脑电Alpha节律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑电信号的节律性在介观和宏观尺度上都有明显的表现。不同节律的脑电在脑功能中被认为具有不同的作用。越来越多的研究表明,由于大脑的极端复杂性和内部系统间的相互作用,即使是在最简单的脑功能作用时,不同节律也存在复杂的变化。
     本文着重研究了其中alpha节律的相关问题,从理论模型、行波、成像、MRI直接检测等多个方面考察研究alpha节律。主要内容如下:
     1.利用脑电皮层丘脑模型(corticothalamic model),对脑电功率谱密度进行了仿真,考察了alpha波谱峰分裂现象,认为模型中神经冲动传导的非均匀延时是产生alpha节律功率密度谱分裂的基础,而皮层与丘脑间的反馈连接的强度变化则是分裂现象只在少数人中观测到的重要原因。
     2.利用脑电质心的概念,研究了alpha节律的行波现象。对alpha行波的轨迹进行了研究。考察了滤波对轨迹的影响。提出了质心极值(extrium points of center of mass)的概念。其分布总是出现在枕区和前额区。这个结果较好地描述了alpha波的空间分布特性。
     3.计算了不同参考电极对脑电电位“质心”计算的影响。用仿真和实际数据计算比较了平均参考、连接耳参考、头顶参考和近期出现的近似零参考技术REST(reference electrode standardization technique),结果表明,采用REST可使得电位“质心”的计算误差在多数情况下更小。说明在进行“质心”等与脑电波形相关的计算的时候,采用近似的零参考技术可以获得更真实的结果。
     4.利用脑电质心概念,发展了脑电质心分布概率密度成像方法,并提出用梯度和标准差对此种图像均匀性进行分析和评估。将该成像方法应用于睁闭眼状态下的脑电alpha频段,其均匀性分析和分区统计能很好地刻画alpha波阻塞现象,表明该方法是一种可行的脑电分析手段,为脑电分析提供了一种新的途径。
     5.用理论仿真的方法研究了树突电流模型的神经活动磁场(neuronal magnetic field,NMF),并测算相关神经磁场利用磁共振成像(magnetic resonance imaging, MRI)方法直接检测的可能性;设计了用nc-MRI(neuronal current MRI)检测EEG中alpha波活动的实验,即利用睁眼阻断alpha波的现象,探讨用nc-MRI信号检测alpha波的可行性。结果表明,所得MR信号在alpha频段有明显的变化,且主要在alpha活动明显的枕区有比较一致的变化,从而初步证明了在特定的条件下,应用nc-MRI检测神经电流活动信号是可能的。
EEG rhythm exists in the meso-and macro-scale. EEG with different rhythms was considered to be of different brain functions. More and more studies have shown that the extreme complex internal interactions result in different rhythms with complicated changes, even in the simplest role of brain function.
     This dissertation focuses on studies of the alpha rhythm and the relevant issues, such as its theoretical model, traveling wave, imaging, MRI direct detection, etc. The main contents are as follows:
     1. Simulation study of the EEG power spectral density has been carried out under the EEG corticothalamic model to research alpha-wave splitting phenomenon. We put forward that the non-uniform delay of the nerve impulse conduction in this model is the basis of division of the alpha rhythm density spectra, and that the intensity change of the feedback connections between cortex and thalamus results in such phenomenon that the splitting occurs only among a few persons.
     2. A research of the traveling waves of alpha rhythm by means the EEG mass center. Through the research of the tracks of the alpha traveling waves, the impact of the filtering on the tracks was analyzed. And then we put forward a concept“Extrium Points of Center of Mass”, which is distributed in the occipital area and the prefrontal cortex, and such result just illustrates the typical feature of spatial distribution of alpha waves.
     3. An analysis of the impact of different reference electrodes on the calculation of EEG mass center. We compared the average reference, linked mastoids reference, the vertex reference and the lately developed infinity reference (REST:reference electrode standardization technique) with simulated and real data. The results show that the application of REST can reduce the calculation errors of mass center of the potential in many cases. It proves that the application of the approximate neutral reference (REST) can make the result closer to the truth in the calculation of mass center and other EEG waveform related analysis.
