quality parameters based on amino acid composition showed that mussel protein had good nutritional quality (E/T> 36%). Glutelin possessed the highest AAS and PER value. However, prolamine possessed the highest BV, followed by glutelin. Thus, considering both the yield and the quality parameters, glutelin was thought to possess the highest nutritional values in mussel protein.
     Hydrolysis of the mussel protein was investigated in the presence of various proteolysis enzymes. Alcalase was found to be the optimal protease with the highest hydrolysis degree (DH) (20.68% for 4h). The protein recovery (PR) and the ACE inhibitory activity of various hydrolysates of mussel protein were also compared, the hydrolysates obtained by the treatment with alcalse possessed the highest PR (85.77%) and ACE inhibitory activity, having a IC50 value of 66.34μg/mL. Moreover, the relative molecular weights of these hydrolysates were rather low, especially the hydrolysates obtained by alcalse were mainly distributed in the range of 200-1000 Da (54.36%).
     The relative molecular weight distribution and ACE inhibitory activity of four protein fractions hydrolysates with alcalse were studied. The result showed that glutelin was major fraction, which contributed more on ACE inhibitory activity of mussel protein. According to the composition feature of protein fractions and their contribution to the ACE inhibitory activity, the alkaline extraction-isoelectric precipitation technology was employed to prepare MEPI, and the parameters were optimized. Under the optimum conditions, i.e. solid-to-liquid ratio,1:30; pH,11.5; temperature,35℃; time,2.5h; precipation pH,3.5, the protein extraction ratio was 81.74%, and the protein content of the product was 74.32%.
     Taking the DH and the inverse of IC50 as responses, the hydrolysis parameters using alcalse were optimized with RSM as follows:enzyme to substrate ratio 1.73%, pH 9.2 and temperature 56.8℃. Under these conditions, MEPI hydrolysate was prepared with a DH of 25.4% and an IC50 value of 35.21μg/mL. Also, the stability of MEPI hydrolysate was examined. The results showed that the influence of food processing, such as heat and adjustment of pH on its ACE inhibitory activity is not significant, and MEPI hydrolysate showed resistance to in vitro digestion by gastrointestinal proteases. Moreover, MEPI hydrolysate was found to be competitive ACE inhibitors.
     Effects of DH on chemical composition, relative molecular weight distribution, amino acids composition and ACE inhibitory activity of MEPI hydrolysate were also studied. With the increase of DH, protein content increased slowly, the contents of hydrophobic amino acids, aromatic amino acids and branched-chain amino acids increased significantly, while the content of acidic amino acids decreased markedly. Also, the contents of fraction in the range of 200-1000 Da increased obviously at first, and then become a stable level. All above results can explain the effects of DH on ACE inhibitory activity of MEPI hydrolysate to some extent. The ACE inhibitory activity of MEPI hydrolysate significantly increased with the increase of DH, then increased slowly, and finally decreased slowly. Dynamic characteristics results of hydrolysis process showed that the kinetics fitting equations for DH and ACE inhibitory rate were as follows:DH=-4.24195+5.43497 In (T-2.73073) and I(%)-47.68838+0.91943T-0.00559T2 +1.30899×10-5 T3-1.06897X 10-8T4.
     Using ACE inhibitory activity as an index, MEPI hydrolysate was purified firstly by ultrafiltration (UF). The influence of UF conditions on flux and the molecular weight cutoff (MWCO) of membrane on ACE inhibitory activity were studied. The results showed that the ACE inhibitory peptides in MEPI hydrolysates could be effectively separated and enriched by membrane (MWCO:10 KDa) under suitable conditions (sample concentration of 15 g/L, operation pressure of 20 psi and temperature of 25℃). Three kinds of ACE inhibitory peptides with strong activities were isolated from MEPI hydrolysates by sequential Sephadex G-10, LH-20 and two-step RP-HPLC, and their amino acid sequences were identified by UPLC-MS as VW, LGW and MVWT with IC50 values of 1.7μM 30.0μM and 143.3μM respectively. Stability tests showed that these peptides could not be hydrolyzed in the presence of ACE, indicating that three ACE inhibitory peptides could be regarded as the competitive inhibitors, which means that three peptides could have antihypertensive effect in vivo.
     In order to study the quantitative structure-activity relationships of angiotensin I-converting enzyme (ACE) inhibitory peptides, a database including 182 dipeptides,237 tripeptides,94 tetrapeptides,94 pentapeptides and 88 hexapeptides was constructed on the basis of published literatures.18 models were computed using partial least squares regression (PLS), support vector machine (SVM) and principal component analysis (PCA)-SVM based on the VHSE descriptors of 20 coded amino acids and further validated by cross-validation. The results showed that SVM and PCA-SVM achieved better performance in QSAR than PLS for ACE inhibitory tetrapeptides, pentapeptides and hexapeptides. While SVM and PCA-SVM achieved equivalent predication results with PLS and better fitness than PLS for tripeptides. Also, equivalent results were obtained in comparision with three QSAR models for ACE inhibitory dipeptides. In addition, variable importance in the projection (VIP) analysis of individual amino acid residues at each position revealed that the C-terminal amino acid residues of dipeptides, the middle amino acid residues of tripeptides, the N-terminal tripeptide residues in tetrapeptides, the C-terminal tripeptide residues in pentapeptides and the C-terminal tetrapeptide residues in hexapeptides were more important to their ACE-inhibitory activity than the other residues in the peptide sequences.
     The models were validated with ACE inhibitory peptides from MEPI hydrolysates. The results showed that the QSAR models constructed in this paper could predicate activity of ACE inhibitory peptides exactly. Especially, the predicated results of SVM and PCA-SVM models were very well.
引文
[1]郭跃伟.海洋天然产物和海洋药物研究的历史现状和未来[J].自然杂志,2009,31(1):27-32.
    [2]易杨华,李玲.海洋药物研究展望与对策[J].第二军医大学学报,2001,22(8):801-802.
    [3]马明华,厚壳贻贝多糖活性成分研究[D].硕士学位论文,第二军医大学,2004.
    [4]李庐峰,张农.贻贝保鲜加工与综合利用的现状及展望[J].福建水产,1996(3):65-70.
    [5]郭玉华,李钰金,吴新颖.贻贝食品的研究进展[J].肉类研究,2009,123(5):84-87.
    [6]王祯瑞.中国动物志,软体动物门双壳纲:贻贝目[M].北京:北京科学出版社.1997.
    [7]励炯.厚壳贻贝的营养指标评价及其抗炎机理探究[D].硕士学位论文,浙江大学,2007.
    [8]刘镇昌,张玉莲,刘全良.我国贻贝养殖技术装备的现状、问题与发展方向[J].渔业现代化,2005(4):5-7.
    [9]刘志峰,李桂生.紫贻贝营养成分的分析及重金属的检测[J].烟台大学学报(自然科学与工程版),2002,15(2):147-150.
    [10]李苹苹.贻贝生物活性的研究[D].硕士学位论文,江南大学,2006.
    [11]章超桦,洪鹏志,邓尚贵,蒋志红.翡翠贻贝肉的食品化学特性及其在海鲜调味料的应用[J].水产学报,2000,24(3):267-270.
    [12]姚滢.东海厚壳贻贝多糖的分离提纯和免疫学活性研究[D].硕士学位论文,第二军医大学,2005.
    [13]张强.贻贝脂肪酸成分分析[J].分析化学,1997,25(1):93-96.
    [14]庆宁,林岳光,沈琪.3种海洋养殖贝类体内的脂肪酸组成[J].热带海洋,1999,18(1):79-82.
    [15]苏秀榕,张健,李太武,丁明进,史平,王素洁,孙涛,李耕.两种贻贝营养成分的研究[J].辽宁师范大学学报(自然科学版),1997,20(3):239-243.
    [16]Clowes LA, Francesconi KA. Uptake and elimination of arsenobetaine by the mussel Mytilus edulis is related to salinity [J]. Comparative Biochemistry and Physiology,2004,137(1):35-42.
    [17]Chan NY, Hossain Md M, Brooks MS. A preliminary study of protein recovery from mussel blanching water by a foaming process[J]. Chemical Engineering and Processing,2007,46(5):501-504.
    [18]Holland CR, Otterbum MS, Mccomiskey P. Froth flotation as a means of protein extraction from mussels [J]. International Journal of Food Science & Technology,2007,18(2):195-205.
    [19]佘纲哲,傅明辉.寻氏肌蛤营养成分分析[J].海洋科学,1996,5:9-11.
    [20]马英杰,张志峰,马爱军,孙谧,刘珊珊.黄、渤海几种海产无脊椎动物蛋白质与氨基酸含量分析[J].海洋科学,1996,6:8-10.
    [21]宋广磊.贻贝的加工利用与开发[J].渔业现代化,2003,2:30-31.
    [22]庆宁,林岳光,金启增.翡翠贻贝软体部营养成分的研究[J].热带海洋,2000,19(1):81-84.
    [23]苏秀榕,李太武,丁明进.扇贝营养成分的研究[J].海洋科学,1997,2:10-11.
    [24]刘亚,章超桦,张静.贝类功能性成分的研究现状及其展望[J].海洋科学,2003,27(8):34-37.
    [25]Yokogoshi H, Mochizuki H, Nanami K, Hida Y, Miyachi F, Oda H. Diet taurine enhances cholesterol degradation and reduces serum and liver cholesterol concentrations in rats fed a high-cholesterol diet[J]. Journal of Nutrition,1999,129(9):1705-1712.
    [26]陈玉珍.牛磺酸的生理功能及其应用[J].解放军预防医学杂志,1994,12(4):329-332.
    [27]章超桦,吴红棉,洪鹏志,邓尚贵,雷晓凌.马氏珠母贝肉的营养成分及其游离氨基酸组成[J].水产学报,2000,24(2):174-178.
