人工湿地处理城镇污水和猪场废水研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
影响我国废水处理的关键因素是成本问题,如何在保证处理效果的前提下大幅度降低建设和运行成本是发展新技术的首要目标和相关研究领域中的主要任务。人工湿地污水处理技术具有高效率、低能耗的特点,因此,近年来,在城镇污水处理中该技术倍受关注。同时,湿地技术的运用能更好地保护水环境,符合可持续发展的理念。
     本论文包含两个重点部分,一是城镇污水处理人工湿地(Constructed Wetland)组合模式的构建;二是人工湿地处理猪场厌氧废液的可行性研究。主要研究结果如下:
     (1)城镇污水处理人工湿地组合模式的构建。利用组合增效与生态平衡原理,建立了以生物调节池(A)、好氧反应池(B)、潜流湿地(C)、表流湿地(D)为基本单元的污水处理组合模式。试验结果表明:①组合模式具有系统稳定、运行高效的特点,并具有季节时效上的可调控功能和生态自适应功能。②与各处理单元相比,组合模式功能更强。A单元的功能主要强化对污水中有机污染物的降解;B单元的设计不仅对CODCr、TN、TP的去除有良好的表现,而且本单元培养的微生物可提高整个系统的生物降解能力;C单元中,部分蛭石和红壤通过有效吸收污水中的阴、阳离子,从而去除污水中N、P和各种有毒金属离子,以维持整个系统在冬季生命活动降低时仍有较好的去除效果;和C单元一样,D单元主要是靠植物积累和水生生物消化来稳定出水水质。③“1+1>2”,组合模式在去除TN、TP和CODCr方面,均可达到较好的效果。将不同处理技术与工艺进行组合,不仅可以提高系统处理效果,而且可增强系统稳定性,应对季节变化。④组合系统中引进的植物作用主要在于吸收转化污水中N和P。分析可知:a)不同植物体内N、P含量随植物器官和季节而变化。b)对大型挺水植物(即潜流湿地植物)而言,N、P主要分布在植株地上部分,这种分布便于通过收获植物去除系统中的N和P;浮水植物体内N、P含量高于挺水植物。c)各单元中植物吸收对N、P去除的贡献率与单元进水负荷有关,植物对N、P的吸收在低负荷系统中占明显优势;表流湿地单元中植物吸收对N、P去除的贡献率高于生物调节池和潜流湿地两个单元。⑤组合模式“三大效益”突出。本系统的用地面积小于2 m2/t,比达到相同处理水平的常规湿地用地面积缩小了2倍以上,因此相应提高了成本效益;该系统还具有高效低耗,节约土地资源等特点,被广泛地应用到城镇污水处理方面,能更好地保护水环境和水生生态系统。
     (2)城镇污水处理复合生物蛭石床潜流湿地的构建。以减少占地面积、避免床层淤塞、增大湿地含氧量和提高湿地植物的利用价值为设计理念,建立了一个以生物蛭石为填料的三级跌流式复合床。结果表明:①在较高水力负荷下(1.0m3/m2.d),仍保持了较好的处理效果,系统对污水中的各污染物的总去除率在65%以上,出水水质基本达到二级排放标准。②本试验中的四种湿地植物的管理难度由易到难排序为:香蒲<美人蕉<水葫芦<水蕹菜;单位面积生物量的月均增长量Am值从大到小顺序是:水葫芦>美人蕉>水蕹菜>香蒲。③三级跌流设计有利于提高生物蛭石床内污水中的DO值。当跌流高度大于45 cm时,单次跌流增氧量达0.57 mg/L以上,其中一级跌流过程的复氧率更是高达75%,这充分说明在潜流湿地污水处理系统中采用跌流设计来增加污水中溶解氧量的方法是可行的。
     (3)人工湿地处理猪场厌氧废液的可行性研究。本研究优先选取了适宜南方生长的、可用于猪场作饲料的空心菜、水稻和水葫芦三种植物,通过盆栽试验来处理猪场厌氧废液。结果表明:①各处理体系对CODcr的最终去除效果为:水葫芦>水稻>空心菜>对照;对TP的最终去除效果为:水葫芦>空心菜>水稻>对照系统;对NH4+-N的最终去除效果为:水葫芦>对照体系>水稻>空心菜;对TN的最终去除效果为:对照系统>空心菜>水稻>水葫芦。在对NH4+-N和TN的去除中,对照系统都有比较好的表现,原因是对照系统中没有植物对藻的抑制,后期藻的出现增强了对照系统对NH4+-N和TN的去除作用。②用饲料植物处理猪场厌氧废液,恢复和构建了一条物质、能量循环链,实现猪场污水的生态处理,达到真正意义上的污水“零”排放,建立了可行的猪场循环经济模式。
Cost is the key factor affecting wastewater treatments in China, and therefore the development of new techniques with objectives to reduce construction and operation cost when at the same time enhance treatment efficiency has become the major task in related fields. Accounted for by their characteristics of high treatment efficiency and low energy consumption, constructed wetlands used for municipal sewage treatments have received great attention during recent years. Another important aspect of applying wetland techniques to protect water environment is that it meets the concept of sustainable development.