     4. Based upon the concept of EEG mass center, we developed a new imaging technique based on the probability density distribution of the EEG mass center, and further provided two evaluation indexes of the image uniformity: gradient and standard deviation of the imaging map. This imaging technique is applied to the analysis of the EEG alpha frequency band with eye opened and eye closed. The uniformity analysis and subarea statistic can successfully interpret the phenomenon that alpha rhythm was blocked. The results prove the feasibility of this new EEG-analysis technique.
     5. Based upon a theoretic simulation model, we investigated the NMF (neuronal magnetic field) of a dendrite current model, and tested the possibility of the direct detection of the neural magnetic field by MRI (magnetic resonance imaging). We designed an nc-MRI (neural current MRI) experiment to test the phenomenon that alpha rhythm was blocked with eye opened. The results show that there are obvious changes of MR signals in alpha frequency band, and such changes mainly occur in regions of alpha activity. Such results prove the feasibility of applying nc-MRI to test or detect the neural current signals.
引文
[1]尧德中.脑功能探测的电学理论与方法.北京:科学出版社,2003,5-25
    [2]顾凡及,梁培基.神经信息处理.北京:北京工业大学出版社,2007,25-40
    [3]李颖洁,邱意弘,朱贻盛.脑电信号分析方法及其应用.北京:科学出版社,2009,3-7
    [4]寿天德.神经生物学.北京:高等教育出版社,2001,9-23
    [5]谭郁玲.临床脑电图与脑电地形图学.北京:人民卫生出版社,1999,116-118
    [6] P.L. Nunez. Neocortical dynamics and human EEG rhythms. New York Oxford: Oxford University Press, 1995, 2-47
    [7] P.L. Nunez, B.M. Wingeier, R.B. Silberstein. Spatial-temporal structures of human alpha rhythms: theory, microcurrent sources, multiscale measurements, and global binding of local networks. Hum Brain Mapp 13 (2001) 125–164
    [8] H. Berger. Uber das elektroenkephalogramm des menschen. Arch Psychiatry, 1929, 87: 527-570
    [9] H. Gastaut. Some aspects of neurophysiological basis of conditioned reflexes and behaviour. In: wolstenholme GEW, O’Connor CM, editors. Neurological basis of behaviour. London: Churchill.1958,pp. 255-276
    [10] G. Pfurtscheller, C. Neuper, C. Andrew, G. Edlinger. Foot and hand erea mu rhythms. Int J Psychophysiol., 1997, 26:121-135
    [11] E. Niedermeyer. Alpha-like rhythmical activity of the temportal lobe. Clin Electroencephalogr. 1990, 21(4):210-224
    [12] E. Niedermeyer. The“third rhythm”: further observations. Clin Electroencephalogr. 1991, 22(2):83-96
    [13] K.L. Pilgreen. Physiologic, medical and cognitive correlates of electroencephalography. In: Nunez PL, author. Neocortical dynamics and human EEG rhythms. New York Oxford: Oxford University Press, 1995, 195-284
    [14] P.I. Yakovlev, A.R. Lecours. The myelogenetic cycles of regional maturation of the brain. In: Minkowski A., editor. Regional developmentof the brain in early life. Philadelphia: FA Davis, p 3-70
    [15] F. Shichijo, S. Nagahiro, S. Kubo, O.Takimoto. Acute effects of alcohol drinking on the EEG. Poster presented at the annual meeting of the International Society of Brain Electronmagnetic Topography, Adelaide, Australia. Brain Topog. 12:315
    [16] R.B. Silberstein. The steady state visually evoked potential, neocortical dynamics and cognitive function. In: Koga Y., Nagata K., Hirata H., editors. Brain topography today. Amsterdam: Elsevier, p 34-38
    [17] W. Klimesch. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev. 29:169-195
