养分管理措施对丹江口库区橘园氮磷行为特征的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丹江口水库是南水北调中线工程的水源地,重点解决北京、天津、石家庄等沿线20多座大城市的缺水问题,并兼顾沿线生态环境和农业用水,输水水质安全保障极其重要。柑橘种植业作为丹江口的特色产业,目前在库区两岸形成了两条百里柑橘带,并以每年2万亩的速度递增。鉴于控制丹江口库区柑橘产业快速发展可能引起的农业面源污染,本研究在采样调查柑橘园土壤肥力和柑橘营养状况的基础上,选择丹江口库区典型柑橘园,采用径流小区试验和土壤分层取样法研究了推荐施肥、推荐施肥结合分期施肥、推荐施肥结合全园植草等养分管理措施对丹江口库区橘园地表径流输出量、氮磷养分流失量与流失形态、土壤氮磷分布及迁移、柑橘叶片氮磷周年变化、柑橘产量及品质、的影响,主要得出以下结论:
     1)丹江口库区橘园调查结果显示,由于当地土壤贫瘠再加上长期施肥水平偏低,以及施肥比例不合理(偏施氮、少施磷),库区橘园土壤速效氮、磷含量普遍偏低,再加上各个果园管理水平参差不齐,导致土壤养分变异系数较大。橘树叶片分析结果表明,库区半数以上橘树表现为氮素缺乏。同时,根据上述调查提出了橘园的养分管理措施。
     2)推荐施肥处理以及各个增量施肥处理均能降低橘园坡地地表径流的输出,其中以推荐施肥处理效果最为显著,与习惯施肥处理比较降低了40.09%的径流输出;可溶性总氮和颗粒态磷为库区橘园径流中氮、磷的主要流失形态,需重点加以控制,化肥的施用并不是造成库区橘园氮磷流失的主要影响因素。提高施肥次数,能明显的降低总氮、可溶性总氮和可溶性总磷的流失,而全园植草则在减少总磷、颗粒态磷和颗粒态氮的流失方面效果显著,分期施肥处理(125%M0+FT)减少了35.96%总氮的流失,植草处理(125%M0+PG)减少了59.31%总磷的流失。但值得注意的是,坡面植草有提高径流中可溶性有机态氮的流失趋势。
     3)氮肥施用能够显著提高0-80 cm土层碱解氮含量,以20-40 cm土层增幅最大,伴随土层的加深,碱解氮累积峰出峰越晚。磷肥施用主要影响0-40cm土层速效磷含量,其中又以0-20 cm土层变幅最大,只有极少一部分磷移动到40-80 cm土层,因此出现大量磷素垂直迁移的可能性很低。施肥量越高,碱解氮及速效磷0 cm-80 cm土层的储量越大,与增量施肥处理(125% MO)相比,坡面植草可以减少碱解氮及速效磷的储量,然而分期施肥一方面减少碱解氮的储量另一方面又能够提高速效磷的储量。习惯施肥(CF)处理产生的残留硝态氮历经4个月迁移出橘树根层,分期施肥(125%M0+FT)导致硝态氮累积峰率先出现,而坡面植草处理全年并没有出现明显的累积峰;增加施肥次数和坡面植草虽然可以在一定程度上减少60-80 cm土层硝态氮的残留,但影响程度远不及减少施氮量明显,在产量不受较大影响的情况下适当减少施氮量可以大幅降低硝态氮的淋失风险。
     4)增加施肥次数可以提高叶片氮磷含量,土壤速效氮磷含量的高低决定叶片及果实氮磷的含量。坡面植草处理在试验前期降低叶片氮磷的含量,但通过定期刈草并作为绿肥翻入土壤,在试验后期叶片氮磷含量都有所上升。推荐施肥及各增量施肥处理与习惯施肥处理相比都能不同程度的提高柑橘产量,其中增量施肥处理(125%M0)和植草处理(125%M0+PG)与习惯施肥处理(CF)相比增产效果显著,分别增产43.44%和33.81%,每公顷增收6814元和4339元。推荐施肥结合坡面植草可以促进柑橘果实Vc和可溶性固形物的含量,提高固酸比及可食率,降低总酸含量和单果重,提高了果实营养价值,使果实酸甜适度风味可口。
     因此,在推荐施肥基础上实行分期施肥,并结合坡面种植三叶草(M0+FT+PG),即可以提高柑橘产量和品质,提高农民收入,又能够有效减少氮磷随地表径流的流失以及硝态氮的淋失,适宜在丹江口库区推广应用。
Danjiangkou Reservoir is the water resource of South-North Water Transfer Project, with the aim of satisfying the drink water supply for more than 20 cities, such as Beijing, Tianjin, Shijiazhuang and so on, so the security of water quality in this reservoir is extremely important. Hundred miles of citrus growing belt has formed arround the Danjiangkou Reservoir, and it is increasing annually 13 hm2 nowdays.It is necessary to control the non-point pollution from citrus garden while citrus planting area is raising, based on the investigation of citrus garden soil fertility and tree nutrition, the typical citrus orchards of Danjiangkou Reservoir area was selected, runoff plots experiment and soil stratified sampling method were conducted to study the effects of recommended fertilization, recommended fertilization with split-applied fertilization and recommended fertilization with planting grass on the output of runoff, nitrogen and phosphorus, form of nitrogen and phosphorus,the distribution and migration of soil nitrogen and phosphorus, the annual variation in nitrogen and phosphorus concentrations of citrus leaves, citrus yield and quality. The main conclusions are showed as follows:
