肉用绵羊甲烷排放的测定与估测模型的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
反刍动物排放的甲烷是一种能量的损失,也是导致全球变暖的重要温室气体之一。本论文以杜泊()×小尾寒羊()杂交肉用绵羊为试验动物,研究动物体重、日粮采食水平、能量水平、营养物质含量、营养物质摄入量、可消化营养物质、瘤胃可发酵营养物质、瘤胃液pH值和瘤胃液挥发性脂肪酸浓度对肉用绵羊瘤胃甲烷(CH4)排放的影响,旨在建立甲烷排放估测模型。具体分为以下两个部分:
     试验一日粮不同采食水平对肉用绵羊甲烷排放的影响
     选取15头日龄相近、体况良好、体重(36.60±0.93) kg的杂交绵羊母羊[杜泊()×小尾寒羊()],采用单因素完全随机试验设计,将15头羊随机分为3个处理(每个处理5头羊),分别按自由采食(ad libitum, AL)、自由采食量的75%和自由采食量的55%三个饲喂水平投喂试验日粮,预试期10天,正试期10天。采用开路循环式呼吸测热系统,测定肉用绵羊24h CH4排放量。每只羊进入和离开呼吸测热代谢笼时均称重,平均值作为该羊呼吸测热体重。结果表明:限饲55%组、限饲75%组和自由采食组肉用绵羊的甲烷排放量分别为29.11、46.87和55.26L/d。自由采食组羊的甲烷排放量、甲烷能以及单位代谢体重的甲烷排放量均显著高于55%组(P<0.05)。甲烷排放量与日粮干物质采食量(DMI)、总能摄入量(GEI)和体重(BW)呈极显著线性正相关关系(P<0.01)。分别得到以下估测模型:甲烷与DMI的估测方程式:CH4(L/d)=44.034DMI (kg)-6.514(R~2=0.6801P=0.0005);甲烷与GEI的估测方程式:CH4(L/d)=2.424GEI (MJ)-6.514(R~2=0.6801P=0.0005);甲烷与BW的估测方程式为:CH4(L/d)=4.250BW(kg)-105.774(R~2=0.6713P=0.0006)。利用多元回归分析建立的甲烷与DMI、BW的多元回归估测方程式:CH4(L/d)=2.813BW(kg)+29.538DMI(kg)-88.760(R~2=0.9007P<0.0001),与一元回归模型相比,显著提高了肉用绵羊甲烷排放量估测的相关性和准确性。
     试验二日粮不同营养组成对肉用绵羊甲烷排放的影响
     选取8头9月龄、体重(50.37±1.13) kg并安装有永久性瘤胃瘘管的杂交绵羊公羊[杜泊()×小尾寒羊()],分别饲喂8种中性洗涤纤维(NDF)含量不同(分别为(%)51.83、50.47、44.58、42.34、38.20、35.43、30.10和27.03)的全混合日粮,进行8×4不完全拉丁方试验(8种日粮,4期试验)。每期试验21天,首先进行8天预试,而后于第9-16天采用开路循环式呼吸测热系统测定肉用绵羊甲烷排放,同时采用全收粪尿法进行消化代谢试验。在试验第17-19天,设置6个发酵时间点(0,6,12,24,48和72h),采用瘤胃尼龙袋法测定日粮瘤胃可发酵营养物质含量。最后于试验第20天的8h、14h和20h以及第21天的2h、5h、11h、17h和23h分别采集瘤胃液,测定瘤胃液pH值和瘤胃液挥发性脂肪酸(VFA)浓度。结果表明,8种日粮每千克瘤胃可发酵有机物的甲烷排放量(L/kg FOM)分别为:81.64、87.22、77.42、61.87、52.19、54.90、57.07和58.72。甲烷能/消化能(CH4-E/DE)分别为:12.27%、11.04%、10.72%、9.52%、7.89%、8.17%、7.71%和8.92%。甲烷(L/kg FOM)与有机物摄入量(OMI)、总能摄入量(GEI)、粗蛋白摄入量(CPI)、可消化有机物(DOM)、消化能(DE)、可消化粗蛋白(DCP)、可消化粗脂肪(DEE)、丁酸/总VFA(TVFA)、戊酸/TVFA呈显著(P<0.05)负相关关系,而与NDF摄入量(NDFI)、酸性洗涤纤维摄入量(ADFI)、可消化NDF(DNDF)、可消化ADF(DADF)、瘤胃可发酵ADF(FADF)、瘤胃可发酵NDF(FNDF)/FOM、FADF/FOM和乙酸/TVFA呈显著(P<0.05)正相关关系。分别得到:甲烷与营养物质摄入量的回归模型:CH4(L/kg FOM)=0.182OMI (g)-0.547CPI (g)-1.177NDFI (g)+1.578ADFI(g)-3.396EEI (g)+154.950(R~2=0.9992P=0.0021);甲烷与可消化营养物质的回归模型:CH4-E/DE(%)=92.902-3.259DE/GE(%)(R~2=0.8318P=0.0016),CH4-E/DE (%)=0.180DADF/DOM(%)+5.251(R~2=0.9191P=0.0002);甲烷与可发酵营养物质的回归模型: CH4-E/DE(%)=0.112FADF/FOM (%)+6.135(R~2=0.8887P=0.0005);甲烷与瘤胃液VFA的回归模型:CH4(L/kg FOM)=0.825乙酸(mmol/L)+4.571丙酸(mmol/L)-7.159丁酸(mmol/L)-20.310戊酸(mmol/L)+10.493异戊酸(mmol/L)+9.030(R~2=0.9989P=0.0028)。