    [28]谢宗墉.海洋水产品营养与保健[M].青岛:青岛海洋大学出版社,1991:57-58.
    [29]Gutanikov G Fatty acid profiles of lipid samples [J]. Journal of Chromatography B,1995,671(2):71-89.
    [30]翟毓秀,李晓川.贻贝的营养价值及开发对策[J].齐鲁渔业,1997(3):33-34.
    [31]Cevik U, Damla N, Kobya AI, Bulut VN, Duran C, Dalgic G, Bozaci R. Assessment of metal element concentrations in mussel (m. Galloprovincialis) in eastern black sea, Turkey [J]. Journal of Hazardous Materials,2008,160(2):396-401.
    [32]Karbe L, Schnier C, Siewers H. Trace elements in mussels (Mytilus edulis) from coastal areas of the north sea and the baltic. multielement analyses using instrumental neutron activation analysis [J]. Journal of Radioanalytical and Nuclear Chemistry,1977,37(2):927-943.
    [33]Ravera O, Cenci R, Beone GM, Dantas M, Lodigiani P. Trace element concentrations in freshwater mussel and macrophytes as related to those in their environment [J]. Journal of Limnology,2003,62(1): 61-70.
    [34]Ellis DR, Salt DE. Plants, selenium and human health[J]. Current Opinion in Plant Biology,2003,6(3): 273-279.
    [35]Watanabe F, Katsura H, Takenaka S, Enomoto T, Miyamoto E, Nakatsuka T, Nakano Y. Characterization of vitamin B12 compounds from edible shellfish, clam, oyster, and mussel [J]. International Journal of Food Science and Nutrition,2001,52(3):263-268.
    [36]苏秀榕,李太武,丁明进.紫贻贝和厚壳贻贝营养成分的研究[J].中国海洋药物,1998,17:30-32.
    [37]Cassaro CM, Dietrich CP. Distribution of sulfated mucopolysaccharides in invertebrates [J]. Journal of Biological Chemistry,1977,252(7):2254-2261.
    [38]张豁中,温玉麟.动物活性成分化学[M].天津:天津科学技术出版社,1995:996-998.
    [39]洪鹏志,章超桦,杨文鸽,郝记明,张静.翡翠贻贝肉酶解动物蛋白营养评价及其生理活性初探[J].水产学报,2002,26(1):85-90.
    [40]Hemtoth B. The influence of temperature and dose on antibacterial peptide response against lipopolysaccharide in the blue mussel, Mytilus edulis [J]. Fish & Shellfish Immunology,2003,14(1): 25-37.
    [41]马明华,易杨华,汤海峰.厚壳贻贝多糖MA的分离纯化、理化性质及活性研究(Ⅰ)[J].中国海洋药物,2004,23(4):14-18.
    [42]姚涝,魏江洲,王俊,张建鹏,刘军华,冯伟华,焦炳华.厚壳贻贝多糖的提取和免疫学活性研究[J].第二军医大学学报,2005,26(8):896-899.
    [43]李江滨,黄迪南.贻贝的药用价值研究进展[J].水产科学,2004,23(11):43-44.
    [44]Mayer AMS, Hamann MT. Marine pharmacologyin 2000:Marinec ompounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antituberculosis, and antiviral activities; affecting the cardiovascular, immune, and nervous systems and other miscellaneous mechanisms of action [J]. Marine Biotechnology,2004,6(1):37-52.
    [45]姚丽,张超英,戴莉玲.古今中外,妙用无穷—紫贻贝的医药学价值[J].山东医药工业,1996(1):24-25.
    [46]Gibson SLM. The effect of a lipid extract of the New Zealand green-lipped mussel in three cases of arthritis [J]. Journal of Alternative and Complement Medicine,2000,6(4):351-354.
    [47]Lau CS. Treatment of knee osteoarthritis with Lyprinol(?), lipid extract of the green- lipped mussel-a double-blind placebo-controlled study [J]. Progress Nutrition,2004,6(1):17-31.
    [48]Halpern GM. Anti-inflammatory effects of a stabilized lipid extract of Per a canaliculus (Lyprinol) [J]. Allerg Immunology (Paris),2000,32(7):272-278.
    [49]McpPhee S, Hodges LD, Wright PF, Wynne PM, Kalafatis N, Harney DW, Macrides TA. Anti-cyclooxygenase effects of lipid extracts from the New Zealand green-lipped mussel, Perna canaliculus [J]. Comparative Biochemistry and Physiology,2007,146(3):346-356.
    [50]Walker-Bone K. Natural remedies' in the treatment of osteoarthritis [J]. Drugs Aging,2003,20(7): 517-526.
    [51]Morelli V, Naquin C, Weaver V. Alternative therapies for traditional disease states:osteoarthritis [J]. American Family Physician,2003,67(2):339-344.
    [52]Highton TC, McArthur AW. Pilot study on the effect of New Zealand green mussel on rheumatoid arthritis [J]. The New Zealand Medical Journal,1975,81(535):261-262.
    [53]Whitehouse MW, Macrides TA, Kalafatis N, Betts WH, Haynes DR, Broadbent J. Anti-inflammatory activity of a lipid fraction (lyprinol) from NZ green-lipped mussel [J]. Inflammopharmacology,1997, 5(3):237-246.
    [54]Sinclair AJ, Murphy KJ, Li D. Marine lipids:overview "news insights and lipid composition of Lyprinol" [J]. Allerg Immunology (Paris),2000,32(7):261-271.
    [55]Harbison SJ, Whitehouse MW. Possible steroid-sparing effect in asthma of lyprinol, a shellfish lipid extract [J]. Medical Journal of Australia,2000,173(10):560-561.
    [56]Emelyanov A, Fedoseev G, Krasnoschekova O, Abulimity A, Trendeleva T, Barnes PJ. Treatment of asthma with lipid extract of New Zealand green-lipped mussel:a randomized clinical trial [J]. European Respiratory Journal,2002,20(3):596-600.
    [57]白春学.治疗哮喘的关键—抗炎[J].科技文萃,2005,5:71-74.
    [58]Mitta G, Vandenbulcke F, Roch P. Original involvement of antimicrobial peptides in mussel innate immunity [J]. FEBS Letters,2000,486(3):185-190.
    [59]仲燕,张建鹏,冯伟华,焦炳华.贻贝抗菌肽的研究进展[J].生命的化学,2004,24(2):118-120.
    [60]Charlet M, Chernysh S, Philippe H, Hetru C, Hoffmann JA, Bulet P. Innate immunity. Isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusc, Mytilus edulis [J]. Journal of Biological Chemistry,1996,271(36):21808-21813.
    [61]Hubert F, Noel T, Roch P. A member of the arthropod defensin family from edible Mediterranean mussels, Mytilus galloprovincialis [J]. European Journal of Biochemistry,1996,240(1):302-306.
    [62]Mitta G, Vandenbulcke F, Hubert F, Roch P. Mussel defensins are synthesised and processed in granulocytes then released into the plasma after bacterial challenge [J]. Journal of Cell Science,1999, 112(23):4233-4242.
    [63]Mitta G, Vandenbulcke F, Hubert F, Salzet M, Roch P. Involvement of mytilins in mussel antimicrobial defence [J]. Journal of Biological Chemistry,2000,275(17):12954-12962.
    [64]Mitta G, Hubert F, Noel T, Roch P. Myticin, a novel cysteine-rich antimicrobial peptide isolated from hemocytes and plasma of the mussel Mytilus galloprovincialis [J]. European Journal of Biochemistry, 1999,265(1):71-78.
    [65]仲燕,刘军华,张建鹏,冯伟华,焦炳华.东海贻贝抗菌肽Myticin A基因的克隆表达及其生物学活性[J].第二军医大学学报,2005,26(1):65-68.
    [66]Mitta G, Vandenbulcke F, Noel T, Romestand B, Beauvillain JC, Salzet M, Roch P. Differential distribution and defence involvement of antimicrobial peptides in mussel [J]. Journal of Cell Science, 2000,113(15):2759-2769.
    [67]Froy O, Gurevitz M. Arthropod and mollusk defensins —— evolution by exon—shuffling [J]. Trends in Genetics,2003,19(12):684-687.
    [68]Yang YS, Mitta G, Chavanieu A, Calas B, Sanchez JF, Roch P, Aumelas A. Solution structure and activity of the synthetic four-disulfide bond Mediterranean mussel defensin (MGD-1) [J]. Biochemistry, 2000,39(47):14436-14447.
    [69]Tsybul'skii AV, Isachkova LM, Ovodova RG, Gluzkova VE, Besednova NN, Orlova TG Effect of mytilane, bioglycan from the mussel Crenomytilus grayanus, on the course and outcome of experimental flu infection [J]. Zhurnal mikrobiologii, epidemiologii, iimmunobiologii,1992(3):62-66.
    [70]李伟,熊川男,王建华,郑永唐,金桥,佟长青,曲敏,刘洪伟,汪秋宽.贻贝凝集素抗HIV活性研究[J].沈阳农业大学学报,2007,38(2):207-210.
    [71]Gorinstein S, Moncheva S, Katrich E, Toledo F, Arancibia P, Goshev I, Trakhtenberg S. Antioxidants in the black mussel (Mytilus galloprovincialis) as an indicator of black sea coastal pollution [J]. Marine Pollution Bulletin,2003(46):1317-1325.
    [72]Moncheva S, Trakhtenberg S, Katrich E, Zemser M, Goshev I, Toledo F, Arancibia-Avila P, Doncheva V, Gorinstein S. Total antioxidant capacity in the black musse1(Mytilus galloprovincialis) from Black Sea coasts [J]. Estuarine, Coastal and Shelf Science,2004,59(3):475-484.