     1)The survey of Danjiangkou Reservoir area citrus orchards showed that:the contents of soil available nitrogen and phosphorus were very low, and long-term of low level fertilization and unreasonable fertilization (partial nitrogen, less phosphorus), coupled with varying management levels of different orchards, was resulted in a larger coefficient of variation of soil nutrients, and more than half of orange trees with deficiency of nitrogen. Meanwhile, we proposed a nutrition management measures for this citrus orchard according to the survey.
     2) Recommendation fertilization and nutrition management significantly reduced runoff losses,with a 40.09%, compared with the conventional fertilization. Dissolved nitrogen and particle phosphorus were the main loss forms of nitrogen and phosphorus in Danjiangkou reservoir orchard, which should be controlled carefully. Fertilizer application is not the main reason for the loss of nitrogen and phosphorus in Danjiangkou Reservoir area. The loss of total nitrogen, dissolved total nitrogen and dissolved total phosphorus were deceased significantly by increasing the frequency of fertilizer application, and planting grass reduced the loss of total phosphorus, particle phosphorus and particle nitrogen effectively. The loss of 35.96% total nitrogen was decreased by increasing the frequency of fertilizer application while the loss of 59.31% total phosphorus were reduced significantly by planting grass.It is noteworthy that the loss of dissolved organic nitrogen would be increased by planting grass.
     3)The content of available nitrogen in 0-80 cm soil was increased by applying nitrogen fertilizer significantly, while the concentration of 20-40 cm soil was increased more than the others.The deeper in the soil, the latter the soil available nitrogen accumulation peak appeared. The content of available phosphorus in 0-40 cm soil was raised by applying phosphate fertilizer remarkably, while the concentration of 0-20 cm soil was increased more than the others.There was only a very few amount of available phosphorus move to 40-80 cm soil, that meant it was hardly for soil available phosphorus move vertically. The larger amount of nitrogen and phosphorus was accumulated in 0-80 cm soil when higher rate fertilizer(125% M0) was used, but the accumulations of nitrogen and phosphorus were declined by planting grass, while nitrogen was decreased and phosphorus was increased by more split fertilizer application. The soil nitrate of conventional fertilization treatment (CF) was moved out of root layer after 4 months. Split fertilizer application(125% M0+FT) resulted in accumulation peak of nitrate nitrogen in soil profile firstly, but planting grass treatment(125% M0+PG) had no effect on accumulation of nitrate nitrogen obviously. It was concluded that the nitrate nitrogen of 60-80 cm soil layer could be declined by more split fertilzier application and planting grass, but the most effective measurement in decreasing the risk of nitrate leaching from the soil is to reduce the application rate of nitrogen fertilizer.