     The present thesis consists of two major parts:Part I is focused on the establishment of an integrated constructed wetland system used for municipal sewage treatment, and Part II is a feasibility study to investigate the potential use of constructed wetlands for treatment of wastewater from pig farms after pre-anaerobic treatment. The main results are summarized as follows:
     (1) Establishment of an integrated constructed wetland system for municipal sewage treatment. Based on the principle of effect amplification of combined treatment processes and the theory of ecological balance, the system was established with multiple functions. The integrated model consists of A) a biological regulation pool, B) an aerobic reactor, C) a sub-surface flow wetland and D) a surface flow wetland. Experimental results show that:①The system, with adjustable and controllable characters and ecological self-adaption mechanisms endurable to seasonal changes, is a relatively stable system with high treatment efficiency.②The system with multiple functions performs much better than any individual unit applied. Unit A is used for primary degradation of organic pollutants; unit B is designed not only for reduction of CODcr, TN and TP to lower levels but also for increase of the micro-organism concentration aiming at enhancement of the bio-digestion ability of the whole system; unit C is filled with proper portions of vermiculite and red soil, which, with high cation and anion adsorption capacities, can not only be used to remove N, P and different poisonous metal ions but also to maintain the treatment efficiency at high levels in winter seasons when the bio-activity of the integrated system is low.; and unit D, associated with Unit C, where plant and aquatic lives play important roles in uptake and bio-digestion, functions in stabilizing water quality before discharge.③With high removal rate of TN, TP and CODCr the integrated system gives a combined effect of "1+1>2". Combination of different treatment processes resulted in not only enhanced treatment efficiency but also strengthened sustainability of the system against seasonal changes.④Plant species introduced in the system play important roles in absorption and transformation of N and P. Results from analyses indicated that a) The content of N and P in plants also varies in plant tissues and as well with seasons. b) For large-sized terraneous plants (plants growing in subsurface wetland), the proportion of N and P is high in above-ground tissues, which can thus be readily removed by harvest. Phytoplanktonic plants (free-floating aquatic plants) have higher N and P content than that of terraneous plants. c) The contribution ratio of plant uptake to N and P removal is related to the influent load of the wastewater. Plant uptake of N and P is higher in lower influent-load system. The contribution ratio of plant uptake in surface flow wetland to N and P removal is thus greater than that in biological regulating pool and subsurface flow wetland.⑤Integrated system yields "three beneficial effects". The land use of the system is less than 2 m2/t, which is reduced by 2 times more than that of conventionally constructed wetland systems for achieving the same treatment efficiency, leading thus to a significant improvement in terms of cost-effectiveness. Accounted for by its satisfactory treatment efficiency, low energy consumption and reduced land use area, the established model can be well applied as a municipal sewage treatment system in protection of water environment and conservation of aquatic ecosystems.
     (2) Establishment of a bio-vermiculite bed subsurface flow wetland. A three-stage terrace dropping-flow process using bio-vermiculite as bed fillers is established with purposes in design to reduce land use area, avoid bed silting, increase oxygen level and raise the use value of wetland plants. The results show that:①The optimal treatment efficiency can be obtained at relatively high hydraulic load (1.0 m3/m2.d). The total removal rate of the system for various pollutants in the sewage is greater than 65% and in general the effluent quality satisfies the GB discharge standard classⅡ.②For the four tested plant species, the degree of facilitation in management follows the order:Typha latifolia L. Canna indica Linn> Pomoea aquatica Forsk> Typha latifolia L.③The three-stage terrace dropping-flow process increases the DO level in the bio-vermiculite-bed layers. With a falling height higher than 45 cm, the oxygen concentration in a single water drop is higher than 0.57 mg/L and the oxygen recovery rate of the one-stage drop reaches 75%, indicating that the designed process is effective in improving the oxygen condition in the subsurface flow wetland system.