    [18] F.H. Lopes da Silva, W. Storm Van Leeuwen. The cortical alpha rhythm in dog: the depth and surface profile of phase. In: Brazier MAB, Petsche H., editors. Architectonics of the cerebral cortex. New York: Raven Press, p 319-333
    [19] S. Eckehard, H. Gerald, H. Philipp, A.D. Markus. Time-delayed feedback in neurosystems. Phil. Trans. R. Soc. A. 2009, 367:1079-1096
    [20] Ermentrout B., Ko TW., Delays and weakly coupled neuronal oscillators. Phil. Trans. R. Soc. A., 2009, 367:1097-1115
    [21] E. Niedermeyer, F.H. Lopes da Silva. Electroencephalography: basic principles, clinical applications, and related fields. 4th ed. Baltimore: Williams and Wilkins, 1999, 5-31
    [22] AML. Coenen. Neuronal activities underlying the electroencephalogram and evoked potentials of sleeping and waking:implications for information processing. Neurosci Biobehav Rev, 1995,19:447
    [23] M.A. Whittington, R.D.Traub, N. Kopel, B. Ermentrout, E.H. Buhl. Inhibition-based rhythms: experimental and mathematical observations on network dynamics. Int J Psychophysiol, 2000, 38:315-336
    [24] W.J. Freeman. Models of the dynamics of neural populations. Electroencephalogr Clin Neurophiol[Suppl],1978,34:918
    [25] F.H. Lopes da Silva, A. Hoeks, H. Smits, L.H. Zeterberg. Model of brain rhythmic activity.The alpha-rhythm of the thalamus. Kybemetik, 1974, 15: 27-37
    [26] P.A. Robinson, C.J. Rennie, J.J. Wright, H. Bahramali, E. Gordon, D.L Rowe. Prediction of electroencephalographic spectra from neurophysiology. Phys Rev E, 2001,63: 021903
    [27] P.A. Robinson, P.N. Loxley, S.C. O'Connor, C.J. Rennie. Modal analysis of corticothalamic dynamics, electroencephalographic spectra, and evoked potentials. Phys. Rev. E. 2001, 63:041909
    [28] P.A Robinson, R.W. Whitehouse, C.J. Rennie. Nonuniform corticothalamic continuum model of electroencephalographics pectra with application to split-alpha peaks. Phys Rev E, 2003, 68: 021922
    [29] P.A. Robinson, C.J. Rennie, J.J. Wright. Propagation and stability of waves of electrical activity in the cerebral cortex. Phys Rev E, 1997, 56:826
    [30] C.J. Rennie, P.A. Robinson, J.J. Wright. Unified neurophysical model of EEG spectra and evoked potentials. Biol. Cybern., 2002, 86, 457-471
    [31] C.J. Stam, J.P. Pijin, P. Suffczynski, F.H. Lopes da Silva. Dynamics of the human alpha rhythm: evidence for non-linearity. Clin. Neurophysiol., 110: 1801-1813
    [32] O. David, K.J. Friston. A neural mass model for MEG/EEG: coupling and neuronal dynamics. NuroImage, 2003, 20(3): 1743-1755
    [33] F.H. Eeckman, W.J. Freeman. Asymmetric sigmoid nonlinearity in the rat olfactory system. Brain research, 1991, 557: 13-21
    [34] W. Pitts, W.S. McCulloch. How we know universals. The perception of auditory and visual forms. Bull. Math. Biophys. 1947, 9: 127-147
    [35] I.A. Shevelev, E.N. Tsikalov. Fast thermal waves spreading over the cerebral cortex. Neuroscience. 1997, 76: 531-540.
    [36] I.A.Shevelev, V.M. Kamenkovicha, E.D. Barka, V.M. Verkhlutova, G.A. Sharaeva and E.S. Mikhailova. Visual illusions and travelling alpha waves produced by flicker at alpha frequency. International Journal of Psychophysiology. 2000, 39: 9-20
    [37] M. Massimini, R. Huber, F. Ferrarelli, S. Hill, and G. Tononi. The Sleep Slow Oscillation as a Traveling Wave. The Journal of Neuroscience. 2004, 24(31):6862- 6870
    [38] J. Ito, A.R. Nikolaev, C. van Leeuwen. Spatial and temporal structure of phase synchronization of spontaneous alpha EEG activity. Biol. Cybern. 2005, 92: 54–60.