     4) The concentrations of nitrogen and phosphorus of citrus leaves were increased by split fertilizer application more times, the content of soil available nitrogen and phosphorus determine the content of nitrogen and phosphorus in leaves and fruit of citrus. The contents of nitrogen and phosphorus of citrus leaves were declined by planting grass while high application rate fertilizer was used, but raised at the end of experiment after the grass was mowed and buried into the soil. Compared with conventional fertilization treatment, citrus fruits yield was increased by various treatments of recommended fertilization in varying degrees, the citrus yield of incremental fertilization treatment (125% M0) and planting grass treatment(125% M0+PG) increased significantly by 43.44% and 33.81% respectively, with the income increase of 6814 Yuan and 4339 Yuan Renminbi. The concentrations of fruit vitamin C,soluble solids,the ratio of solid to acid and the rate of edible were increased, but the content of total fruit acid and weight per fruit were decreased by planting grass.In a word, planting grass improved the quality of fruit, induced the flavor of fruit to taste sweet and delicious.
     As a consequence, combined recommendation fertilization with split fertilization and planting grass (MO+FT+PG) not only resulted in higher yield, better quality of citrus and more income, but also in lower loss of nitrogen, phosphorus and the leaching of nitrate. The nutrient management measures mentioned above possess of popularization and application value for the citrus orchard in Danjiangkou Reservoir areas.
引文
1.曹明华,刘长全.红壤幼龄果园不同管理模式对土壤养分状况的研究[J].福建热作科技,2000,25(4):1-4.
    2.陈笃江,唐晓红.镇江市蔬菜地土壤环境调查研究[C].江苏省土壤学会第十次全省会员代表大会暨2004年学术年会论文集,2004:35-38.
    3.陈新平,张福所.北京地区蔬菜施肥的问题与对策[J].中国农业大学学报,1996,1(5):63-66.
    4.崔鸿侠,唐万鹏,刘学全.丹江口库区大气降雨及森林地表径流特征研究[J].湖北林业科技,2008,3:1-4.
    5.仓恒瑾,许炼峰,李志安等.农田氮流失与农业非点源污染[J].热带地理,2004,24(4):332-336.
    6.程东华,叶双峰.梨园白三叶生草栽培的效果研究[J].江苏林业科技,2002,29(5):23-24.
    7.单艳红,杨林章,王建国.土壤磷素流失的途径、环境影响及对策[J].土壤,2004,36(6),602-608.
    8.‘单杨.中国柑橘工业的现状、发展趋势与对策[J].中国食品学报,2008,8(1):1-8.
    9.杜春先,聂俊华,王介勇.不同水肥条件下硝态氮在土壤剖面中垂直分布规律研究[J].土壤通报,2006,7(2):278-281
    10.段水旺,章申,陈喜保等.长江下游氮、磷含量变化及其输送量的估计[J].环境科学,2000,21(1):53-56
    11.段亮,常江,段增强.地表管理与施肥方式对太湖流域旱地磷素流失的影响[J].农业环境科学学报,2007,26(1):24-28.
    12.范丙全,胡春芳,平建立.灌溉施肥对壤质潮土硝态氮淋溶的影响[J].植物营养与肥料学报,1998,2(1):16-21.
    13.范仲学,王璞,梁振兴.谷类作物的氮肥利用效率及其提高途径研究进展[J].山东农业科学,2001,4:47-50.
    14.付玉芹,雷玉平.不同施氮水平下深层土壤硝态氮淋失特征研究[J].中国农学通报,2006,22(6):245-248.
    15.国家环境保护总局.水和废水监测分析方法[M].北京:中国环境科学出版社,2002,243-266.
    16.高超,张桃林,吴蔚东.太湖地区农田土壤养分动态及其启示[J].地理科学,2001,21:(5)428-432.
    17.郭胜利,党廷辉,郝明德.黄土高原沟壑区不同施肥条件下土壤剖面中矿质氮的分布特征[J].干旱地区农业研究,2000,18(1):22-27.