    [73]Leontowicz H, Leontowicz M, Namiesnik J, Drzewiecki J, Park YS, Zachwieja Z, Zagrodzki P, Gorinstein A, Trakhtenberg S, Gorinstein S. Nutritional properties of mussels Mytilus galloprovincialis [J]. European Food Research and Technology,2008,227(2):1251-1258.
    [74]肖湘,俞丽君,张尔贤.贻贝清除自由基作用的体外实验研究[J].食品科学,2000,21(8):16-18.
    [75]邱春江,陈瑜,刘利,薛长湖.贻贝酶解物对羟自由基清除作用的试验研究[J].食品研究与开发,2006,27(10):133-137.
    [76]邱春江,苏洁荣,薛长湖.贻贝酶解物体外抗氧化试验研究[J].食品科技,2006(4):54-56.
    [77]Zhang CL, Betts WH, J CL, Betts WH, Chai F, Zalewski PD. Lyprinol, a Lipid Extract from the New Zealand green-lipped mussel, Is a lipoxygenase inhibitor that induces apoptosis in human tumor cells [J]. Journal of Nutrition,2001,131(1):191-199.
    [78]Zeng H, Combs Jr GF. Selenium as an anticancer nutrient:roles in cell proliferation and tumor cell invasion [J]. Journal of Nutritional Biochemistry,2008(19):1-7.
    [79]邵伯芹,史以菊,刘赛,张健,郭金太.贻贝多活素对大鼠肠系膜微循环的影响[J].中国药理学通报,1997,13(3):260-262.
    [80]刘赛,张健.贻贝多活素的药理学研究[J].中国海洋药物,1997,16(2):6-9.
    [81]刘赛,于桂英,邵伯芹,张建.贻贝多活素的药理学研究-Ⅰ对大鼠实验性血栓形成及血小板凝集的影响[J].中国海洋药物,1997(1):7-10.
    [82]毋瑾超,汪依凡,方长富.贻贝蛋白酶解降血压肽的降压活性及相对分子质量与氨基酸组成[J].水产学报,2007,31(2):165-170.
    [83]Je JY, Park PJ, Byun HQ Jung WK, Kim SK, Angiotensin I converting enzyme (ACE) inhibitory peptide derived from the sauce of fermented blue mussel Mytilus edulis [J]. Bioresource Technology,2005(96): 1624-1629.
    [84]Shiels IA, Whitehouse MW. Lyprinol:anti-inflammatory and uterine-relaxant activities in rats, with special reference to a model for dysmenorrhoea [J]. Allergie et Immunologie (Paris),2000,32(7): 279-283.
    [85]Silva VM, Park KJ, Hubinger MD. Optimization of the enzymatic hydrolysis of mussel meat [J]. Journal of Food Science,2010,75(1):C36-42.
    [86]李翊,毛文君,赵林.贻贝富硒提取物中硒生物活性的初步探讨[J].海洋科学,1997(5):56-58.
    [87]刘志峰,李桂生,李萍.贻贝提取物抗高血脂作用的观察[J].中国海洋药物,2001(6):P(6):9-10.
    [88]储智勇,毛俊琴,李铁军,易杨华,沈先荣,蒋定文,陈伟.贻贝多糖对大鼠高脂血症的影响[J].解放军药学学报,2008,24(3):11-15.
    [89]明亮,邵伯芹,张艳.贻贝多活素对鹤鹑实验性动脉粥状硬化的影响[J].中国药理学通报,1996,12(6):554-557.
    [90]Jeffs AG, Holland RC, Hooker SH, Hayden BJ. Overview and bibliography of research on the greenshell mussel (Perna canaliculus) from New Zealand waters [J]. Journal of Shellfish Research,1999,18(2): 347-360.
    [91]Croft JE. Relief from arthritis:a safe and effective treatment from the ocean. Thorsons Publishers Ltd, Wellingborough, Northampton, UK,1980.
    [92]Tsuruki T, Kishi K, Takahashi M, Tanaka M, Matsukawa T, Yoshikawa M. Soymetide, an immuno-stimulating peptide derived from soybean β-conglycinin, is an fMLP agonist [J]. FEBS Letters,2003, 540(1):206-210.
    [93]Oren Z, Shai Y. A class of highly potent antibacterial peptides derived from pardaxin, a pore-forming peptide isolated from moses sole fish Pardachirus marmoratus [J]. European Journal of Biochemistry, 2004,237(1):303-310.
    [94]Kim SK, Kim YT, Byun HQ Nam KS, Joo DS, Shahidi F. Isolation and characterization of antioxidative peptides from gelatin hydrolysate of Alaska Pollack skin [J]. Journal of Agriculture and Food Chemistry, 2001,49(4):1984-1989.
    [95]Nonaka I, Katsuda S, Ohmori T, Shigehisa T, Nakagami T, Maruyama S. In vitro and in vivo anti-platelet effects of enzymatic hydrolysates of collagen and collagen-related peptides [J]. Bioscience, Biotechnology, and Biochemistry,1997,61(5):772-775.
    [96]Sato M, Hosokawa T, Yamaguchi T, Nakano T, Muramoto K, Kahara T, Funayama K, Kobayashi A, Nakano T. Angiotensin I-converting enzyme inhibitory peptides derived from wakame(Undaria pinnatifida) and their antihypertensive effect in spontaneously hypertensive rats [J]. Journal of Agriculture and Food Chemistry,2002,51(21):6245-6252.
    [97]Roks A, Buikema H, Pinto YM, Van Gilst WH. The renin-angiotensin system and vascular function. The role of antiotensin Ⅱ, angiotensin-converting enzyme, and alternative conversion of angiotensin Ⅰ [J]. Heart Vessels,1997, Suppl 12:119-124.
    [98]管骁.燕麦麸蛋白及ACE抑制肽制备工艺与功能特性研究[D].博士学位论文,江南大学,2006.
    [99]陈兰英.猪肺血管紧张素转换酶性质及相关抑制剂的研究[D].博士学位论文,中国协和医科大学,2000.
    [100]Shapiro R, Holmquist B, Riordan JF. Anion activation of angiotensin converting enzyme:dependence on nature of substrate [J]. Biochemistry,1983,22(16):3850-3857.
    [101]Erdos EG. Angiotensin I converting enzyme and the changes in our concepts through the years [J]. Hypertension,1990,16(4):363-370.
    [102]Skidgel RA, Erdos EG Novel activity of human angiotensin I converting enzyme:release of the NH2-and COOH- terminal tripeptides from the luteinizing hormone- releasing hormone [J]. Proceedings of the National Academy of Sciences of the United States of America,1985,82(4):1025-1029.
    [103]王伟.可控酶解蚕蛹蛋白准备血管紧张素转换酶抑制肽及其构效关系的研究[D].博士学位论文,浙江大学,2008.
    [104]Natesh R, Schwager SLU, Sturrock ED, Acharya KR. Crystal structure of the human angiotensin-converting enzyme-lisinopril complex [J]. Nature,2003,421(6922):551-554.
    [105]Dimsdale JE, Kolterman O, Koda J, Nelesen R. Effect of race and hypertension on plasma amylin concentrations [J]. Hypertension,1996,27(6):1273-1276.
    [106]MacMahon S, Peto R, Culter J, Collins R, Sorlie P, Neaton J, Abbott R, Godwin J, Dyer A, Stamler J. Blood pressure, stroke,and coronary heart disease. Part 1. Prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias [J]. Lancet,1990,335(8692): 765-774.
    [107]王先梅,杨丽霞.原发性高血压发病机制的研究进展[J].西南国防医药,2005,15(1):98-100.
    [108]赵连友,王先梅.高血压发病机制的研究现状[J].解放军保健医学杂志,2004,6(2):67-70.
    [109]Dostal DE, Baker KM. The cardiac renin-angiotensin system:conceptual, or a regulator of cardiac function? [J]. Circulation Research,1999,85(7):643-650.
    [110]Phillips MI, Schmidt-Ott KM. The discovery of renin 100 years ago [J]. News in Physiological Sciences, 1999,14(6):271-274.
    [111]Page IH, Helmer OM. A crystalline pressor substance (angiotonin) resulting from the reaction between renin and renin-activator [J]. Journal of Experimental Medicine,1940,71(1):29-42.
    [112]Murphey L, Vaughan D, Brown N. Contribution of bradykinin to the cardioprotective effects of ACE inhibitors [J]. European Heart Journal Supplements,2003,5(Supplement A):A37-A41.
    [113]Li GH, Le GW, Shi YH, Shrestha S. Angiotensin I-converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects [J]. Nutrition Research,2004,24(7): 469-486.
    [114]Marcic B, Deddish PA, Jackman HL, Erdos EG Enhancement of bradykinin and resensitization of its B2 receptor [J]. Hypertension,1999,33(3):835-843.
    [115]Kramar EA, Harding JW, Wright JW. Angiotensin Ⅱ- and Ⅳ- induced changes in cerebral blood flow; Roles of AT1, AT2, and AT4 receptor subtypes [J]. Regulatory Peptides,1997,68(2):131-138.
    [116]Berry C, Touyz R, Dominiczak AF, Webb RC, John DG Angiotensin receptors:signaling, vascular pathophysiology, and interactions with ceramide [J]. American Journal of Physiology-renal Physiology, 2001,281(6):H2337-H2365.
    [117]Homing B, Landmesser U, Kohler C, Ahlersmann D, Christoph A, Spiekermann S, Tatge H, Drexler H. Comparative effect of ace inhibition and angiotensin Ⅱ type 1 receptor antagonism on bioavailability of nitric oxide in patients with coronary artery disease:role of superoxide dismutase [J]. Circulation,2001, 103(6):799-805.
    [118]Ondetti MA, Rubin B, Cushman DW. Design of specific inhibitors of angiotensin-converting enzyme: new class of orally active antihypertensive agents [J]. Science,1977,196(4288):441-444.