     (3) Feasibility study on potential use of constructed wetlands for treatment of liquid waste from pig farms after pre-anaerobic treatment. Three selected plant species, Pomoea aquatica Forsk, Oryza sativa and Eichhornia crassipes (Mart.) Solms are the popular ones growing in the south areas widely used as folders in hoggeries. Pot experiments were conducted to test the effect of these plant species for treatment of liquid waste from rural pig farms:①The order of treatment efficiency in terms of removal rate for CODCr is:Eichhornia crassipes (Mart.) Solms>Oryza sativa>Pomoea aquatica Forsk>control; that for TP is:Eichhornia crassipes (Mart.) Solms>Pomoea aquatica Forsk>Oryza sativa>control; for NH4+-N:Eichhornia crassipes (Mart.) Solms>control>Oryza sativa> Pomoea aquatica Forsk; and for TN:control> Pomoea aquatica Forsk> Oryza sativa> Eichhornia crassipes (Mart.) Solms. The removal rate of NH4+-N and TN is relatively high in the control pot and the reason is that in the pot where there is no inhibiting effect of plants on algae growth, high amounts of algae emerge in the later phase period and raise thus the removal rate of NH4+-N and TN to higher levels.②As a circulation economy mode by applying this ecological treatment method using folder plants to treat liquid wastes from pig farms, a bio-mass/energy circulation chain is established and the final goal of this trial is to obtain substantial "zero" discharge under the condition that high economic benefit is further ensured.
引文
[1]田文龙,刘瑶环.我国污水处理事业的现状和发展趋势[J].中国科技信息,2006,(03):110-111.
    [2]范成新,季江.太湖富营养化现状、趋势及其综合治理对策[J].上海环境科学,1997,16(8):4-7,17.
    [3]张忠祥,钱易.城市可持续发展与水污染防治对策[M].北京:中国建筑工业出版社,1998,167-171.
    [4]杨振怀.漫谈中国水环境.中国水网[EB/OL]. http://www.h2o-china.com/.2005年12月6日.
    [5]国家环境保护总局:《国家环境保护“十五”计划》,见:《国务院关于国家环境保护“十五”计划的批复》附件,国函(2001)169号,2001年12月26日。
    [6]国家环境保护总局:《全国生态保护“十一五”规划》,见:《国家环境保护总局关于印发“全国生态保护‘十一五’规划的通知》附件,环发(2006)158号,2006年10月13日。
    [7]周建.未来五年中国环境保护投资需求及其重点领域分析[EB/OL].首届九寨天堂国际环境论坛.http://www.zhb.gov.cn/ztbd/jzhjlt/tpbd/200510/t20051028-71107.htm.2005年10月28日.
    [8]王玉庆.中国主要环境污染问题和对策[J].世界环境,1994(3):3-6.
    [9]吴晓芙,胡曰利.有机废水处理中的环境生物技术及其进展[J].中南林学院学报,2003,23(6):41-48.
    [10]中华人民共和国国务院:《国民经济和社会发展第十一个五年规划纲要》,2006年3月14日第十届全国人民代表大会第四次会议通过,2006年3月16日新华社播发。
    [11]高廷耀,顾国维.水污染控制工程[M].北京:高等教育出版社.1999.
    [12]杨鲁豫等.我国水资源污染治理的技术策略[J].给水排水,2001,27(1):95.
    [13]张自杰,张忠祥,钱易,等.环境工程手册[M].北京:高等教育出版社,1996.
    [14]环境科学编委会.环境科学大词典[M].北京:中国环境科学出版社,1997.
    [15]张自杰,张忠祥.废水处理理论与设计[M].北京:中国建筑工业出版社,2003.
    [16]Jahn A and Nielsen P H,Cell Biomass and Exopolymer Composition in sewer Biofilm[J].Wat. Sci. Tech.1998,37(1):17-24.
    [17]Zhang X, Bishop P L and Kupferle M J, Measurement of Polysaccharides and Proteins in Biofilm Extracelluar Polymers[J].Wat.Sci.Tech.1998,37(4-5):345-348.
    [18]Veiga Cetal. Composition and Role of Extracellular in Methanogenic Granules[J]. Appl. nviron. Microbial.1997,63(2):403-407.
    [19]高拯民,李宪法.城市污水土地处理设计手册[M].北京:中国标准出版社,1990.
    [20]J.W.Clark, W. Viessman,Jr., and M. J. Hammer. Water Surpply and Pollution control[M]. Harper & Row-Pullishers,1977.
    [21]雷英春,张克强,季民,等.国内外规模化猪场废水处理工艺技术新进展[J].城市环境与城市生态,2003,16(6):218-220.
    [22]台湾养猪科学研究所.猪场废水管理讲习班讲义,1987.
    [23]Ekama G A, Wentzel M C. Difficulties and Developments in Biological Nutrient Removal Technology and Model[J]. Wat. Sci. Tech.,1999,39(6):1-11.
    [24]Banerjee A, Elefsimiotis P, Tuhtar D. Impact of HRT and Temperature on the Acidogensis of Municipal Primary Sludge and Industrial Wastewater[J]. Wat. Res. Tech.1998,38(8):417-423.