    18.郝淑英,刘蝴蝶,牛俊玲等.黄土高原区果园生草覆盖对土壤物理性状、水分及产量的影响[J].土壤肥料,2003,(1):25-27.
    19.何天富.柑橘学.北京:中国农业出版社[M].1999,281-296.
    20.胡甲均,张玉华.丹江口库区及其上游水土流失现状及防治对策[J].中国水利,2003,7:47-49.
    21.胡立峰,胡春胜.不同土壤耕作法对作物产量及土壤硝态氮淋失的影响[J].水土保持学报,2003,19(6):186-189.
    22.黄建民,陈东元.脐橙平衡施肥技术[J].现代园艺.2008,11,17-18.
    23.黄锦法,曹志洪,李艾芬等.稻麦轮作田改为保护地菜田土壤肥力质量的演变[J].植物营养与肥料学报,2003,9(1):19-25.
    24.黄丽华.滴灌施肥对农田土壤氮素利用和流失的影响[J].农业工程学报,24(7):49-53.
    25.黄满湘,章申,唐以剑等.模拟降雨条件下农田径流中氮的流失过程[J].土壤与环境,2001,10(1):6-10.
    26.黄元仿,贾小红.平衡施肥技术[M].北京:化学工业出版社,2001.
    27.黄炎和,杨学震,蒋芳市.侵蚀坡地果园不同生草方式对土壤和果树生长的影响[J].水土保持学报.2007,21(2):111-114.
    28.贾忠慧,吴慧,任世江等.果树平衡施肥技术.现代农业,2007,19-20.
    29.袁洪福,褚小立,王艳斌等译.水分析手册[M].中国石化出版社,2005,249-251.
    30.杨丽霞,杨桂山,苑韶峰等.不同雨强条件下太湖流域典型蔬菜地土壤磷素的径流特征[J].环境科学,2007,28(8):1763-1769.
    31.李国怀,胡德文.生草栽培对桔园环境和柑桔产量的影响[J].中国农业气象,1997,18(4):18-21.
    32.李世清,李生秀.旱地农田生态系统氮肥利用率的评价[J].中国农业科学.2000,33(1):76-81.
    33.李世清,王瑞军,李紫燕等.半干旱半湿润农田生态系统中不可忽视的氮库-土壤剖面中累积的硝态氮[J].干早地区农业研究,2004.22(4):1-13.
    34.李志博,王起超,陈静.农业生态系统中的氮素循环研究进展[J].土壤与环境,2002,11(4):417-421.
    35.李银国.柑橘园土肥水管理及节水灌溉.北京:北京金盾出版社.1997,62-84.
    36.李银国.柑橘园土肥水管理及节水灌溉.北京:北京金盾出版社.1997,97-102.
    37.凌晓明,董玉山,黄鹏.果园施肥技术总结[J].山西果树,2005,5,32-34.
    38.刘方春,聂俊华.不同施肥措施对土壤硝态氮垂直分布的特征影响[J].土壤通报,2005,36(1):50-53.
    39.刘宏斌,李志宏.北京市农田土壤硝态氮的分布与累积特征[J].中国农业科学,2004,37(5):692-698.
    40.刘玉民,龙伟,刘亚敏等.不同种植模式下紫色土养分流失影响因子研究[J].水土保持学报,2005,19(5):81-84.
    41.刘利花,杨淑英,吕家珑.长期不同施肥土壤中磷淋溶“阈值”研究[J].西北农林科技大学学报,2003,31(3):1234-125.
    42.刘微,赵同科,王丽英.不同水分、施氮量对土壤中硝态氮含量分布的影响[J].华北农学报,2006,21(3):27-30.
    43.林超文,庞良玉,罗春燕等.平衡施肥及雨强对紫色土养分流失的影响[J].生态学报,2009,29(10):5552-5560.
    44.鲁如坤.土壤-植物营养学原理与施肥[M].北京:化学工业出版社,1998,428-436.
    45.鲁剑巍,陈防,王富华等.湖北省柑橘园土壤养分分级研究.植物营养与肥料学报.2002,8(4):390-394.