    [119]Cushman DW, Cheung HS, Sabo EF, Ondetti MA. Development and design of specific inhibitors of angiotensin-converting enzyme [J]. American Journal of Cardiology,1982,49(6):1390-1394.
    [120]Ondetti MA, Cushman DW. Enzymes of the renin-angiotensin system and their inhibitors [J]. Annual Review of Biochemistry,1982,51:283-308.
    [121]Bakhle YS. Conversion of angiotensin I to angiotensin II by cell-free extracts of dog lung [J]. Nature, 1968,220:919-921.
    [122]Bakhel YS, Reynard AM, Vane JR. Metabolism of the angiotensins in isolated perfused tissues [J]. Nature,1969,222:956-959.
    [123]Ferreira SH. A bradykinin-potentiating factor (BPF) present in the venom of Bothrops jararaca [J]. British Journal of Pharmacology and Chemotherapy,1965(24):163-169.
    [124]Ondetti MA, Williams NJ, Sabo EF, Pluscec J, Weaver ER, Kocy O. Angiotensin-converting enzyme inhibitors from the venom of Bothrops jararaca. Isolation, elucidation of structure, and synthesis [J]. Biochemistry,1971,10(22):4033-4039.
    [125]Cushman DW, Ondetti MA. History of the design of captopril and related inhibitors of angiotensin converting enzyme [J]. Hypertention 1991,17(4):589-592.
    [126]Arkinson AB, Roberkson JI. Captopril in the treatment of climical hypertension and cardiac failure [J]. Lancet,2(8147):836-839.
    [127]Suetsuna K. Isolation and characterization of angiotensin I-converting enzyme inhibitor derived from Allium sativum L (garlie) [J]. Journal of Nutritional Biochemistry.1998,9(7):415-419.
    [128]姜瞻梅,霍贵成,吕桂善.不同食物来源的ACE抑制肽的研究现状[J].食品研究与开发,2003,24(1):27-29.
    [129]Kuba M, Tana C, Tawata S, Yasuda M. Production of angiotensin I-converting enzyme inhibitory peptides from soybean protein with Monascus purpureus acid proteinase [J]. Process Biochemistry, 2005,40(6):2191-2196.
    [130]Parris N, Moreau RA, Johnston DB, Dickey LC, Aluko RE. Angiotensin I converting enzyme-inhibitory peptides from commercial wet- and dry-milled corn germ [J]. Journal of Agricultural and Food Chemistry,2008,56(8):2620-2623.
    [131]Wu JP, Aluko RE, Muir AD. Purification of angiotensin I-converting enzyme inhibitory peptides from the enzymatic hydrolysate of defatted canola meal [J]. Food Chemistry,2008,111(4):942-950.
    [132]Miguel M, Contreras MM, Recio I, Aleixandre A. ACE-inhibitory and antihypertensive properties of a bovine casein hydrolysate [J]. Food Chemistry,2009,112(1):211-214.
    [133]Ali B, Naima NA, Rozenn RP, Yves L, Didier G, Ahmed B, Nasri M. Angiotensin I-converting enzyme (ACE) inhibitory activities of sardinelle (Sardinella aurita) by-products protein hydrolysates obtained by treatment with microbial and visceral fish serine proteases [J]. Food Chemistry,2008,111(2): 350-356.
    [134]Saito Y, Wanezaki K, Kawato A, Imayasu S. Structure and activity of angiotensin I converting enzyme inhibitory peptides from sake and sake lees [J]. Bioscience, Biotechnology, and Biochemistry,1994, 58(10):1767-1771.
    [135]Kaustav M, Wu J. Angiotensin I converting enzyme inhibitory peptides from simulated in vitro gastrointestinal digestion of cooked eggs [J]. Journal of Agricultural and Food Chemistry,2009,57(2): 471-477.
    [136]Cao W, Zhang C, Hong P, Ji H, Hao J. Purification and identification of an ACE inhibitory peptide from the peptic hydrolysate of Acetes chinensis and its antihypertensive effects in spontaneously hypertensive rats [J]. International Journal of Food Science and Technology,2010,45(5):959-965.
    [137]Tsai JS, Chen JL, Pan BS. ACE-inhibitory peptides identified from the muscle protein hydrolysate of hard clam (Meretrix lusoria) [J]. Process Biochemistry,2008,43(7):743-747.
    [138]Wang J, Hu J, Cui J, Bai X, Du Y, Miyaguchi Y, Lin B. Purification and identification of a ACE inhibitory peptide from oyster proteins hydrolysate and antihypertensive effect of hydrolysate in spontaneously hypertensive rats [J]. Food Chemistry,2008,111(2):302-308.
    [139]Sato M. Hoskavva T, Yamaguchi T, Nakano T, Muramoto K, Kahara T, Funayama K, Kobayashi A, Nakana. Angiotensin I-converting enzyme inhibitory peptides derived from wakame (Undaria pinnatifida) and their antihypertensive effect in spontaneously hypertensive rats [J]. Journal of Agricultural and Food Chemistry,2002,50(21):6245-6252.
    [140]Fujita H, Yamagami T, Ohshima K. Effects of an ace-inhibitory agent, katsuobushi oligopeptide, in the spontaneously hypertensive rat and in borderline and mildly hypertensive subjects [J]. Nutrition Research,2001,21(8):1149-1158.
    [141]Gill I, Lopez-Fandino R, Jorba X. Biologically active peptides and enzymatic approaches to their production [J]. Enzyme and Microbial Technology,1996,18(3):162-183.
    [142]胡文婷,张凯.酶解海洋生物源蛋白制备活性肽研究进展[J].海洋科学,2010,34(5):83-88.
    [143]Vincenzini MT, Iantomasi T, Favilli F. Glutathione transport across intestinal brush-border membranes: effects of ions, pH, delta psi, and inhibitors [J]. Biochimica et Biophysica Acta,1989,987(1):29-37.
    [144]Donkor ON, Henriksson A, Singh TK, Vasiljevic T, Shah NP. ACE-inhibitory activity of probiotic yogurt [J]. International Dairy Journal,2007,17(11):1321-1331.
    [145]Chobert JM, El-Zahar K, Sitohy M, Dalgalarrondo M, Metro F, Choiset Y, Haertle T. Angiotensin I-converting-enzyme (ACE)-inhibitory activity of tryptic peptides of ovine β-lactoglobulin and of milk yoghurts obtained by using different starters [J]. Dairy Science & Technology,2005,85(3):141-152.
    [146]Miguel M, Maria M, Aleixandre A. Vascular effects, angiotensin I-converting enzyme (ACE)- inhibitory activity,and antihypertensive properties of peptides derived from egg white [J]. Journal of Agricultural and Food Chemistry,2007,55(26):10615-10621.
    [147]Lahogue V, Vallee-Rehel K, Cuart M, Haras D, Allaume P. Isolation of angiotensin I converting enzyme inhibitory peptides from a fish by-products hydrolysate Tensideal [J]. Advances in Experimental Medicine and Biology,2009(61):483-484.
    [148]Pan D, Guo Y. Optimization of sour milk fermentation for the production of ACE-inhibitory peptides and purification of a novel peptide from whey protein hydrolysate [J]. International Dairy Journal,2010, 20(7):472-479.
    [149]Byun HG, Kim SK. Purification and characterization of angiotensin I converting enzyme (ACE) inhibitory peptides from Alaska pollack (Theragra chalcogramma) skin [J]. Process Biochemistry, 2001,36(12):1155-1162.
    [150]Jeon YJ, Byun HG, Kim SK. Improvement of functional proterties of cod frame protein hydrolysates using ultrafiltration membrane [J]. Process Biochemistry,1999,35(5):471-478.
    [151]Balti R, Nedjar-Arroume N, Bougatef A, Guillochon D, Nasri M. Three novel angiotensin I-converting enzyme (ACE) inhibitory peptides from cuttlefish (Sepia officinalis) using digestive proteases [J]. Food Research International,2010,43(4):1136-1143.
    [152]李勇,蔡木易编著.肽营养学[M].北京:北京大学医学出版社,2007,12.
    [153]Maeno M, Yamamato N, Takano T. Identification of an antihypertensive peptide from casein hydrolysates produced by a proteinase from Lactobacillus helveticus CP790 [J].1996,79(8): 1316-1321.
    [154]Fujita H, Usui H, Kurahashi M, Yoshikawa M. Isolation and characterization of ovokinin, a bradykinin B1 agonist peptide derived from ovalbumin [J]. Peptides,1995,16(5):785-790.
    [155]Cheung HS, Wang FL, Ondetti MA, Sabo EF, Cushman DW. Binding of peptide substrates and inhibitors of angiotensin-converting enzyme:Importance of the COOH-terminal dipeptide sequence [J]. Journal of Biological Chemistry,1980,255(2):401-407.
    [156]Miyoshi S, Kaneko T, Yoshizawa Y, Fukui F, Tanaka H, Maruyama S. Hypotensive anctivity of enzymatic α-Zein hydrolysate [J]. Agricultural Biology and Chemistry,1991,55:1401-1407.
    [157]Kohmura M, Nio N, Kubo K, Minoshima Y, Munekata E, Ariyoshi Y. Inhibition of angiotensin-converting enzyme by synthetic peptides of human β-casein [J]. Agricultural and Biological Chemistry, 1989,53(8):2107-2114.
    [158]Junga WK, Mendis E, Je JY, Park PJ, Son BW, Kim HC, Choi YK, Kim SK. Angiotensin I-converting enzyme inhibitorypeptide from yellowfin sole (Limanda aspera) frame proteinand its antihypertensive effectin spontaneously hypertensive rats [J]. Food Chemistry,2006,94(1):26-32.