     综上所述,肉用绵羊瘤胃甲烷排放量随着动物体重、干物质采食量以及总能摄入量的增加而线性增加。日粮的精粗比或粗饲料含量直接影响肉用绵羊瘤胃甲烷排放量、甲烷能/总能和甲烷能/消化能之比。与其他营养物质相比,NDF和ADF与肉用绵羊甲烷排放相关性最强。与线性回归估测模型相比,多元回归模型提高了甲烷估测的相关性和准确性。因此,这些模型将有助于准确估测肉用绵羊的甲烷排放量。
The emission of methane (CH4) from ruminants is a loss of energy and a significant contributor togreenhouse gas (GHG) emission resulting in global warming. The objectives of the present study wereto measure CH4emission from Chinese sheep and to develop prediction equations.
     Experiment1:Effects of different feeding levels on CH4emissions from sheep
     Fifteen Dorper×thin-tailed Han crossbred, female lambs (36.60±0.93kg of BW) were randomlydivided into3groups with5sheep each and offered a pelleted mixture diet (concentrate:roughage=45:55) for ad libitum intake, or75or55%of the ad libitum (AL) intake, respectively. The experimentalduration consisted of a10-d adaptation period followed by a10-d period to measure CH4emissionsfrom sheep using an open-circuit respiration calorimetry system (Sable Systems International,Henderson, NV, USA). Individual methane production was measured for24h. Body weight (BW) wasrecorded when each sheep entering and leaving the open-circuit respiration calorimetry system. TheCH4values for the groups of55%,75%and AL were29.11,46.87and55.26L/d, respectively。The CH4output, CH4energy and CH4per kg metabolisable BW (L/kg BW0.75) were increased significantly fromgroup55%to group AL(P<0.05). CH4(L/d) was positively related to dry matter intake (DMI), grossenergy intake (GEI) and BW linearly (P<0.01). The relationship between CH4and DMI was CH4(L/d)=44.034DMI (kg)-6.514(R~2=0.6801P=0.0005); The relationship between CH4and GEI was CH4(L/d)=2.424GEI (MJ)-6.514(R~2=0.6801P=0.0005); The relationship between CH4and BW was CH4(L/d)=4.250BW(kg)-105.774(R~2=0.6713P=0.0006). The multiple relationship between CH4andDMI, BW was CH4(L/d)=2.813BW(kg)+29.538DMI(kg)-88.760(R~2=0.9007P<0.0001).