    46.鲁剑巍.湖北省柑橘园土壤-植物养分状况与柑橘平衡施肥技术研究.[博士学位论文].武汉:华中农业大学图书馆,2003.
    47.马军花.传递函数模型的发展和农田尺度下硝态氮淋失的数值预报[博士学位论文].北京:中国农业大学图书馆,2004,16-19.
    48.宁建凤,邹献中,杨少等.农田氮素流失对水环境污染及防治研究进展.广州环境科.2007,22(1):5-10.
    49.沈善敏,陈欣.中国土壤磷素肥力与农业中的磷管理.中国土壤肥力[M].北京:中国农业出版社出版.1998.
    50.苏德纯.北京郊区蔬菜保护地土壤磷空间及形态分布特征[J].中国蔬菜,1999,(4):7-11.
    51.孙昭荣.北京降雨和地下渗水中的氮素研究[J].土壤肥料,1993,2:8-10.
    52.田明英,许淑桂,刘倩.果园生草技术研究[J].中国果菜,2002(1):20.
    53.王彩绒,吕家珑,胡正义等.太湖蔬菜地土壤氮磷流失及生态拦截控制[C].全国博士生学术论坛论文集.中国南京,2005,293-300.
    54.王彩绒.太湖典型地区蔬菜地氮磷迁移与控制研究[博士学位论文].西北农林科技大学图书馆,2006.
    55.王继红,刘景双,李月芬.氮磷肥对黑土浅层土壤氮素累积及移动的影响[J].土壤通报,2005,36(3):341-344.
    56.王静,丁树文,李朝霞等.丹江库区典型土壤磷的淋溶模拟研究[J].农业环境科学学报,2008,27(2):692-697.
    57.王洪刚.果园覆草技术综合效应研究[J].水土保持研究,2001,8(3):55-57.
    58.王喜明.丹江口库区柑橘产业发展的调查与思考[J].实践与探索,2007,104-106.
    59.吴建繁,王运华.无公害蔬菜营养与施肥研究进展[J].植物学通报,2000,17(6):492-503.
    60.吴希媛,张丽萍,张妙仙等.不同雨强下坡地氮流失特征[J].生态学报,2007,27(11):4576-4582.
    61.吴电明,夏立忠,俞元春等.坡耕地氮磷流失及其控制技术研究进展[J].土壤,2009,41(6):857-861.
    62.肖润林,李玲.红壤旱坡地桔园覆盖的生态效应及经济效益评价[J].生态学杂志,1996,15(5):16-22.
    63.邢光熹,施书莲.苏州地区水体氮污染状况[J].土壤学报,2001,38(4):540-545.
    64.项大力,杨学云,孙本华等.灌溉水平对塿土磷素淋失的影响[J].植物营养与肥料学报,2010,16(1):112-117.
    65.谢学俭,陈晶中,宋玉芝等.磷肥施用量对稻麦轮作土壤中麦季磷素及氮素径流损失的影响[J].农业环境科学学报,2007,26(6):2156-2161.
    66.徐泰平,朱波,况福虹等.平衡施肥对紫色土坡耕地磷素径流流失的影响[J].农业环境科学学报,2006,25(4):1055-1059.
    67.熊正琴,邢光熹.太湖地区湖、河和井水中氮污染状况的研究[J].农村生态环境,2002,18(2):29-33.
    68.晏维金,尹澄清,孙濮等.磷氮在水田湿地中的迁移转化及径流流失过程[J].应用生态学报,1999,10(3):312-316.
    69.张国印,孙世友,王丽英等.氮肥施用量对土壤硝态氮含量及分布的影响[J].河北农业科学,2003,7(4):7-11.
    70.张丽娟.农田生态系统中残留硝态氮的行为及植物利用[博士学位论文].中国农业大学图书馆,2004.
    71.张成梁,程冬兵,刘士余.红壤坡地果园植草的水土保持效应[J].草地学报, 2006,14(4):365-369.
    72.章明奎,李建国,边卓平.农业非点源污染控制的最佳管理实践[J].浙江农业学报,2005,17(5):244-250.