    [159]Matsui T, Matsufuji H, Seki E, Osajima K, Nakashima M, Osajma Y. Inhibition of angiotensin I-converting enzyme inhibitory peptides in an alkaline protease hydrolyzate derived from sardine muscle [J]. Bioscience, Biotechnology, and Biochemistry,1993,57(6):922-925.
    [160]Hellberg S, Siostrom M, Skagerberg B, Wold S. Peptide quantitative structure-activity relationships, a multivariate approach [J]. Journal of Medicinal Chemistry,1987,30(7):1126-1135.
    [161]Elizabeth RC, William JD. Amino acid side chain descriptors for quantitative structure-activity relationship of peptide analogues [J]. Journal of Medicinal Chemistry,1995,38(4):2705-2713.
    [162]Zaliani A, Gancia E. MS-WHIM scores for amino acids:a new 3 D-descriptor for peptide QSAR and QSPR studies [J]. Journal of Chemical Information and Modeling,1999,39(3):525-533.
    [163]丁俊杰,丁晓琴,赵立峰,陈翼胜.新型三维氨基酸结构描述符的研究及其在多肽QSAR中的应用[J].药学学报,2005,40(4):340-346.
    [164]梁桂兆,周鹏,周原,张巧霞,李志良.一组新氨基酸描述子用于肽定量构效关系研究[J].化学学报,2006,64(5):691-697.
    [165]梅虎.肽的定量构效关系研究[D].博士学位论文,重庆大学,2005.
    [166]Wu J, Aluko RE, Nakai S. Structural requirements of Angiotensin I converting enzyme inhibitory peptides:Quantitative structure activity relationship study of di- and tri peptides [J]. Journal of Agricultural and Food Chemistry,2006,54(3):732-736.
    [167]张贵川.食源三肽ACE抑制活性构效关系研究D].硕士学位论文,西南大学,2009.
    [168]Wu J, Aluko RE, Nakai S. Structural requirements of Angiotensin I converting enzyme inhibitory peptides:Quantitative structure-activity relationship modeling of peptides containing 4-10 amino acid residues [J]. QSAR and Combinatorial Science,25(10):873-880.
    [169]Majumder K, Wu J. A new approach for identification of novel antihypertensive peptides from egg proteins by QSAR and bioinformatics [J]. Food Research International,2010,43(5):1371-1378.
    [1]邱春江,陈瑜,刘利,薛长湖.贻贝酶解物对羟自由基清除作用的试验研究[J].食品研究与开发,2006,27(10):133-137.
    [2]李江滨,黄迪南.贻贝的药用价值研究进展[J].水产科学,2004,23(11):43-44.
    [3]胡新中,郑建梅,魏益民,张国权,张胜强,魏强.蛋白质组分分析方法比较研究[J].中国粮油学报,2005,20(4):12-16.
    [4]Hettiarachchy NS, Griffin VK, Gnanasambandam R. Preparation and functional properties of a protein isolate from defatted wheat germ [J]. Cereal Chemistry,1996,73(3):364-367.
    [5]Ge Y, Sun A, Ni Y, Cai T. Some nutritional and functional properties of defatted wheat germ protein [J]. Journal of Agricultural and Food Chemistry,2000,48(12):6215-6218.
    [6]Claver IP, Zhou HM. Enzymatic hydrolysis of defatted wheat germ by proteases and the effect on the functional properties of resulting protein hydrolysates [J]. Journal of Food Biochemistry,2005, 29(1):13-26.
    [7]Tomoskozi S,Lasztity R,Sule E,Gaugecz J, Varga J. Functional properties of native and modified wheat germ protein isolates and fractions [J]. Molecular Nutrition & Food Reaearch,1998,42(3):245-247.
    [8]Agboola S, Ng D, Mills D. Characterization and functional properties of Australian rice protein isolates [J]. Journal of Cereal Science,2005,41(3):283-290.
    [9]Padhye VW, Salunkhe DK. Extraction and characterization of rice proteins [J]. Journal of Cereal Science,1979,56(5):389-393.
    [10]Guo XN, Yao HY. Fractionation and characterization of tartary buckwheat flour proteins [J]. Food Chemistry,2006,98(1):90-94.
    [11]Osborne TB. The vegetable proteins [M].2ed. Longmans Green and Co:London.1924.
    [12]张惟杰.糖复合物生化研究技术[M].浙江大学出版社,1999.
    [13]刘希光,于华华,赵增芹,李智恩,李鹏程.海蜇不同部位脂肪酸的组成研究[J].分析化学,2004,32(12):1635-1638.
    [14]鲁丹.微波消解-端视ICP-AES法测定食用明胶中铅、铬和砷[J].食品与发酵工业,2008,34(9):150-152.
    [15]郑永军,赵斌.微波消解/等离子发射光谱法测定膨化食品中多元素[J].食品工业科技,2005,26(9):167-168.
    [16]FAO/WHO. Energy and protein requirements. FAO Nutrition Meetings Report Series No.52. FAO:Rome. 1973.
    [17]Alsmeyer RH, Cunninghan AD, Happich ML. Equations predict PER from amino acid analysis [J]. Food Technique,1974,28(7):34-38.
    [18]Morup H, Olesen ES. New method for prediction of protein value from essential amino acid pattern [J]. Nutrtion Reports International,1976,13:355-365.
    [19]王伟.可控酶解蚕蛹蛋白制备血管紧张素转换酶抑制肽及其构效关系的研究[D].浙江大学.2008.
    [20]Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 [J]. Nature,1970,227(5259):680-685.
    [21]苏秀榕,李太武,丁明进.紫贻贝和厚壳贻贝营养成分的研究[J].中国海洋药物,1998,60:30-32.
    [22]励炯.厚壳贻贝的营养指标评价及其抗炎机理探究[D].浙江大学.2007,34-35.
    [23]张强.贻贝脂肪酸成分分析[J].分析化学,1997,25(1):93-96.
    [24]庆宁,林岳光,沈琪.3种海洋养殖贝类体内的脂肪酸组成[J].热带海洋,1999,18(1):79-82.
    [25]苏秀榕,张健,李太武,丁明进,史平,王素洁,孙涛,李耕.两种贻贝营养成分的研究[J].辽宁师范大学学报(自然科学版),1997,20(3):239-243.
    [26]Cevik U, Damla N, Kobya AI, Bulut VN, Duran C, Dalgic G, Bozaci R. Assessment of metal element concentrations in mussel (m. Galloprovincialis) in eastern black sea, Turkey [J]. Journal of Hazardous Materials,2008,160(2):396-401.
    [27]Ravera O, Cenci R, Beone GM, Dantas M, Lodigiani P. Trace element concentrations in freshwater mussel and macrophytes as related to those in their environment [J]. Journal of Limnology,2003,62(1): 61-70.
    [28]FAO/WHO/UNU. Energy and protein requirements; Report of a joint FAO/WHO/UNU expert consultation. WHO Tech. Rep. Ser. No.724, Who:Geneva,1985.
    [29]Chen HM, Muramoto K, Yamauchi F. Antioxidant properties of histidine-containing peptides designed from peptide fragment found in the digests of a soybean protein [J]. Journal of Agricultural and Food Chemistry,1998,46:49-53.
    [30]Friedman M. Nutritional value of proteins from different food sources. A review [J]. Journal of Agricultural and Food Chemistry,1996,44(1):6-29.
    [1]Panyam D, Kilara A. Enhancing the functionality of food proteins by enzyme modification [J]. Trends in food science and technology,1996,7(4):120-125.
    [2]Korhonen H, Pihlanto A. Food-derived bioactive peptides-opportunities for designing future foods [J]. Current Pharmaceutical Design,2003,9(16):cl297-1308.
    [3]邱春江,陈瑜,刘利,薛长湖.贻贝物对羟自由基清除作用的试验研究[J].食品研究与开发,2006,27(10):133-137.
    [4]毋瑾超,汪依凡,方长富.贻贝蛋白降血压肽的降压活性及相对分子质量与氨基酸组成[J].水产学报,2007,31(2):165-170.
    [5]Nissen JA. Enzymatic hydrolysis of food protein. New York:Elsevier Applied Science Publisher,1986.
    [6]黄伟坤.食品检验与分析[M].北京:中国轻工业出版社,1990.
    [7]Wu JP, Aluko RE, Muir AD. Improved method for direct high performance liquid chromatography assay of angiotensin-converting enzyme-catalyzed reactions [J]. Journal of Chromatography A,2002,950(1): 125-130.
    [8]Klompong V, Benjakul S, Kantachote D, Shahidi F. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type [J]. Food Chemistry,2007,102(4):1317-1327.
    [9]Yuan XQ, Gu XH, Tang J. Optimization of the production of Momordica charantia L. Var. awreviata Ser. Protein hudrolysates with hypoglycemic effect using Alcalase [J]. Food Chemistry,2008,111(2):340-344.
    [10]Wu JH, Wang Z, Xu SY. Enzymatic production of bioactive peptides from sericin recovered from silk industry wastewater [J]. Process Biochemistry,2008,43(5):480-487.
    [11]夏树华.螺蛳中生物活性物质的研究[D].博士学位论文,江南大学,2006.12.
    [12]颜真,张英起.蛋白质研究技术[M].陕西:第四军医大学出版社,2007.
    [13]孙崇荣,李玉民.蛋白质化学导论[M].上海:上海复旦大学出版社,1991.
    [14]袁晓睛.癞葡萄降血糖肽的制备及其降糖机理研究[D].博士学位论文,江南大学,2007.9.
    [15]程云辉.麦胚蛋白物的制备、结构及其生物活性功能的研究[D].博士学位论文,江南大学,2006.
    [16]Klompong V, Benjakul S, Kantachote D, Shahidi F. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type [J]. Food Chemistry,2007,102(4):1317-1327.