     Experiment2:Effects of different dietary composition on CH4emissions from sheep
     Eight crossbred, non-castrated male lambs of Dorper×Thin-tailed Han sheep (50.4±1.1kg bodyweight (BW)), each fitted ruminal cannulae, were used in an incomplete8×4Latin square experiment(8diets and4periods of21d). One of eight pelletized total mixed rations (TMR) with a neutraldetergent fiber (NDF) content of51.83,50.47,44.58,42.34,38.20,35.43,30.10and27.03, respectively,was offered randomly to each of the lambs and exchanged sequentially in four periods. Each periodconsisted of an8-d adaptation period and an8-d digestibility trial in metabolism cages during whichfeces and urine were collected, and CH4was measured by using open-circuit respirometrysimultaneous ly. The Nylon bag technique was used for the evaluation of ruminally fermentablenutrients with six different incubation times (0,6,12,24,48, and72h). The ruminal pH andconcentrations of volatile fatty acids (VFA) were also measured. Prediction equations for CH4weredeveloped as linear and multiple regression models. The CH4values for the8diets were81.6,87.22,77.42,61.87,52.19,54.90,57.07and58.7L/kg fermentable organic matter (FOM), respectively. TheCH4energy/digestible energy (CH4-E/DE) values were12.27,11.04,10.72,9.52,7.89,8.17,7.71and8.92%, respectively. CH4(L/kg FOM) was negatively related to organic matter intake (OMI), gross energy intake (GEI), crud protein intake (CPI), digestible organic matter (DOM), digestible energy (DE),digestible crude protein (DCP), digestible ether extract (DEE), butyrate/total VFA (TVFA) andvalerate/TVFA (P<0.05), but positively related to NDF intake (NDFI), acid detergent fiber intake(ADFI), digestible NDF (DNDF), digestible ADF (DADF), fermentable ADF (FADF), fermentableNDF (FNDF)/FOM, FADF/FOM, and acetate/TVFA (P<0.05). The relationship between CH4andnutrients intake was CH4(L/kg FOM)=0.182OMI(g)-0.547CPI(g)-1.177NDFI (g)+1.578ADFI(g)-3.396EEI(g)+154.950(R~2=0.9992, P=0.0021). The relationships between CH4and digestiblenutrients were CH4-E/DE(%)=92.902-3.259DE/GE(%)(R~2=0.8318P=0.0016) and CH4-E/DE (%)=0.180DADF/DOM (%)+5.251(R~2=0.9191P=0.0002). The relationship between CH4and ruminalfermentable nutrients was CH4-E/DE (%)=0.112FADF/FOM (%)+6.135(R~2=0.8887P=0.0005). Therelationship between CH4and ruminal VFA was CH4(L/kg FOM)=0.825Acetate (mmol/L)+4.571Propionate (mmol/L)-7.159Butyrate (mmol/L)-20.310Valerate (mmol/L)+10.493Isovalerate (mmol/L)+9.030(R~2=0.9989P=0.0028).
     In conclusion, CH4increased linearly as the BW, DMI and GEI increased. CH4, CH4-E/GE andCH4-E/DE were affected by the ratios of forage to concentrate or dietary roughage content. Comparedwith other nutrients, NDF and ADF were more reliable to estimate CH4production with higherprecision. Compared with the linear regression models, the multiple regression models clearly provideda higher accuracy and correlation. Therefore, they may be useful to improve the prediction of CH_4emissions from Chinese sheep.
引文
1.樊霞.肉牛甲烷排放与粪便肥料成分含量快速预测方法和模型的研究.[博士学位论文].北京:中国农业大学,2004.