    73.章明奎,王丽平.旱耕地土壤磷垂直迁移机理的研究[J].农业环境科学学报,2007,26(1):282-285.
    74.张世贤.三张图表说喜悦-中国面临的严峻挑战与机遇[J].中国农村,1996,5:6-9.
    75.张维理,武淑霞,冀宏杰,Kolbe H.中国农业面源污染形势估计及控制对策[J].中国农业科学,2004,37(7):1008-1017.
    76.张维理.中国农业面源污染形势估计及控制对策Ⅱ.欧美国家农业面源污染状况及控制[J].中国农业科学,2004,37(7):1018-1025.
    77.张兴昌,邵明安,黄占斌等.不同植被对土壤侵蚀和氮素流失的影响[J].生态学报,2000,20(6):1038-1044.
    78.张兴昌,邵明安.坡地土壤氮素与降雨、径流的相互作用机理及模型[J].地里科学进展.2000,19(2):128-135.
    79.张兴昌,郑剑英,吴瑞浚等.氮磷配合对土壤氮素径流流失的影响[J].土壤通报,2001,32(3):110-112.
    80.张云贵,刘宏斌,李志宏等.长期施肥条件下华北平原农田硝态氮淋失风险的研究[J].植物营养与肥料学报,2005,11(6):711-716.
    81.张真和.我国蔬菜产业可持续发展对策探讨[J].农村实用工程技术,2004,8:16-17.
    82.张振贤,于贤昌.蔬菜施肥原理与技术[M].北京:中国农业出版社,1996.
    83.张丽,刘玲花,程东升等.不同农艺措施对坡耕地水土及氮磷流失的控制[J].水土保持学报.2009,23(5):21-25.
    84.张水铭.农田排水中磷对苏南太湖水系的污染[J].环境科学,1993,14(6):24-29.
    85.张成梁.红壤坡地果园植草的水土保持效应.草地学报,2006(4):365-369.
    86.赵文耀,胡家庆.丹江口水库流域面源污染现状分析[J].南水北调与水利科技,2007,5(2):50-52.
    87.赵长盛.武汉城郊菜地土壤氮素的转化与淋失研究.[博士学位论文].武汉:华中农业大学图书馆,2009.
    88.赵更生,张自蓓.生草少耕对桔园生态及桔树生长的影响.中国柑橘,1991(3):19-20.
    89.钟晓英,赵小蓉,鲍华军等.我国23个土壤磷素淋失风险评估,Ⅰ.淋失临界值[J].生态学报,2004,24(10):2275-2280.
    90.朱兆良,文启孝.中国土壤氮素[M].南京:江苏科学技术出版社,1992,213-249.
    91.朱兆良.农田中氮肥损失与对策[J].土壤与环境,2000,9(1):1-6.
    92.甄兰,廖文华,刘建玲.磷在土壤环境中的迁移及其在水环境中的农业非点源污染研究[J].河北农业大学学报,2002,25:55-59.
    93.庄远红,吴一群,李延.有机无机磷肥配施对蔬菜地土壤磷素淋失的影响[J].土壤,2007,39(6):905-909
    94. Ajdary K, Singh D K, Singh A K, et al.Modelling of nitrogen leaching from experimental onion field under drip fertigation[J].Agricultural Water Management, 2007,89,15-28.
    95.Ana Quinones, Belen Martinez-Alcantara, Francisco Legaz. Influence of irrigation system and fertilization management on seasonal distribution of N in the soil profile and on N-uptake by citrus trees[J].Agriculture, Ecosystems and Environment,2007, 122:399-409.
    96.Asadi M E, Clemente R S,Gupta A D, et al. Impacts of fertigation via sprinkler irrigation on nitrate leaching and corn yield in an acid-sulphate soil in Thailand[J]. Agricultural Water Management,2002,52:197-213.
    97.Ayars J E, Phene C J, Hutmacher R B,et al.Subsurface drip irrigation of row crops:a review of 15 years of research at the Water Management Research Laboratory[J].Agricultural Water Management,1999,42:1-27.