    [25]汪植三,汪俊三.畜禽舍粪便污水及废气净化的研究[J].农业工程学报,1995,11(4):90-95.
    [26]杜鸿章,尹承龙.难降解高浓度有机废水催化湿式氧化技术[J].水处理技术,1994,23(2):16-18.
    [27]彭武厚.厌氧消化法处理畜禽粪的研究[J].工业微生物,1997(4):1-4.
    [28]程文霞.猪粪废水处理中养分含量与能量流通变化规律研究[J].四川环境,1992(2):5-10.
    [29]李淑兰,吴晓芙,刘英等.猪场废水处理技术[J].中南林学院学报,2005,25(5):132-138.
    [30]郭建钦.国外防止畜牧污水污染水域采取的措施[J].国外农业环境保护,1986,(1):8-9.
    [31]Vallee P et al. Waste management system for a 2400-head swine operation:pilot scale study [J]. Paper Am Soc Agric Eng,1989,18:4089-4093.
    [32]Montuelle B et al. Piggery and cheese-dairy waste water treatment:an anaerobic /aerobic process[J]. Storing, handing and springing of manure and municipal waste. 1988,32 (4):450-458.
    [33]张彩英.日本畜产环境污染的现状及其对策[J].国外农业环境保护,1992(2):68-72.
    [34]木村和生,羽贺清典.猪场废物の研究[J].畜产の研究,1990(44):202-215.
    [35]Arora, M L,Barth, E F, Umphres, M.B. Technology evaluation of sequencing batch reactors[J].Joural WPCF.1985,57(8):867-875.
    [36]Bortone G,Gemelli S,Rambaldi A., Tilche A.Nitrification, denitrification and biological phosphate removal in sequencing batch reactors treating piggery waste-water[J]. Wat. Sci.Tech.,1992,26(5-6):977-985.
    [37]Hansen et al. Improving Thermophilic Anaerobic Digestion of Swine Manure [J]. Water Research.1999(6):1805-1810.
    [38]Zeeman, G. Methane Production/Emission in Storages for Animal Manure[J]. Fertilizer Research.1994,37(3):207-211.
    [39]邓学法.畜禽养殖生产中环境污染问题及治理措施[J].河南畜牧兽医,1999,20(9):4-7.
    [40]刘荣章,王子齐.台湾养猪业污染防治措施[J].台湾农业情况,1991(2):11-13.
    [41]钱易.现代废水处理新技术[M].北京:中国科学技术出版社,1995.10.
    [42]王宝贞.水污染控制工程[M].北京:高等教育出版社,1994.36-37.
    [43]邓良伟.规模化猪场粪污处理模式[J].中国沼气,2001,19(1):29-33.
    [44]汪敏.五里塘生态农场有机废弃物的资源化生态工艺[J].城市环境与城市生态.1993,6(3):21-24.
    [45]覃环,李焕烈.工厂化猪场污水污染及处理对策[R].广东省农业机械研究所,1999.
    [46]Kameoka T et al.Methane fermentation system for swine wastewater treatment[J]. Japanese Journal of Zoo technical Science.1988(4),89-93.
    [47]王树功.藻类污染生态学研究进展[J].环境科学进展,1984,16(8):1-6.
    [48]王建龙,施汉昌.复合生物反应器处理废水的研究及进展[J].工业水处理,1997,17(2):8-12.
    [49]魏宏斌,徐迪民.水中有机物污染物物理化学处理技术的现状和发展趋势[J].上海环境科学,1997,16(4):16-17.
    [50]关绍宁,陈登甲.万头猪场粪尿污水处理模式初探[J].农业机械化论坛,1996(4):21-23.
    [51]陶涛,李宝林.集约化猪场猪粪尿处理问题探讨[J].武汉城市建设学院学报,2000,17(4):20-21.
    [52]周抗塞.带厌氧性条件的有机废水处理最新动向和课题[J].国外环境科学技术,1991(3):89-90.
    [53]刘心爱.集约化畜禽场的环境污染治理[J].农业环境与发展,1997(4):18-25.
    [54]杨平,方治华. 厌氧流化床废水处理技术研究及应用进展[J].环境科学进展,1994,2(5):35-44.
    [55]缪连兴.厌氧消化应用的过去、现在和将来趋势[J].新能源,1994,16(8):1-6.
    [56]Letting,GUpflow Anaerobic Sludge Blanket:Low cost sanitation research project in Bandung/Indonesia. Internal Report, Final report[R]. Wageningen Agricultural University,1991.
    [57]Schellinkhout, A., Collazos C.J. Full Scale Application of the UASB Technology for Sewage Treatment[R], IN:Proc.Cong. IAWPRC Anaerobic Digestion, Brazil.1998: 145-152.