    2.樊霞,董红敏,韩鲁佳,等.肉牛甲烷排放影响因素的试验研究.农业工程学报,2006,22(8):179-183.
    3.冯仰廉.反刍动物营养学.北京:科学出版社,2006.
    4.冯仰廉.肉牛营养需要和饲养标准.北京:中国农业大学出版社,2000.
    5.冯仰廉,李胜利,赵广永,等.牛甲烷排放量的估测.动物营养学报,2012,24(1):1-7.
    6.郭雪峰,李华伟,金海,等.体内法与体外法测定反刍动物日粮的甲烷产生量比较.安徽农业科学,2008,36(12):4994-4995,4998.
    7.韩继福,冯仰廉,张晓明,等.阉牛不同日粮的纤维消化、瘤胃内VFA对甲烷产生量的影响.中国兽医学报,1997,17(3):278-280.
    8.胡伟莲.皂甙对瘤胃发酵与甲烷产量及动物生产性能影响的研究.,2005.
    9.李华伟.放牧条件下内蒙古白绒山羊甲烷排放量的测定.[硕士学位论文].呼和浩特:内蒙古农业大学,2008.
    10.李胜利,金鑫,范学珊,等.反刍动物生产与碳减排措施.动物营养学报,2010,22(1):2-9.
    11.李向林.不同饲草的体外发酵甲烷产生量研究.[硕士学位论文].北京:中国农业科学院,2011.
    12.李新建,高腾云.影响瘤胃内甲烷气产量的因素及其控制措施.家畜生态,2002,23(4):67-69.
    13.陆燕,林波,王恬,等.大蒜油对体外瘤胃发酵、甲烷生成和微生物区系的影响.动物营养学报,2010,22(2):386-392.
    14.娜仁花.不同日粮对奶牛瘤胃甲烷及氮排放的影响研究.[博士学位论文].北京:中国农业科学院,2010.
    15.娜仁花,董红敏.营养因素对反刍动物甲烷排放影响的研究现状.安徽农业科学,2009(06):2534-2536.
    16.乔国华,单安山.直接饲喂微生物培养物对奶牛瘤胃发酵产甲烷及生产性能的影响.中国畜牧兽医,2006,33(5):11-14.
    17.孙德成,赵智力,魏曼琳,等.不同精粗料比全混合日粮对奶牛瘤胃指标的影响.饲料研究,2008(10):47-50.
    18.孙德成,赵智力,魏曼琳,等.脂肪酸添加剂对奶牛瘤胃挥发性脂肪酸和甲烷的影响.畜牧与兽医,2008,40(11):21-24.
    19.孙家义.三至七月龄小尾寒羊营养代谢中甲烷气产量和能量的初步研究.动物营养学报,1998,10(2):27-34.
    20.王成杰,汪诗平,周禾.放牧家畜甲烷气体排放量测定方法研究进展.草业学报,2006,15(1):113-116.
    21.吴兑.温室气体与温室效应.北京:气象出版社,2006.
    22.熊本海,庞之洪,罗清尧.饲料数据描述规范及评价进展.北京:中国农业科学技术出版社,
    2008.
    23.游玉波.肉牛甲烷排放测定与估算模型的研究.[博士学位论文].北京:中国农业科学院,2008.
    24.张春梅.添加亚麻酸及植物油对体外瘤胃发酵和甲烷生成的影响.华中农业大学学报,2010,29(2).
    25.张丽英.饲料分析及饲料质量检测技术.北京:中国农业大学出版社,2003.
    26.周怿,刁其玉.反刍动物瘤胃甲烷气体生成的调控.草食家畜,2008(4):21-24.
    27. Aguerre M.J., Wattiaux M.A., Powell J.M., et al. Effect of forage-to-concentrate ratio in dairy cowdiets on emission of methane, carbon dioxide, and ammonia, lactation performance, and manureexcretion. Journal of Dairy Science,2011,94(6):3081-3093.