    98.Barton L and Colmer T D.Irrigation and fertilizer strategies for minimizing nitrogen leaching from turfgrass[J].Agricultural Water Management,2006,80:160-175.
    99.Bechmann M E, Berge D,Eggestad H O, et al. Phosphorus transfer from agricultural areas and its impact on the eutrophication of lakes-two long-term integrated studies from Norway[J].Journal of Hydrology,2005,304:238-250.
    100.Drury C F, Tan C S, Gaynor J D et al. Influence of controlled drainage-subirrigation on surface and tile Drainage nitrate loss[J].J Environ Qual,1996,25:317-324.
    101.Edwards A C, Twist H, Codd G A. Assessing the impact of terrestrially derived phosphorus on flowing water systems[J].J Environ Qual,2000,29:117-124.
    102.FAO.Prevention of water pollution by agriculture and related activition[J].Water Report,1993,223-245.
    103.Gazis C, FengX. Astable isotope study of soil water:evidence for mix-ingand preferential flowpaths[J].Geoderma,2004,119(1):97-111.
    104.Guimera J, Marfa O, Candela L, et al. Nitrate leaching and strawberry production under drip irrigation management[J].Agriculture,Ecosystems and Environment, 1995,56:121-135.
    105.Heckrath G, Brookes P C, Poulton P R, et al. Phosphorus leaching from soils containing different phosphorus concentrations in the Broadbalk experiment[J].J Environ Qual,1995,24:904-910.
    106.Hooda P S,Truesdale VW, Edwards A C. Manuring and fertilization effects on phosphorus accumulation in soils and potential environmental implications[J]. Advances in Environmental Research,2001,5:13-21.
    107.Sirrine, J R. Impacts of groundcover management systems on yield, leaf nutrients, weeds, and arthropods of tart cherry in Michigan, USA[J].Agriculture, Ecosystems and Environment.2008,125:239-245.
    108.Cox J W, Fleming N K, Chittleborough D J, et al. Phathway of phrosphorus loss off pastures in Souh Australia. Chemistry and Ecology,2001,68-80.
    109.Mitehell R D, Harrison R, Russell KJ, et al. The effect of cropresidue incorporation date on soil inorganic nitrogen nitrate leaching and nitrogen mineralization[J] Biology and Fertility of Soils,2000,32(4):294-301.
    110.Bulter P J and Hgarth P M. The effect of tillage and reseeding on phosphorus transfers from drained grassland. Chemistry and Ecology,2001,32-54.
    111.Omguire R and Sims J T. Observations on leaching and subsurface tansport of phosphours on the Delmarva Peninsula,USA.Chemistry and Ecology,2001,20-34.
    112.Raun W R and Johnson J V. Soil-Plant Buffering of Inorganic Nitrogen in Continuous Winter Wheat. Agronomy Journal,1995,87:827-834.
    113.Schoumans O F, Groenendijk P. Modeling soil phosphorus levels and phosphorus leaching from agricultural land in the Netherlands [J].J Environ Qual,2000,29: 111-116.
    114.Simard R R, Beauchemin S,Haygarth P M. Potential for preferential pathways of phosphorus transport [J].J Environ Qual,2000,29:97-105.
    115.Sharpley A N.The selective erosion of plant nutrient in runoff. Soil Science Society of America Journal.1985,49:1524-1534.
    116.Addiscott T M, Brockie D,Catt J A et al. Phosphate losses through field drains in a heavy cultivated soil. J Environ Qual,2000,29:522-532.
    117.Thomas A. Obreza and Kelly T. Morgan. Nutrition of Florida Citrus Trees,2nd Edition.
    118.Victor H and Duran Z. Nutrient losses by runoff and sediment from the taluses of orchard terraces.Water Air and Soil Pollution.2004,153:355-373.
    119.Van D, Molen D T, Breewwsma A et al. Agricultural nutrient losses to surface water in the Netherlands:impact strategies and perspectives [J].J Environ Qual,1998,27: 4-11.
    120.Withers P J and Lord E. Agricultural nutrient inputs to rivers and groundwaters in the UK:policy, environmenial management and research needs[J].The Seience of the Total Environment,2002,282-283.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700