    [17]Zhu KX, Zhou HM, Qian HF. Antioxidant and free radical scavenging activities of wheat germ protein hydrolysates (WGPH) prepared with alcalase [J]. Process Biochemistry,2006,41(6):1296-1302.
    [18]Marquez MC, Vazquez MA. Modeling of enzymatic protein hydrolysis [J]. Process Biochemistry,1999, 35(1):111-117.
    [19]Adamson NJ, Reynolds EC. Characterization of casein phosphopeptides prepared using Alcalase: determination of enzyme specificity [J]. Enzyme and microbial technology,1996,19(3):202-207.
    [20]Claver IP, Zhou HM. Enzymatic hydrolysis of defatted wheat germ by proteases and the effect on the functional properties of resulting protein hydrolysates [J]. Journal of food biochemistry,2005,29(1): 13-26.
    [21]Kong X, Zhou H, Qian H. Enzymatic hydrolysis of wheat gluten by proteases and properties of the resulting hydrolysates [J]. Food Chemistry,2007,102(3):759-763.
    [22]Hammershoj M, Nebel C, Carstens JH. Enzymatic hydrolysis of ovomucin and effect on foaming properties [J]. Food Research International,2008,41(5):522-531.
    [23]管骁.燕麦麸蛋白及ACE抑制肽制备工艺与功能特性研究[D].博士学位论文,江南大学,2007.03.
    [24]Kristinsson HQ Rasco BA. Fish protein hydrolysates:Production, biochemical and functional properties [J]. Critical Reviews in Food Science and Nutrition,2000,40(1):43-81.
    [25]Cushman DW, Cheung HS. Spectrophotometric assay and properties of the angiotensin I converting enzyme of rabbit lung [J]. Biochemical Pharmacology,1971,20(7):1637-1648.
    [26]Wu JP, Rotimi EA, Alister DM. Improved method for direct high-performance liquid chromatography assay of angiotensin-converting enzyme-catalyzed reactions [J]. Journal of chromatography A,2002, 950(1):125-130.
    [27]王伟.可控蚕蛹蛋白制备血管紧张素转换酶抑制肽及其构效关系的研究[D].博士学位论文,浙江大学,2008.
    [28]Donkor ON, Henriksson A, Singh TK, Vasiljevic T, Shah NP. ACE-inhibitory activity of probiotic yoghurt [J]. International Dairy Journal,2007,17(11):1321-1331.
    [29]Vercruysse L, Smagghe G, Matsui T, Van Camp J. Purification and identification of an angiotensin I converting enzyme (ACE) inhibitory peptide from the gastrointestinal hydrolysate of the cotton leafworm, Spodoptera littoralis [J]. Process Biochemistry,2008,43(8):900-904.
    [30]He HL, Chen XL, Sun CY, Zhang YZ, Gao PJ. Preparation and functional evaluation of oligopeptide-enriched hydrolysate from shrimp (Acetes chinensis) treated with crude protease from Bacillus sp. SM98011 [J]. Bioresource Technology,2006,97(3):385-390.
    [31]Lo WM, Li-Chan EC. Angiotensin I converting enzyme inhibitory peptides from in vitro pepsin-pancreatin digestion of soy protein [J]. Journal of Agricultural and Food Chemistry,2005,53(9): 3369-3376.
    [32]Matsufuji H, Matsui T, Seki E, Osajima K, Nakashima M, Osajima Y. Angiotensin I-converting enzyme inhibitory peptides in an alkaline protease hydrolyzate derived from sardine muscle [J]. Bioscience, Biotechnology and Biochemistry,1994,58(12):2244-2255.
    [33]Lee DH, Kim JH, Park JS, Choi YJ, Lee JS. Isolation and characterization of a novel angiotensin I-converting enzyme inhibitory peptide derived from the edible mushroom Tricholoma gigateum [J]. Peptides,2004,25(4):621-627.
    [34]Jang A, Lee M. Purification and identification of angiotensin I-converting enzyme inhibitory peptides derived from beef hydrolysates [J]. Meat Science,2005,69(4):653-661.
    [35]Vincenzini MT, Iantomasi T, Favilli F. Glutathione transport across intestinal brush-border membranes: effects of ions, pH, delta psi, and inhibitors [J]. Biochimica et Biophysica Acta,1989,987(1):29-37.
    [36]Jeon YJ, Byun HG, Kim SK. Improvement of functional proterties of cod frame protein hydrolysates using ultrafiltration membrane [J]. Process Biochemistry,1999,35(5):471-478.
    [37]Gomez-Ruiz JA, Taborda G, Amigo L, Recio I, Ramos M. Identifiaction of ACE-inhibitory peptides in different Spanish cheeses by tandem mass spectrometry [J]. European Food Research and Technology, 2006,223(5):595-601.
    [1]Ferreira SH. A bradykinin-potentiating factor (BPF) present in the venom of Bothrops jararaca [J]. British Journal of Pharmacology and Chemotherapy,1965(24):163-169.
    [2]管骁.燕麦麸蛋白及ACE抑制肽制备工艺与功能特性研究[D].博士学位论文,江南大学,2007.03.
    [3]Suetsuna K. Isolation and characterization of angiotensin I-converting enzyme inhibitor derived from Allium sativum L (garlie) [J]. Journal of Nutritional Biochemistry,1998,9(7):415-419.
    [4]Gibbs BF, Zougman A, Masse R, Mulligan C. Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food [J]. Food Research International,2004,37(2):123-131.
    [5]Wu JP, Ding LX. Characterization of inhibition and stability of soy-protein-derived angiotensin I-converting enzyme inhibitory peptides [J]. Food Research International,2002,35(4):367-375.
    [6]Rho SJ, Lee JS, Chung Y, Kim YW, Lee HG Purification and identification of an angiotensin I-converting enzyme inhibitory peptide from fermented soybean extract [J]. Process Biocheimstry,2009,44(4): 490-493.
    [7]Nakajima K, Yoshie-Stark Y, Ogushi M. Comparison of ACE inhibitory and DPPH radical scavenging activities of fish muscle hydrolysates [J]. Food Chemistry,2009,114(3):844-851.
    [8]Zhang FX, Wang Z, Xu SY. Macroporous resin purification of grass carp fish (Ctenopharyngodon idella) scale peptides with in vitro angiotensin-I converting enzyme (ACE) inhibitory ability [J]. Food Chemistry, 2009,117(3):387-392.
    [9]Raghavan S, Kristinsson HG ACE-inhibitory activity of tilapia protein hydrolysates [J]. Food Chemistry, 2009,117(4):582-588.
    [10]Wang JP. Hu JN. Cui JZ, Bai XF, Du YG, Miyaguchi YJ, Lin BC. Purification and identification of a ACE inhibitory peptide from oyster proteins hydrolysate and the antihypertensive effect of hydrolysate in spontaneously hypertensive rats [J]. Food Chemistry,2008,111(2):302-308.
    [11]Tsai JS. Chen JL, Pan BS. ACE-inhibitory peptides identified from the muscle protein hydrolysate of hard clam (Meretrix lusoria) [J]. Process Biochemistry,2008,43(7):743-747.
    [12]Je JY, Park JY, Jung WK, Park PJ, Kim SK. Isolation of angiotensin I converting enzyme (ACE) inhibitor from fermented oyster sauce, Crassostrea gigas [J]. Food Chemistry,2005,90(4):809-814.
    [13]Guo YX. Pan DD. Tanokura M. Optimisation of hydrolysis conditions for the production of the angiotensin-I converting enzyme (ACE) inhibitory peptides from whey protein using response surface methodology [J]. Food Chemistry,2009,114(1):328-333.
    [14]Miguel M, Contreras MM. Recio I. Aleixandre A. ACE-inhibitory and antihypertensive properties of a bovine casein hydrolysate [J]. Food Chemistry,2009,112(1):211-214.
    [15]赵亚华.生物化学实验技术教程[M].广州:华南理工大学出版社,2000.
    [16| Wu JP, Ding XL. Characterization of inhibition and stability of soy-protein-derived angiotensin I-converting enzyme inhibitory peptides [J]. Food Research International,2002,35(4):367-375.
    [17]Butikofer U, Meyer J, Sieber R, Wechsler D. Quantification of the angiotensin-converting enzyme inhibiting Tri-PePtides Val-Pro-Pro and Ile-Pro-Pro in hard semi-hard and soft cheeses [J]. International Dairy Journal,2007,17(8):968-975.
    [18]张贵川.食源三肽ACE抑制活性构效关系研究[D].硕士学位论文,西南大学,2009.06.
    [19]Huang RH, Mendis E, Kim SK. Improvement of ACE inhibitory activity of chitooligosaccharides (COS) by carboxyl modification [J]. Bioorganic & Medicinal Chemistry,2005,13(11):3649-3655.
    [20]管骁.燕麦麸中可溶性β-葡聚糖的提取及性质研究[D].硕士学位论文,江南大学,2002.06.
    [21]吴有炜.实验设计与数据处理[M].苏州:苏州大学出版社,2002.
    [22]Ven CVD, Gruppen H, Bont DBA, Vorgen AGJ. Optimisation of the angiotensin converting enzyme inhibition by whey protein hydrolysates using response surface methodology [J]. International Dairy Journal,2002,12(10):813-820.
    [23]Ren J, Zhao M, Shi J, Wang J, Jiang Y, Cui C, Kakuda Y, Xue SJ. Optimization of antioxidant peptide production from grass carp sarcoplasmic protein using response surface methodology [J]. LWT-Food Science and Technology,2008,41(9):1624-1632.
    [24]Percin D, Radulovic-Popovic L, Vastag Z, Madarev-Popovic S, Trivic S. Enzymatic hydrolysis of protein isolate from hull-less pumpkin oil cake:Application of response surface methodology [J]. Food Chemistry,2009,115(2):753-757.