    28. Amon T., Amon B., Kryvoruchko V., et al. Biogas production from maize and dairy cattlemanure—Influence of biomass composition on the methane yield. Agriculture, Ecosystems andEnvironment,2007,118(1-4):173-182.
    29. Anderson R.C., Carstens G.E., Miller R.K., et al. Effect of oral nitroethane and2-nitropropanoladministration on methane-producing activity and volatile fatty acid production in the ovine rumen.Bioresource Technology,2006,97(18):2421-2426.
    30. Anderson R.C., Huwe J.K., Smith D.J., et al. Effect of nitroethane, dimethyl-2-nitroglutarate and2-nitro-methyl-propionate on ruminal methane production and hydrogen balance in vitro.Bioresource Technology,2010,101(14):5345-5349.
    31. Animut G., Puchala R., Goetsch A.L., et al. Methane emission by goats consuming diets withdifferent levels of condensed tannins from lespedeza. Animal Feed Science and Technology,2008,144(3-4):212-227.
    32. Axelsson J. The amount of produced methane energy in the European metabolic experiments withadult cattle. Ann. R. Agric. Coll. Sweden,1949,16:404-409.
    33. Beauchemin K.A., Kreuzer M., O'Mara F., et al. Nutritional management for enteric methaneabatement: a review. Australian Journal of Experimental Agriculture,2008,48(2):21-27.
    34. Beauchemin K.A., McGinn S.M., Benchaar C., et al. Crushed sunflower, flax, or canola seeds inlactating dairy cow diets: effects on methane production, rumen fermentation, and milk production.Journal of Dairy Science,2009,92(5):2118-2127.
    35. Benchaar C., Pomar C., Chiquette J. Evaluation of dietary strategies to reduce methane productionin ruminants: A modelling approach. Canadian Journal of Animal Science,2001(81):563-574.
    36. Benchaar C., Rivest J., Pomar C., et al. Prediction of methane production from dairy cows usingexisting mechanistic models and regression equations. Journal of Animal Science,1998,76:617-627.
    37. Bhatta R., Tajima K., Takusari N., et al. Comparison of sulfur hexafluoride tracer technique, rumensimulation technique and in vitro gas production techniques for methane production from ruminantfeeds. International Congress Series,2006,1293:58-61.
    38. Blaxter K.L. The energy metabolism of ruminants. London: Hutchinson, Science and Technical,
    1962.
    39. Boeckaert C., Mestdagh J., Vlaeminck B., et al. Micro-algae as potent rumen methane inhibitors andmodifiers of rumen lipolysis and biohydrogenation of linole ic and linolenic acid. InternationalCongress Series,2006,1293:184-188.
    40. Boeckaert C., Mestdagh J., Vlaeminck B., et al. Micro-algae as potent rumen methane inhibitors andmodifiers of rumen lipolysis and biohydrogenation of linoleic and linolenic acid. InternationalCongress Series,2006,1293:184-188.
    41. Buddle B.M., Denis M., Attwood G.T., et al. Strategies to reduce methane emissions from farmedruminants grazing on pasture. The Veterinary Journal,2010,In Press, Corrected Proof.
    42. Callaway T., Carneiro D.M.A., Russell J. The effect of nisin and monensin on ruminal fermentationin vitro. Current microbiology,1997,35:90-96.
    43. Cao Y., Takahashi T., Horiguchi K., et al. Methane emissions from sheep fed fermented ornon-fermented total mixed ration containing whole-crop rice and rice bran. Animal Feed Scienceand Technology,2010,157(1-2):72-78.
    44. Chaucheyras F., Fonty G., Bertin G., et al. In vitro utilization by a ruminal acetogenic bacteriumcultivated alone or in association with an archaea methanogen is stimulated by a probiotic strain ofSaccharomyces cerevisiae. Applied and Environmental Microbiology,1995,61:3466-3467.