    [58]任南琪.一体化两相厌氧反应器[P]. 中国专利:ZL00206243.7,1999.
    [59]任南琪.水污染控制微生物学[M].哈尔滨:黑龙江科技大学出版社,1993.
    [60]Hulshoff pol, L. W., G. Lettinga. Full Scale Application of the UASB Technology for Sewage Treatment[J] Wat Sci. Technol,1986, (18):41-53.
    [61]江希流,任文生.应用SBR法处理含酚化工废水[J].环境保护,1998,10:23-26,35.
    [62]郑平、冯孝善.废水生物处理理论和技术[M].杭州:浙江教育出版社,1997.
    [63]伦世仪,陈坚.ABR-UASB工艺处理酒精废水的研究[J].中国沼气,1989,7(2):8-13.
    [64]羊寿生.曝气的理论与实践[M].北京:中国建筑工业出版社,1982.
    [65]顾夏生.水处理工程[M].北京:清华大学出版社,1985.
    [66]Wong S H et al. Pilot scale aerobic sequencing batch reactor for pig waste treatment [J]. Journal of the Institution of Water and Environmental Management, 1989,3(1):75-81.
    [67]杨虹,李道棠,朱章玉,等.集约化养猪场冲栏水的达标处理[J].上海交通大学学报,2000,34(4):558-560.
    [68]徐洁泉.集约化猪场粪便污水沼气发酵综合处理系统的生产实验[J].中国沼气,1991,3:26-29.
    [69]Su JungJeng, Liu Yueh-Lin, Shu Fong-jin, et al. Treatment of piggery wastewater by contact aeration treatment in coordination with the anaerobic fermentation of three step piggery wastewater treatment (TPWT) process in Taiwan[J]. J. of Environ. Sci. Heal., A,1997,32(1):55-73.
    [70]郑武,谢晓丽,陈仁中,等.广州市畜牧业废水排放与治理现状分析[J].农业环境与发展,1998,15(2):17-20.
    [71]Lo K V, Liao P H, Van Kleek R J. A full-scale sequencing batch reactor treatment of dilute swine wastewater[J].Can.Agri.Engng.,1991,33:193-195.
    [72]Fernandes L, Mckyes E, et al.Treatment of liquid swine manure in the sequencing batch reactor under aerobic and anoxic condition[J].Can.Agri.Engng., 1991,33:373-379.
    [73]Su Jung-Jeng, Kung Cheng-Ming, et al.Utilization of sequencing batch reactor for In situ piggery wastewater treatment[J]. J. Environ. Sci. Health. A,1997,32:391-405.
    [74]Edgerton B D, Mc Nevin D, Wong C H, Menoud P, Barford J P, Mitchell C A. Strategies for dealing with piggery effluent in Australia:the sequencing batch reactor as a solution[J]. Wat.Sci. Tech.,1999,41(1):123-126.
    [75]Su Jung-Jeng, Lian Wen-Chyan, Wu Jih-Fang. Studies on Piggery wastewater treatment by a full-scale Sequencing Batch Reactor after anaerobic fermentation[J]. Chung-huaNungxue Huibao,1999,188:47-58.
    [76]Ng W G. Aerobic treatment of piggery wastewater with the sequencing batch reactor[J].Bio. Waste,1987,22:285-294.
    [77]Bernet N, Delgenes N, Akunna C, et al. Anerobic-aerobic SBR for the treatment of piggery wastewater[J]. War. Res.,1999,34(2):611-619.
    [78]王薇,俞燕,王世和.人工湿地污水处理工艺与设计[J].城市环境与城市生态,2001,14(1):59-62.
    [79]白晓慧,王宝贞,余敏,等.人工湿地污水处理技术及其发展应用[J].哈尔滨建筑大学学报,1999,32(6):88-92.
    [80]赵丽囡.中国的湿地保护[J].科学中国人,1999,10:15-18.
    [81]Jos T.A Verhoevem.et.al.Wetlands for wastewater treatment:Opportunities and limitations. Ecological Engineering,1999,12:5-12.
    [82]夏汉平,等.人工湿地污水机理与效率.生态学杂志,2002,21(4):51-59.
    [83]杨朝飞.中国湿地现状及其保护[J],1995,(6):407-411.
    [84]丁疆华,舒强.人工湿地在处理污水中的应用[J].农业环境保护,2000,19(5):320-322.
    [85]Cooper.P.F.and Boon.A.G.The use of phragmites for wastewater treatment by the root zone method. The DK approach.In Reddy.K.R.and Smith.W.H(eds.)Aquatic plants for water treatment and resource recovery[J].Magnolia Publishing Oriando, 1987.153-174.
    [86]Seidel,K..AbbauvonGewasserndurchhoherewasserpflanzen[J].Naturwiss,1964,51: 395.