    [39] J. Wackermann, D. Lehmann, C.M. Michel, & W.K. Strik. Adaptive segmentationof spontaneous EEG map series into spatially defined microstates. International Journalof Psychophysiology. 1993, 14:269–283.
    [40] E. Manjarrez, M. Vázquez, A. Flores. Computing the center of mass for traveling alpha waves in the human brain. Bran Research. 2007, 1145:239–247
    [41] H.C. Xiong, G. Yin, Y. Tian, et al. A Study on the Filter Effect for Calculating the Mass Center of the Traveling Alpha Waves. Wang RB,Gu FJ,Shen EH. Advances in Cognitive Neurodynamics/Proceedings of the International Conference on Cognitive Neurodynamics-2007. Shanghai,2007. Netherlands:Springer,2008,857-861
    [42] W.B. Plotkin. On the self-regulation of the occipital alpha rhythm: central strategies, states of conciousness and role of physiological feedback. J. Exp. Psychol. 1976, 105:66-69
    [43] F.N. Lopes da Silva. Neural mechanisms underlying brain waves: from neural membranes to networks. Electroencephalogr. Clin. Neurophysiol. 1991, 79(2): 163-189
    [44] I.A. Shevelev, N.B. Kostelianetz, V.M. Kamenkovich, G.A. Sharaev. EEG alpha wave in the visual cortex: check of the hypothesis of the scanning process. Intern. J. Psychophysiol. 1991, 11: 195-201
    [45] P.L. Nunez. Electric fields of the brain: the neurophysics of EEG. New York: Oxford University Press. 1981.
    [46] K.R. Delaney, A. Gelperin, M.S. Fee, et al., Waves and stimulus-modulated dynamics in an oscillating olfactory network. Proc. Natl. Acad. Sci. USA. 1994, 91: 669-673
    [47] I.A. Shevelev, V.M. Kamenkovich, N.B. Kostelianetz, G.A. Sharaev. Recognition of images at different distances from gaze in dependence on phase of the EEG alpha wave. Sensory Systems 1988, 2, 368-374
    [48] I.A. Shevelev, N.B. Kostelianetz, V.M. Kamenkovich, G.A. Sharaev. EEG alpha wave in the visual cortex: check of the hypothesis of the scanning process. Intern. J. Psychophysiol. 1991, 11: 195-201
    [49] E. Salinas, L.F. Abbott. Vector reconstruction from firing rates. J. Comp. Neurosci. 1994, 1: 89-107
    [50] Demas, J., Eglen, S.J., Wong, R.O.L., 2003. Developmental loss of synchronous spontaneous activity in the mouse retina is dependent of visual experience. J. Neurosci. 23, 2851–2860
    [51] M.M. Churchland, S.G. Lisberger. Shifts in the population response in the middle temporal visual area parallel perceptual and motor illusions produced by apparent motion. J. Neurosci. , 2001, 21, 9387–9402.
    [52] C.C. King. Fractal and chaotic dynamics in nervous systems. Prog Neurobiol. 1991, 36: 279-308
    [53] J. B. MacQueen. "Some Methods for classification and Analysis of Multivariate Observations, Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability", Berkeley, University of California Press, 1967,1:281-297
    [54] J.E. Desmedt,V. Chalklin and C.Tomberg. Emulation of somatosensory evoked potential (SEP) components with the 3-shell head model and the problem of‘ghost potential fields’when using an average reference in brain mapping. Electroenceph Clin Neurophysiol. 1990,77:243-258.
    [55] D.B. Geselowitz. The zero of potential. IEEE Eng in Med and Biol. 1998,1: 128-132.
    [56] R.D. Pascual-Marqui, D. Lehmann. Topographical maps, sources localization inference, and the reference electrode: comments on a paper by Desmedt et al., Electroenceph. Clin. Neurophysiol. 1993, 88: 532-533
    [57] J.E. Desmedt,V. Chalklin and C. Tomberg. Emulation of somatosensory evoked potential (SEP) components with the 3-shell head model and the problem of‘ghost potential fields’when using an average reference in brain mapping. Electroenceph Clin Neurophysiol. 1990,77:243-258.