    45. Eckard R.J., Grainger C., de Klein C.A.M. Options for the abatement of methane and nitrous oxidefrom ruminant production: A review. Livestock Science,2010,130(1-3):47-56.
    46. Ellis J.L., Kebreab E., Odongo N.E., et al. Prediction of methane production from dairy and beefcattle. Journal of Dairy Science,2007,90(7):3456-3466.
    47. Fernandes M.H., Resende K.T., Tedeschi L.O., et al. Energy and protein requirements formaintenance and growth of Boer crossbred kids. Journal of Animal Science,2007,85(4):1014-1023.
    48. Foley P.A., Kenny D.A., Callan J.J., et al. Effect of DL-malic acid supplementation on feed intake,methane emission, and rumen fermentation in beef cattle. Journal of Animal Science,2009,87(3):1048-1057.
    49. Garcia-Martinez R., Ranilla M.J., Tejido M.L., et al. Effects of disodium fumarate on in vitro rumenmicrobial growth, methane production and fermentation of diets differing in their forage:concentrateratio. British Journal of Nutrition,2005,94(1):71-77.
    50. Grainger C., Beauchemin K.A. Can enteric methane emissions from ruminants be lowered withoutlowering their production? Animal Feed Science and Technology,2011,166-167(0):308-320.
    51. Grainger C., Clarke T., Auldist M.J., et al. Mitigation of greenhouse gas emissions from dairy cowsfed pasture and grain through supplementation with Acacia mearnsii tannins. Journal of AnimalScience,2009,89(2):241-251.
    52. Guan H., Wittenberg K.M., Ominski K.H., et al. Efficacy of ionophores in cattle diets for mitigationof enteric methane. Journal of Animal Science,2006,84(7):1896-1906.
    53. Hindrichsen I.K., Wettstein H.R., Machmüller A.M., et al. Methane emission, nutrient degradationand nitrogen turnover in dairy cows and their slurry at different milk production scenarios with andwithout concentrate supplementation. Agriculture, Ecosystems and Environment,2006,113:150-161.
    54. Hindrichsen I.K., Wettstein H.R., Machmüller A., et al. Effect of the carbohydrate composition offeed concentratates on methane emission from dairy cows and their slurry. EnvironmentalMonitoring and Assessment,2005,107(1):329.
    55. Huang X.D., Liang J.B., Tan H.Y., et al. Molecular weight and protein binding affinity of Leucaenacondensed tannins and their effects on in vitro fermentation parameters. Animal Feed Science andTechnology,2010,In Press, Corrected Proof.
    56. IPCC. Climate change2007: The physical science basis. contribution of working group I to thefourth assessment report of the intergovernmental panel on climate change. Cambridge, UnitedKingdom and New York, NY, USA: Cambridge University Press,2007.
    57. Jayanegara A., Togtokhbayar N., Makkar H.P.S., et al. Tannins determined by various methods aspredictors of methane production reduction potential of plants by an in vitro rumen fermentationsystem. Animal Feed Science and Technology,2009,150(3-4):230-237.
    58. Jentsch W., Schweigel M., Weissbach F., et al. Methane production in cattle calculated by thenutrient composition of the diet. Archives of Animal Nutrition,2007,61(1):10-19.
    59. Joblin K.N. Ruminal acetogens and their potential to lower ruminant methane emissions. Journal ofAgricultural Research,1999,50:1307-1313.
    60. Johnson K.A., Johnson D.E. Methane emissions from cattle. Journal of Animal Science,1995(73):2483-2492.
    61. Kirchgessner M., Windisch W., Mueller H.L., et al. Release of methane and of carbon dioxide bydairy cattle. Agribiological Research,1991,44(2/3):91-102.
    62. Kriss M. Quantitative relations of the dry matter of the food consumed, the heat production, thegaseous outgo and the insensible loss in body weight of cattle. Journal of Agricultural Research,1930,40:283-288.