    [87]Seides,K..ReingungvonGewasserndurchhoherepflanzen[J].Naturwiss,1996,53: 289-297.
    [88]Seidel,K..Happel,H.and Graue,G.Ccntributions to revitalization of waters 2nd edn, Stiftung Limnllogische Aebeitsgruppe Dr.Seidel e.V.Krefeld Germany,1978, 1-62.
    [89]许春华.人工湿地在农业面源污染控制方面的应用[J].重庆环境科学,2001,23(3):70-72.
    [90]诸惠昌.新型废水处理工艺——人工湿地的设计方法[J].环境科学,1993,14(2):39-42.
    [91]杜中典.污水人工湿地系统中有机物积累规律与堵塞机制的研究进展[J].农业环境保护,2002,21(5):47-476.
    [92]Miklas Scholz,Performance comparison of experimental constructed wetlands with different filter media and macrophytes treating industrial wastewater contaminated with lead and copper[J].Bioresource Technology,2002,83:71-79.
    [93]Knight R.L. The use of treatment wetlands for petroleum irdustry effluents[J]. Environmental Science and Technology,1999,33(7):973-980.
    [94]籍国东.自由表面流人工湿地处理超稠油废水[J],环境科学,2001,22(4):95-99.
    [95]B.C.Braskerud,et al.Factor affecting nitrogen retenton in small constructed wet-lands treating agricultural non-point source pollution[J].Ecological Engineering. 2002,18:351-370.
    [96]Long M.Nguyen.Organic matter composition,mirrobial biomass and microbial activity in gravel-bed constructed wetlends treating farm dairy wastewaters[J]. Ecological Engineering,2000,16:199-221.
    [97]Carsten Schulz,Carsten Schz,et al.Treatment of rainbow trout farm effluents in constructed wetland with emergent plants and subsurface horizontal water flow[J], Aquaculture,2003,217:207-221.
    [98]Ying-Feng Lin. Nutrient removal from aquaculture wastewater using a constructed wetlands system[J].Aquaculture,2002,209:169-184.
    [99]沈耀良.New Technologies for Biological Wastewater Treatment-Theory and Application[M].Beijing:China Environmental Science Press(in Chinese) 1999.
    [100]吴晓磊.人工湿地废水处理机理[J].环境科学,1995,16(3):83-86.
    [101]李万庆.污水湿地处理工艺优化组合设计[J].城市环境与城市生态,2000,13(6).
    [102]Aimee Matthy,G.Parkin.S.Wallace. A Comparison of Constructed Wetlands Used to Treat Domesitc Wastes:Conventional,Drawdown,and Aerated[J].2001.
    [103]United States Office of Water EPA 832-R-93-008 Environmental Protection (4204) July 1993 Agency.Subsurface Flow Constructed Wetlands for Wastewater Treatment[A].
    [104]R.Haberl,GLangergraber.Constructed Wetland Technology[J]. University of Agricultural Sciences Vienna (BOKU),2000.
    [105]籍国东.人工湿地及其在工业废水处理中的应用[J].应用生态学报,2002,13(2):224-228.
    [106]刘昌明.中国水资源论坛:宗旨与设想[R].中国水资源论坛,2002.9.
    [107]梁威,吴振斌.人工湿地对污水中氮磷的去除机制研究进展[J].环境科学动态,2000,(3):32-37.
    [108]Renee Lorion.Constructed Wetlands:Passive Systems for Wastewater Treatment [R],2001.
    [109]G.Sun.K.R.Gray,A.J.Biddlestone and D.J.Cooper.Treatment of Agriclutural Waste water in a Combined Tidal Flow-Down flow Reed Bed System.Wat.Sci.Tech. 1999,40(3):139-146.
    [110]Brij Gopal.Natural and Constructed wetlands for Wastewater Treatment: Potentilsand Problems.Wat.Sei.Tech,1999,40(3):27-35.
    [111]胡焕斌.人工湿地处理矿山炸药污水[J].环境科学与技术,1997,(3):17-26.
    [112]李科得,胡正嘉.芦苇床系统净化污水的机理[J].中国环境科学,1995,15(2):140-144.
    [113]吴献花.人工湿地处理污水的机理[J].玉溪师范学院学报,2002,,18(1):103-105.
    [114]成水平.香蒲、灯心草人工湿地的研究--Ⅱ,净化污水的空间[J],湖泊科学,1998,10(1):62-66.
    [115]李科得,胡正嘉.人工模拟芦苇床系统处理污水的效能[J].华中农业大学学报,1994,13(5):511-517.
    [116]王立彬,赵承.人均淡水资源量2300立方米相当于世界人均的1/4我国是13最个贫水国之一[N].《北京青年报》,2000年6月12日.