    [58] J.R. Wolpaw and C.C. Wood. Scalp distribution of human auditory evoked potentials. I. Evaluation of reference electrode sites. Electroenceph Clin Neurophysiol. 1982,54:15-24.
    [59] D. Yao. A method to standardize a reference of scalp EEG recordings to a point at infinity. Physiol. Meas. 2001, 22: 693-711
    [60] D. Yao, L. Wang, R. Oostenveld, et al. A comparative study of different references for EEG spectral mapping: the issue of the neutral reference and the use of the infinity reference. Physiol. Meas. 2005, 26: 173–184
    [61] L. Marzetti, G. Nolte, M.G. Perrucci, et al. The use of standardized infinity reference in EEG coherency studies. 2007, NeuroImage 36: 48–63
    [62] D. Yao, L. Wang, L. Arendt-Nielsen, et al. The effect of reference choices on the spatio-temporal analysis of brain evoked potentials: The use of infinite reference. Computers in Biology and Medicine, 2007, 37: 1529-1538.
    [63] J. Dien. Issues in the application of the average reference: review, critiques, and recommendations. Behav. Res. Methods Instrum. Comput. 1998, 30: 34–43
    [64] D. Hagemann, E. Naumann and J. F. Thayer, The quest for the EEG reference revisited: a glance from brain asymmetry research. Psychophysiology. 2001, 38: 847–57
    [65] H. Helmholtz, , Ueber einige Gezetze der Verteilung elektrischer Strome in korperliche Leitern mit Anwendungauf die thierisch-elektrischen Versuche Pogg Ann. Phys. Chenie. 1853, 89 211–33 and 353–77
    [66] D. Yao. High-resolution EEG mapping: an equivalent charge layer approach [J]. Phys. Med. Biol. 2003, 48: 1997–2011.
    [67] Y. Zhai, D. Yao. A study on the reference electrode standardization technique for a realistic head model . Comput. Meth. Programs Biomed. 2004, 76: 229–238.
    [68]翟义然,尧德中.基于真实头模型的EEG参考电极标准化技术.中国生物医学工程学报. 2004,23(6):521-528.
    [69] D. Yao, L. Wang, K.D. Nielsen, et al. Cortical Mapping of EEG Alpha Power Using a Charge Layer Model. Brain Topogr,2004,17(2):65-71
    [70]熊红川,尧德中. Alpha节律谱分裂现象的研究.生物物理学报,2005,21(04):301-306
    [71] H.C. Xiong, G. Yin, Y. Tian, et al. A Study on the Filter Effect for Calculating the Mass Center of the Traveling Alpha Waves. Wang RB,Gu FJ,Shen EH. Advances in Cognitive Neurodynamics/Proceedings of the International Conference on Cognitive Neurodynamics-2007. Shanghai,2007. Netherlands:Springer,2008,857-861
    [72] A. Grinvald, H. Slovin, I. Vanzetta. Non-invasive visualization of cortical columns by fMRI. Nat Neurosci 2000, 3:105–107.
    [73] G..C. Scott, M.L. JOY, R.L. Armstrong, R.M. Henkelman. Current density imaging in homogeneous media. Magn. Reson. Med, 1992, 28:186-201.
    [74] H. Kamei, K. Iramina, K. Yoshikawa, S. Ueno. Neuronal current distribution imaging using magnetic resonance. IEEE Trans. Magn, 1999, 35: 4109-4111.
    [75] J. Bodurka, A. Jesmanowicz, J.S. Hyde, H. Xu, L. Estkowski, S.J. Li. Current-induced magnetic resonance phase imaging. J Magn Reson. 1999, 137:265-271.
    [76] T.S. Park, Y.S. Lee, J.H. Park, et al. Observation of the fast response of a magnetic resonance signal to neuronal activity: a snail ganglia study. Physiol. Meas, 2006, 27: 181–190
    [77] N. Petridou, D. Plenz, A.C. Silvia, et al. Direct magnetic resonance detection of neuronal electrical activity. Proc. Natl. Acad. Sci, 2006, 103: 16015–16020.