    63. Kumar S., Puniya A., Puniya M., et al. Factors affecting rumen methanogens and methanemitigation strategies. World Journal of Microbiology and Biotechnology,2009,25(9):1557.
    64. Lassey K.R., Walker C.F., McMillan A.M.S., et al. On the performance of SF6permission tunesused in determining methane emission from grazing livestock. Chemosphere:Global ChangeBiology,2001,4(18):1-15.
    65. Lee S., Hsu J., Mantovani H. The effect of bovicin HC5, a bacteriocin from Streptococcus bovisHC5, on ruminalmethane production in vitro. FEMS Microbiology Letters,2002,217:51-55.
    66. Li X.Z., Long R.J., Yan C.G., et al. Rumen microbial responses in fermentation characteristics andproduction of CLA and methane to linoleic acid in associated with malate or fumarate. Animal FeedScience and Technology,2010,155(2-4):132-139.
    67. Lopez S., McIntosh F.M., Wallace R.J., et al. Effect of adding acetogenic bacteria on methaneproduction by mixed rumen microorganisms. Animal Feed Science and Technology,1999,78(1-2):1-9.
    68. Lovett D., Lovell S., Stack L., et al. Effect of forage/concentrate ratio and dietary coconut oil levelon methane output and performance of finishing beef heifers. Livestock Production Science,2003,84(2):135-146.
    69. Lovett D.K., Stack L.J., Lovell S., et al. Manipulating enteric methane emissions and animalperformance of late-lactation dairy cows through concentrate supplementation at pasture. Journal ofDairy Science,2005,88(8):2836-2842.
    70. Machmüller A., Ossowski D.A., Kreuzer M. Comparative evaluation of the effects of coconut oil,oilseeds and crystalline fat on methane release, digestion and energy balance in lambs. Animal FeedScience and Technology,2000,85(1-2):41-60.
    71. Mao H., Wang J., Zhou Y., et al. Effects of addition of tea saponins and soybean oil on methaneproduction, fermentation and microbial population in the rumen of growing lambs. LivestockScience,2010,129(1-3):56-62.
    72. McAllister T.A., Newbold C.J. Redirecting rumen fermentation to reduce methanogenesis.Australian Journal of Experimental Agriculture,2008,48:7-13.
    73. McGeough E.J., O'Kiely P., Hart K.J., et al. Methane emissions, feed intake, performance,digestibility, and rumen fermentation of finishing beef cattle offered whole-crop wheat silagesdiffering in grain content. Journal of Animal Science,2010,88(8):2703-2716.
    74. Mills J., Kebreab E., Yates C.M., et al. Alternative approaches to predicting methane emissionsfrom dairy cows. Journal of Animal Science,2003,81:3141-3150.
    75. Moe P.W., Tyrrell H.F. Methane production in dairy cows. Journal of Dairy Science,1979,62(6):1583-1586.
    76. Moss A.R., Givens D.I. The effect of supplementing grass silage with soya bean meal ondigestibility, in sacco degradability, rumen fermentation and methane production in sheep. AnimalFeed Science and Technology,2002,97(3–4):127-143.
    77. Moss A.R., Givens D.I., Garnsworthy P.C. The effect of supplementing grass silage with barley ondigestibility, in sacco degradability, rumen fermentation and methane production in sheep at twolevels of intake. Animal Feed Science and Technology,1995,55(1–2):9-33.
    78. Moss A.R., Givens D.I., Garnsworthy P.C. The effect of alkali treatment of cereal straws ondigestibility and methane production by sheep. Animal Feed Science and Technology,1994,49(3-4):245-259.
    79. NRC. Nutrient requirements of small ruminants: sheep, goats, cervids, and new world camelids.Washington, D. C.: National Academy Press,2007.
    80. Odongo N.E., Bagg R., Vessie G., et al. Long-term effects of feeding monensin on methaneproduction in lactating dairy cows. Journal of Dairy Science,2007,90(4):1781-1788.