    [25]Cheong LZ, Tan CP, Long K, Yusoff MSA, Arifin N, Lo SK, Lai OM. Production of a diacylglycerol-enriched palm olein using lipase-catalyzed partial hydrolysis:Optimization using response surface methodology [J]. Food Chemistry,2007,105(4):1614-1622.
    [26]Jeva M, Zhang YW, Kim IW, Lee JK. Enhanced saccharification of alkali-treated rice straw by cellulase from Trametes hirsuta and statistical optimization of hydrolysis conditions by RSM [J]. Bioresource Technology,2009,100(21):5155-5161.
    [27]Nilsang S, Lertsiri S, Suphantharika M, Assavanig A. Optimization of enzymatic hydrolysis of fish soluble concentrate by commercial proteases [J]. Journal of Food Engineering,2005,70(4):571-578.
    [28]Pericin D, Radulovic-Popovic L, Vastag Z. Madarey-Popovic S, Trivic S. Enzymatic hydrolysis of protein isolate from hull-less pumpkin oil cake:Application of response surface methodology [J]. Food Chemistry,2009,115(2):753-757.
    [29]Bhaskar N, Benila T, Radha C. Lalitha G Optimization of enzymatic hydrolysis of visceral waste proteins of Catla (Catla catla) for preparing protein hydrolysate using a commercial protease [J]. Bioresource Technology,2008,99(2):335-343.
    [30]Kim JM, Whang JH, Kim KM, Koh JH, Suh HJ. Preparation of corn gluten hydrolysate with angiotensin I converting enzyme inhibitory activity and its solubility and moisture sorption [J]. Process Biochemistry, 2004,39(8):989-994.
    [31]Gbogouri GA, Linder M, Fanni J, Parmentier M. Influence of hydrolysis degree on the functional properties of salmon byproduct hydrolysates [J]. Journal of Food Science,2004.69 (8):615-622.
    [32]Klompong V, Benjakul S, Kantachote D. Shahidi F. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type [J]. Food Chemistry,2007,102(4):1317-1327.
    [33]Byun HG, Kim SK. Purification and characterization of angiotensin I converting enzyme(ACE) inhibitory peptides from Alaska Pollack (Theragra chalcogramma) skin [J]. Process Biochemistry,2001,36(12): 1155-1162.
    [34]Jamdar SN, Rajalakshmi V, Pednekar MD, Juan F, Yardi V, Shama A. Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate [J]. Food Chemistry,2010,121(1):178-184.
    [35]吴建平.大豆降血压肽的研制.无锡:无锡轻工大大学博士学位论文,1998.
    [36]Guo YX, Pan DD, Tanokura M. Optimisation of hydrolysis conditions for the production of the angiotensin-Ⅰ converting enzyme (ACE) inhibitory peptides from whey protein using response surface methodology [J]. Food Chemistry,2009,114(1):328-333.
    [37]Kim SK, Byun HG, Park PJ, Shahidi F. Angiotensin I converting enzyme inhibitory peptides purified from bovine skin gelatin hydrolysate [J]. Journal of Agricultural & Food Chemistry,2001,49(6):2992-2007.
    [38]Li GH, Le GW, Shi YH. Angiotensin Ⅰ-converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects [J]. Nutrition Research,2004,24(7): 469-486.
    [39]Cheung HS, Wang FL, Ondetti MA, Sabo EF, Cushman DW. Binding of peptide substrates and inhibitors of angiotensin-converting enzyme:Importance of the COOH-terminal dipeptide sequence [J]. Journal of Biological Chemistry,1980,255(2):401-407.
    [40]Astawan M, Wahyuni M, Yasuhara T, Yamada K, Tadokoro T, Maekawa A. Effects of angiotensin I-converting enzyme inhibitory substances derived from Indonesian dried-salted fish on blood pressure of rats [J]. Bioscience, Biotechnology, and Biochemistry,1995,59(3):425-429.
    [41]Je JY, Park PJ, Kwon JY, Kim SK. A novel angiotensin I converting enzyme inhibitory peptide from Alaska Pollack (theragra chalcogramma) frame protein hydrolysates [J]. Journal of Agricultural and Food Chemistry.2004.52(26):7842-7845.
    [42]Saito Y, Wanezaki K. Kawato A, Imayasu S. Structure and activity of angiotensin I-converting enzyme inhibitory peptides from sake and sake lees [J]. Bioscience, Biotechnology, and Biochemistry,1994, 58(10):1541-1545.
    [43]Suetsuna K. Identification of antihypertensive peptides from peptic digest of the short-necked clam Tapes philippinarum and the pearl oyster Pinctada fucata martensii [J]. Fisheries Science,2002,68(1):233-235.
    [44]黎观红.食品蛋白源血管紧张素转化酶抑制肽的研究[D].无锡:江南大学博士论文,2005.
    [45]何志敏,齐崴.于艳军,史德青.基于蛋白质结构知识解析活性多肽的酶解制备反应行为(Ⅱ)酶解反应过程的集总动力学模型[J].化工学报,2005,56(12):2392-2397.
    [46]齐崴,何志敏,何明霞.基于蛋白质结构知识解析活性多肽的酶解制备反应行为(Ⅰ)酶解反应动态特性的32D图形表征[J].化工学报.2005,56(12):2387-2391.
    [47]Hwang JS. Impact of processing on stability of angiotensin I-converting enzyme (ACE) inhibitory peptides obtained from tuna cooking juice [J]. Food Research International,2010,43(3):902-906.
    [48]Qu WJ, Ma HL, Pan ZL. Luo L, Wang ZB, He RH. Preparation and antihypertensive activity of peptides from Porphyra yezoensis [J]. Food Chemistry,2010,123(1):14-20.
    [49]Fujita H, Yamagami T, Ohshima K. Effects of an ace-inhibitory agent, katsuobushi oligopeptide, in the spontaneously hypertensive rat and in borderline and mildly hypertensive subjects [J]. Nutrition Research, 2001,21(8):1149-1158.
    [50]Maeno M, Yamamato N, Takano T. Identification of an antihypertensive peptide from casein hydrolysates produced by a proteinase from Lactobacillus helveticus CP790 [J].1996,79(8):1316-1321.
    [51]Michaelis L, Menten ML. The kinetics of invertase activity Maud Menten. Biochemische Zeitschrift, 1913,49:333-369.
    [52]Li GH, Le GW, Shi YH, Shrestha S. Angiotensin Ⅰ-converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects [J]. Nutrition Research,2004,24(7): 469-486.
    [53]Je JY, Park JY, Jung WK, Park PJ, Kim SK. Isolation of angiotensin I converting enzyme (ACE) inhibitor from fermented oyster sauce, Crassostrea gigas [J]. Food Chemistry,2005,90(4):809-814.
    [54]Gomez-Ruiz JA, Ramos M, Recio I. Angiotensin converting enzyme-inhibitory activity of peptides isolated from Manchego cheese. Stability under simulated gastrointestinal digestion [J]. International Dairy Journal,2004,14(12):1075-1080.
    [55]Yu Y, Hu J, Miyaguchi Y, Bai X, Du Y, Lin B. Isolation and characterization of angiotensin Ⅰ-converting enzyme inhibitory peptides derived from porcine hemoglobin [J]. Peptides,2006,27(11):2950-2956.
    [56]Balti R, Nedjar-Arroume N, Bougatef A, Guillochon D, Nasri M. Three novel angiotensin Ⅰ-converting enzyme (ACE) inhibitory peptides from cuttlefish (Sepia officinalis) using digestive proteases [J]. Food Research International,2010,43(4):1136-1143.
    [57]Sheih IC, Fang TJ, Wu TK. Isolation and characterisation of a novel angiotensin Ⅰ-converting enzyme (ACE) inhibitory peptide from the algae protein waste [J]. Food Chemistry,2009,115(1):279-284.
    [1]Jeon YJ, Byun HG, Kim SK. Improvement of functional proterties of cod frame protein hydrolysates using ultrafiltration membrane [J]. Process Biochemistry,1999,35(5):471-478.
    [2]Wu JP, Aluko RE, Muir AD. Purification of angiotensin I-converting enzyme inhibitory peptides from the enzymatic hydrolysate of defatted canola meal [J]. Food Chemistry,2008,111(4):942-950.
    [3]Sanz-Nebot V, Benavente F, Hernandez E, Barbosa J. Evaluation of the electrophoretic behaviour of opioid peptides separation by capillary electrophoresis-electrospray ionization mass spectrometry [J]. Analytical Chimmica Acta,2006,577(1):68-76.
    [4]Kim SK, Kim YT, Byun HQ Nam KS, Joo DS, Shahidi F. Isolation and characterization of antioxidative peptides from gelatin hydrolysate of Alaska Pollack skin [J]. Journal of Agriculture and Food Chemistry, 2001,49(4):1984-1989.
    [5]袁晓睛.癞葡萄降血糖肽的制备及其降糖机理研究[D].博士学位论文,江南大学,2007.
    [6]Byun HQ Kim SK. Purification and characterization of angiotensin I converting enzyme (ACE) inhibitory peptides from Alaska pollack(Theragra chalcogramma) skin [J]. Process Biochemistry,2001,36(12): 1155-1162.
    [7]Jeon YJ, Byun HG, Kim SK. Improvement of functional proterties of cod frame protein hydrolysates using ultrafiltration membrane [J]. Process Biochemistry,1999,35(5):471-478.
    [8]管骁.燕麦麸蛋白及ACE抑制肽制备工艺与功能特性研究[D].博士学位论文,江南大学,2007.3.
    [9]张晓楠,郭立安.超滤在蛋白质纯化中的应用[J].中国生化药物杂志,1999,20(2):97-98.
    [10]Kawakatsu T, Kobayashi T, Sano Y, Nakajima M. Clarification of green tea extract by microfiltration and ultrafiltration [J]. Bioscience, Biotechnology and Biochemistry,1995,59(6):1016-1020.