    [117]尹连庆.粉煤灰基质人工湿地系统净北污水的研究[J].华北电力大学学报,1999,26(4):76-79.
    [118]徐丽花.不同填料人工湿地处理系统的净化能力研究[J].上海环境科学,2002,21(10):603-605.
    [119]聂发辉.人工湿地中新型填料净化污水能力的研究[M].中南林学院硕士学位论文,2003.
    [120]C.D.Barton-A.D.Karathanasis,Renovation of a failed constructed wetland treating acid mine drainage[J]. Environmental Geology,1999,39(l):39-5.
    [121]K.R.Reddy,Fate of Nitrogen and Phosphorus in a wastewater Retention Reservoir Containing Aquatic Macrophytes,J Environ Qual,1983,12(1):137-141.
    [122]Srinivasan,N.,et al.Improvement of domestic wastewater quality by subsurface flow constructed wetlands.Bioresource Technol.,2000,75(1):19-25.
    [123]Kadlec, H. R. et al. Treatment wetlands[M]. FL:Lewis Publishers,1996.
    [124]吴振斌.垂直流人工湿地水学特点对污水净化效果的影响[J],环境科学,2001,22(5):45-49.
    [125]贺锋.复合构建湿地运行初期理化性质及氨的变化[J].长江流域资源与环境,2002,11(3):279-283.
    [126]张甲耀.潜流型人工湿地污水处理系统氨去除及氨转化细菌的研究[J].环境科学学报.1999.19(3):323-327.
    [127]Hoppe H.Cz,et al.Microbial decomposition in aquatic environments:Combined Processes of extra cellular activity and substrate uptake[J]. Applied Environmental Microbiology,1988,54:784-790.
    [128]廖新梯.香根草和风车草人工湿地对猪场废水氨磷处理效果的研究[J].应用生态学报,2002,13(6):719-722.
    [129]Cooper P.F,et al.Reed bed treatment systems for sewage treatment in the United Kingdom-The first 10 years'experience[J].Water Sci.Tech.,1995,32(3):317-327.
    [130]阳承胜.重金属在宽叶香薄人工湿地系统中的分布与积累[J],水处理技术,2002,28(2):101-104.
    [131]P.A.Mays,et al.Comparison of heavy metal accumulation in a natural wetland and constructed wetlands receiving acid mine drainage[J], Ecological Engineering,2001,(16):487-500.
    [132]Mclatchey,CxP.,et al.Regulation of organic matter decomposition and nutrient release in a wetland soil [J]. Journal of Environmental Quality,1998,27:1268-1275.
    [133]Reddy,K.R.,et al.Biogeochemical indicators to evaluate pollutant removal efficiency in constructed wetlands[J].Water Science and Technology,1997,35(5):1-10.
    [134]Sherwood C. Reed; Donald Brown[J]. Water Environ.Res.,1995,67(2):224-250.
    [135]Knight, R. L.,Ruble, R. W.,Kadlec, R. H. and Reed, S. Wetlands for waste water treatment:performance database in Moshiri, G. A.(ed.) Constructed wetlands for water quality improvement[J]. Lewis Publishers, Boca Raton,1993:35-38.
    [136]俞孔坚,李迪华,孟亚凡.湿地及其在高科技园区中的营造[J].中国园林,2001,2:26-28.
    [137]黄时达,王庆安,钱骏,等.从成都活水公园看人工湿地系统处理工艺[J].四川环境,2000,19(2):8-12.
    [138]胡康平.人工湿地污水处理系统初步研究[J].上海环境科学,1991,10(9):41.
    [139]丁廷华.污水芦苇湿地处理系统示范工程的研究[J].环境科学,1992,13(2):8.
    [140]黄石达,王安庆.从成都市活水公园看人工湿地系统处理工艺[J].四川环境,2000,19(2):8-12.
    [141]唐述虞.铁矿废水的人工湿地处理[J].环境工程,1996,(4):3-7.
    [142]沈耀良.新型废水处理技术——人工湿地[J].污染防治技术,1996,9(2):1-8.
    [143]张志杰,杨蕴哲,聂亚琴.两级串联生物稳定塘处理乐果废水初探[J].水处理技术,1994,20(5):299-304.
    [144]彭军,吴分苗,唐耀武.组合式稳定塘工艺处理养猪废水设计[J].工业用水与废水,2003(6):4-46.
    [145]J. B. Nyakang'o and J. J. A. van Bruggen. Combination of a Well Functioning Constructed Wetland with a Pleasing Landscape Design in Nairobi, Kenya[J], Water Science and Techno-logy,1999,40 (3):249-256.
    [146]廖新梯,骆世明,吴银宝,等.人工湿地植物筛选的研究[J].草业学报,2004,15(5):39-45.