    81. rskov E.R., McDonald I. The estimation of protein degradability in the rumen from incubationmeasurements weighted according to rate of passage. Journal of Agricultural Science,1979,92:499-503.
    82. Pinares-Patino C.S., Lasseyb K.R., Martinb R.J., et al. Assessment of the sulphur hexafluoride (SF6)tracer technique using respiration chambers for estimation of methane emissions from sheep.Animal Feed Science and Technology,2011,166-167:201-209.
    83. Saengkerdsub S., Kim W., Anderson R.C., et al. Effects of nitrocompounds and feedstuffs on invitro methane production in chicken cecal contents and rumen fluid. Anaerobe,2006,12(2):85-92.
    84. Shibata M., Terada F., Iwasaki K., et al. Methane production in heifers, sheep and goats consumingdiets of various hay-concentrate ratios. Animal Science Technology,1992,63(12):1221-1227.
    85. Shibata M., Terada F., Kurihata M., et al. Estimation of methane production in ruminants. AnimalScience Technology,1993,64(8):790-796.
    86. Tamminga S. Nutrition management of dairy cows as a contribution to pollution control. Journal ofDairy Science,1992,75(1):345-357.
    87. Tavendale M.H., Meagher L.P., Pacheco D., et al. Methane production from in vitro rumenincubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensedtannin fractions on methanogenesis. Animal Feed Science and Technology,2005,123-124(Part1):403-419.
    88. Tovar-Luna I., Goetsch A.L., Puchala R., et al. Effects of moderate feed restriction on energyexpenditure by2-year-old crossbred Boer goats. Small Ruminant Research,2007(72):25-32.
    89. Van Kessel J.A.S., Russell J.B. The effect of pH on ruminal methanogenes is. FEMS MicrobiologyEcology,1996,20(4):205-210.
    90. Van Soest P.J., Robertson J.B., Lewis B.A. Methods for dietary fiber, neutral detergent fiber, andnonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science,1991(74):3583-3597.
    91. Vermorel M., Jounay J.P., Eugene M., et al. Evaluation quantitative émissions de méthane entériquepar les animaux d'élevage en2007en France. INRA Production Animals,2008,21(5):403-418.
    92. Wang C.J., Wang S.P., Zhou H. Influences of flavomycin, ropadiar, and saponin on nutrientdigestibility, rumen fermentation, and methane emission from sheep. Animal Feed Science andTechnology,2009,148(2-4):157-166.
    93. Wilkerson V.A., Casper D.P., Mertens D.R. The prediction of methane production of Holstein cowsby several equations. Journal of Dairy Science,1995,78:2402-2414.
    94. Wood T.A., Wallace R.J., Rowe A., et al. Encapsulated fumaric acid as a feed ingredient to decreaseruminal methane emissions. Animal Feed Science and Technology,2009,152(1-2):62-71.
    95. Wright A.D.G., Kennedy P., O'Neill C.J., et al. Reducing methane emissions in sheep byimmunization against rumen methanogens. Vaccine,2004,22(29-30):3976-3985.
    96. Xu M., Rinker M., McLeod K.R., et al. Yucca schidigera extract decreases in vitro methaneproduction in a variety of forages and diets. Animal Feed Science and Technology,2010,159(1-2):18-26.
    97. Yan T., Mayne C.S., Gordon F.G., et al. Mitigation of enteric methane emissions through improvingefficiency of energy utilization and productivity in lactating dairy cows. Journal of Dairy Science,2010,93(6):2630-2638.
    98. Yan T., Mayne C.S., Porter M.G. Effects of dietary and animal factors on methane production indairy cows offered grass silage-based diets. International Congress Series,2006,112:140-145.
    99. Yan T., Porter M.G., Mayne C.S. Prediction of methane emission from beef cattle using data
    measured in indirect open-circuit respiration calorimeters. Animal,2009,3(10):1455-1462.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700