    [78] J. Xiong, P.T. Fox, J.H. Gao. Directly mapping magnetic field effects of neuronal activity by magnetic resonance imaging. Hum. Brain Mapp, 2003, 20: 41– 49.
    [79] D. Konn, S. Leach, P. Gowland, et al. Initial attempts at directly detecting alpha wave activity in the brain using MR. Magn. Reson. Imaging, 2004, 22: 1413–1427.
    [80] Y. Xue, J.H. Gao, J. Xiong. Direct MRI detection of neuronal magnetic field in the brain: theoretical modelling. NeuroImage, 2006, 31: 550-559.
    [81] H.C. Xiong, Y.L. Huang, Z.T. Hu, D.Z. Yao. Simulation Study of the Dendritic Effect on Direct MRI Detection of Neural Electric Event. Journal of Electronic Science and Technology of China, 2009, 7(1):92-95.
    [82] R. Chu, J.A. De Zwart, P. Van Gelderen, M. Fukunaga, P. Kellman, et al. Hunting for neuronal currents: absence of rapid MRI signal changes during visual-evoked response. NeuroImage 2004, 23(3):1059– 1067
    [83]唐孝威.脑功能成像.合肥:中国科学技术大学出版社. 1999, 39-40
    [84] R.H. Hashemi等编著,尹建忠译. MRI基础.天津:天津科技翻译出版公司. 2004, 25-32
    [85] D.Cohen. Magnetoencephalography: evidence of magnetic fields produced by alpha-rhythm currents. Science, 1968, 161, 784-786.
    [86] J. Bodurka, P.A. Bandettini. Toward direct mapping of neuronal activity: MRI detection of ultraweak, transient magnetic field changes. Magn. Reson. Med. 2002, 47, 1052-1058.
    [87] J. Xiong, J.H. Gao, P.T. Fox. Estimation of effects of neuronal magnetic fields on MRI signals. Proc. Int. Soc. Magn. Reson. Med., 2003, 11:1740.
    [88] P. Volegov, A.N. Matlachov, M.A. Espy, J.S. George, R.H. KrausJr. Simultaneous magnetoencephalography and SQUID detected nuclear MR in microtesla magnetic fields. Magn. Reson. Med, 2004, 52, 467-470.
    [89] A.D. Liston, A. Salek-Haddadi, S.J. Kiebel, K. Hamandi, R. Turner, L. Lemieux. The MR detection of neuronal depolarization during 3-Hz spike-and-wave complexes in generalized epilepsy. Magn. Reson. Imaging, 2004, 22, 1441-1444.
    [90] Yiqun xue, Jia-Hong Gao, Jinhu Xiong. Direct MRI detection of neuronal magnetic fields in the brain. Thereticamodeling, NeuroImage, 2006, 31, 550559 .
    [91] D. Konn, P. Gowland, R. Bowtell. MRI detection of weak magnetic fields due to an extended current dipole in a conducting sphere: amodel for direct detection of neuronal currents in the brain. Magn. Reson. Med, 2003, 50, 40–49.
    [92] Y.C. Okada, J. Wu, S. Kyuhou. Genesis of MEG signals in a mammalian CNS structure. Electroencephalogr. Clin. Neurophysiol, 1997, 103, 474-485.
    [93] K.R. Swinney, J.P.WikswoJr. A calculation of the magnetic field of a nerve action potential. Biophys. 1980, 32, 719–731.
    [94] C.M. Weaver, P.R. Hof, S.L. Wearne, W.B. Lindquist. Automated algorithms for multiscale morphometry of neuronal dendrites. Neural Comput, 2004, 16, 1353–1383.
    [95] A.T. Gulledge, B.M. Kampa, G.J. Stuart. Synaptic integration in dendritic trees. J. Neurobiol, 2005, 64, 75–90.
    [96] A. Destexhe, M. Neubig, D.Ulrich, J. Huguenard. Dendritic low-threshold calcium currents in thalamic relay cells. J. Neurosci, 1998, 18, 3574–3588.
    [97] F.H. Lopes Da Silva, W. Storm Van Leeuwen. The cortical source of alpha rhythm. Neurosci. Lett. 1977, 6: 237–241.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700