    [147]张美钦.循环经济模式在尤溪县猪场废弃物处理中的应用[J].福建农业科技,2006(3):90-91.
    [148]Verhoeven J T A, Meuleman A F M. Wetland for wastewater treatment: opportunities and limitations[J]. Ecological Engineering,1999, (12):5-12.
    [149]Sakadevan K, Bovar H J. Nutrient removal mechanisms in constructed wetlands and sustainable water management[J]. Wat Sci Tech,1999,40(2):121-128.
    [150]刘文祥.人工湿地在农业面源污染控制中的应用研究[J].环境科学研究,1997,10(4):15-19.
    [151]C.C.Tanner and J.P.S.Sukias, Linking pond and wetland treatment:performance of domestic and farm systems in New Zealand[J]. Water Science and Technology, 2003,48 (2):331-339.
    [152]国家环保局编,水和废水监测分析方法(第3版)[M].北京:中国环境科学出版社,1989.
    [153]陈锡涛.水生微管束植物自屏对水质净化资源化效应的研究[J].环境科学与技术,1994,(2):1-4.
    [154]彭青林,敖洁,曾经.水生植物塘中的溶解氧变化及对污水处理研究[J].长沙电力学院学报(自然科学版),2004,19(1):79-81.
    [155]黄蕾,翟建平,蒋鑫焱,等.三种水生植物在不同季节去污能力的对比研究[J].环境保护科学,2005,31:44-47.
    [156]DeBusk T A, Peterson J E and Reddy K R. U se of aquatic and terrestrial plants for removing phosphorus from dairy wastewaters. Ecological Engineering,1995,5: 371-390.
    [157]Brix H. Do macrophytes play a role in constructed treatment wetlands[J]. Wat. Sci.Technol,1997,35(5):11-17.
    [158]Tanner CC.1996.Plants for constructed wetland treatment systems comparison of the growth and nutrient uptake of eight emergent species.Ecol Engin,10(7):59-83.
    [159]Yang C-F,Xia S-L,Xu C-S,et al.1993.The relationship of the type of soil with the artificial wetland in disposing wastewater.Environ Prot Sci,19(1):46-50.
    [160]汪慧贞,王绍贵.pH值对污水处理厂磷回收的影响[J].北京建筑工程学院学报,2004,20(4):5-8.
    [161]Bill Duley.Recycling phosphorus by recovery from sewage[C].CEEP, Second International Conference on the Recovery of Phosphorus from sewage and animal wastes, Noordwijkerhout, The Netherlands,2001.
    [162]孟雪征,曹相生,张杰.生物快滤池深度处理城市污水的性能及pH值变化规律[J].2003,16(6):1-3.
    [163]李淑兰,吴晓芙,胡日利,等.饲料植物处理猪场厌氧废液的pH变化规律研究[J].中南林业科技大学学报,2007,27(2):75-78.
    [164]江立方,顾剑新.上海市畜禽粪便综合治理的实践与启示[J].家畜生态,2002,23(1):1-4.
    [165]吴晓芙,胡曰利,聂发辉,等.蛭石的NH4+吸附与Langmuir方程[J].湘潭大学自然科学学报,2004,26(3):66-71.
    [166]胡日利,吴晓芙,聂发辉.天然蛭石对污水中氨氮吸附去除率的影响[J].中南林学院学报,2004,24(1):30-34.
    [167]Robert H Kadlec, Robert L Knight, et al.Constructed Wetlands for Pollution Control[M].USA:IWA Publishing,2002.93-102.
    [168]Hosoi Y. Field examination on reed growth,harvest and regeneration for nutrient removal[J].Water Science and Technology,1998.38(1):351-359.
    [169]张鸿,陈光荣,吴振斌,等. 两种人工湿地氮、磷净化率与细菌分布关系的初步研究[J].华中师范大学学报,1999,33(4):575-578.
    [170]吴振斌,成水平,贺锋.等.垂直流人工湿地设计及净化功能初探[J].应用生态学报,2002,13(6):715-718.
    [171]王晓月,徐清山,葛莹.人工湿地对西湖非点源的治理研究[J].杭州师范学院学报,2001,18(6):6-10.
    [172]Robert H Kadlec, Robert L Knight,et a 1.Constructed Wetlands for Pollution Control[M].USA:IWA Publishing,2002,1-6.
    [173]Fennessy M S,Gonk J K, Mitsch V J. Macrophyte productivity and community development in created fresh water wetlands under experimental hydrological conditions[J]. Eco.Eng.,1994,3(4):469-484.
    [174]边连全,刘显军,陈静,等.猪用植物性饲料中可消化磷的评定及植酸敏的作用[J].农村经济与科技,2003,(10):12-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700