    [11]刘忠洲,续曙光,李锁定.微滤、超滤过程中的膜污染与清洗[J].水处理技术,1997,23(4):187-193.
    [12]周显宏,刘文山,肖凯军,罗远宏,邹水洋,黄宝光.膜污染机理及其控制技术[J].东莞理工学院学报,2010,17(1):57-61.
    [13J任建新.膜分离技术及其应用[M].北京:化学工业出版社,2003.
    [14]张宇昊,王强,周素梅.花生降血压肽的超滤分离研究[J].中国油脂,2007,32(7):28-31.
    [15]沈小琴,李朝慧,罗永康.乳清蛋白酶解ACE抑制肽分离纯化技术的研究[J].中国乳品工业,2005,33(11):4-6.
    [16]华耀祖.超滤技术与应用[M].北京:化学工业出版社工业装备与信息工程出版中心,2004.
    [17]Chabeaud A, Vandanjon L, Bourseau P, Jaouen P, Guerard F. Fractionation by ultrafiltration of a saithe protein hydrolysate (Pollachius virens):Effect of material and molecular weight cut-off on the membrane performances [J]. Journal of Food Engineering,2009,91(3):408-414.
    [18]Das R, Bhattacherjee C, Ghosh S. Effects of operating parameters and nature of fouling behavior in ultrafiltration of sesame protein hydrolysate [J]. Desalination,2009,237(1-3):268-276.
    [19]Tsai JS, Chen JL, Bonnie SP. ACE-inhibitory peptides identified from the muscle protein hydrolysate of hard clam (Meretrix lusoria) [J]. Process Biochemistry,2008,43(7):743-747.
    [20]Wang JP, Hu J, Cui JZ, Bai XF, Du YG Miyaguchi YJ, Lin BC. Purification and identification of a ACE inhibitory peptide from oyster proteins hydrolysate and the antihypertensive effect of hydrolysate in spontaneously hypertensive rats [J]. Food Chemistry,2008,111:302-308.
    [21]Wu JP, Aluko RE, Muir AD. Purification of angiotensin I-converting enzyme inhibitory peptides from the enzymatic hydrolysate of defatted canola meal [J]. Food Chemistry,2008,111(4):942-950.
    [22]Gomez-Ruiz JA, Taborda G, Amigo L, Recio I, Ramos M. Identifiaction of ACE-inhibitory peptides in different Spanish cheeses by tandem mass spectrometry [J]. European Food Research and Technology, 2006,223(5):595-601.
    [23]Kim SK, Kim YT, Byun HG, Nam KS, Joo DS, Shahidi F. Isolation and characterization of antioxidative peptides from gelatin hydrolysate of Alaska Pollack skin [J]. Journal of Agriculture and Food Chemistry, 2001,49(4):1984-1989
    [24]Wang J, Hu J, Cui J, Bai X, Du Y, Miyaguchi Y, Lin B. Purification and identification of a ACE inhibitory peptide from oyster proteins hydrolysate and the antihypertensive effect of hydrolysate in spontaneously hypertensive rats [J]. Food Chemistry,2008,111(2):302-308.
    [25]Vercruysse L, Matsui T, Van Camp J. Purification and identification of an angiotensin I converting enzyme (ACE) inhibitory peptide from the gastrointestinal hydrolysate of the cotton leafworm, Spodoptera littoralis [J]. Process Biochemistry,2008,43(8):900-904.
    [26]Byun HG, Kim SK. Purification and characterization of angiotensin I converting enzyme (ACE) inhibitory peptides from Alaska pollack (Theragra chalcogramma) skin [J]. Process Biochemistry,2001,36(12): 1155-1162.
    [27]卞则梁,王光辉.质谱与生命科学[J].化学通报,1994,7:40-46.
    [28]桑志红,杨松成.电喷雾电离质谱及其在蛋白质化学研究中的应用[J].国外医学药学分册,2000,27(1):38-41.
    [29]汪家政,范明.蛋白质技术手册[M].科学出版社,2001.
    [30]何美玉.现代有机与生物质谱[M].北京大学出版社,2002.
    [31]Kapel R, Rahhou E, Lecouturier D, Guillochon D, Dhulster P. Characterization of an antihypertensive peptide from an Alfalfa white protein hydrolysate produced by a continuous enzymatic membrane reactor [J]. Process Biochemistry,2006,41(9):1961-1966.
    [32]Wang J, Hu J, Cui J, Bai X, Du Y. Miyaguchi Y, Lin B. Purificaiton and identification of a ACE inhibitory peptide from oyster proteins hydrolysate and the antihypertensive effect of hydrolysate in spontaneously hypertensive rats [J]. Food Chemistry,2008,111(2):302-308.
    [33]Cao W, Zhang C, Hong P, Ji H, Hao J. Purification and identification of an ACE inhibitory peptide from the peptic hydrolysate of Acetes chinensis and its antihypertensive effects in spontaneously hypertensive rats [J]. International Journal of Food Science and Technology,2010,45(5):959-965.
    [34]Tsai JS, Chen JL, Pan BS. ACE-inhibitory peptides identified from the muscle protein hydrolysate of hard clam (Meretrix lusoria) [J]. Process Biochemistry,2008,43(7):743-747.
    [35]Marczak ED, Usui H. Fujita H. Yang Y. Yokoo M, Lipkowski AW, Yoshikawa M. New antihypertensive peptides isolated from rapeseed [J]. Peptides,2003,24:791-198.
    [36]Katano S, Oki T, Matsuo Y, Yoshihira K, Nara Y, Miki T, Matsui T, Matsumoto K. Antihypertensive effect of alkaline protease hydrolysate of the pearl oyster Pinctada fucata martencii & separation and identification of angiotensin I-converting enzyme inhibitory peptides [J]. Nippon Suisan Gakkaishi,2003, 69(6):975-980.
    [37]Okamoto A, Matsumoto E, Iwashita A, Yasuhara T, Kawamura Y, Koizumi Y, Yanagida F. Angiotensin I-Converting Enzyme Inhibitory Action of Fish Sauce [J]. Food Science and Technology International, Tokyo,1995,1(2):101-106.
    [38]Vercruysse L, Smagghe G, Herregods G, Van Camp J. ACE inhibitory activity in enzymatic hydrolysates of insect protein [J]. Journal of Agriculture and Food Chemistry,2005,53(13):5207-5211.
    [39]Cushman DW, Cheung HS, Sabo EF, Ondetti MA. Development and design of specific inhibitors of angiotensin-converting enzyme [J]. American Journal of Cardiology,1982,49(6):1390-1394.
    [40]Fujita H, Yokoyama K, Yoshikawa. Classification and Antihypertensive Activity of Angiotensin I-Converting Enzyme Inhibitory Peptides Derived from Food Proteins [J]. Journal of Food Science,2000, 65(4):564-569.
    [1]Erdos EG. Angiotensin I converting enzyme and the changes in our concepts through the years [J]. Hypertension,1990,16(4):363-370.
    [2]He HL, Chen XL, Sun CY, Zhang YZ, Zhou BC. Analysis of novel angiotensin-I-converting enzyme inhibitory peptides from protease-hydrolyzed marine shrimp Acetes chinensis [J]. Journal of Peptide Science,2006,12(11):726-733.
    [3]Cao W, Zhang C, Hong P, Ji H, Hao J. Purification and identification of an ACE inhibitory peptide from the peptic hydrolysate of Acetes chinensis and its antihypertensive effects in spontaneously hypertensive rats [J]. International Journal of Food Science and Technology,2010,45(5):959-965.
    [4]Tsai JS, Chen JL, Pan BS. ACE-inhibitory peptides identified from the muscle protein hydrolysate of hard clam (Meretrix lusoria) [J]. Process Biochemistry,2008,43(7):743-747.
    [5]Wang J, Hu J. Cui J, Bai X, Du Y, Miyaguchi Y, Lin B. Purification and identification of a ACE inhibitory peptide from oyster proteins hydrolysate and antihypertensive effect of hydrolysate in spontaneously hypertensive rats [J]. Food Chemistry,2008,111(2):302-308.
    [6J梅虎.肽的定量构效关系研究[D].博士学位论文,重庆大学,2005.
    [7]Wu J, Aluko RE, Nakai S. Structural requirements of Angiotensin I converting enzyme inhibitory peptides: Quantitative structure activity relationship study of di- and tri peptides [J]. Journal of Agricultural and Food Chemistry,2006,54(3):732-736.
    [8]张贵川.食源三肽ACE抑制活性构效关系研究D].硕士学位论文,西南大学,2009.
    [9]Wu J, Aluko RE, Nakai S. Structural requirements of Angiotensin I converting enzyme inhibitory peptides: Quantitative structure-activity relationship modeling of peptides containing 4-10 amino acid residues [J]. QSAR and Combinatorial Science,2006,25(10):873-880.
    [10]Wold S. Johansson E, Cocchi M. PLS—partial least squares.projections to latent structures,in 3D QSAR in drug design,theory,methods,and applications,H.Kubinyi(ed).Leiden:ESCOM Science Publishers,1993: 523-550.
    [11]World S, Trygg J, Berglund A, Antti H. Some recent developments in PLS modeling.Chemom [J]. Chemometrics and Intelligent Laboratory Systems,2001,58(2):131-150.
    [12]Belousov AI, Verzakov SA, Frese JV. A flexible classification approach with optimal generalization performance:Support vector machines[J]. Chemometrics and Intelligent Laboratory Systems,2002, 64:15-25.
    [13]Cushman DW, Cheung HS, Sabo EF, Ondetti MA. Development and design of specific inhibitors of angiotensin-converting enzyme [J]. American Journal of Cardiology,1982,49(6):1390-1394.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700