NDRG2在肝癌细胞与肝星形细胞相互作用中对肝癌转移的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     上皮细胞与内皮细胞、成纤维细胞、神经内分泌细胞、炎性细胞、细胞外基质等构成组织微环境,细胞间的相互作用可调控细胞的增值、分化、凋亡、分泌活化的可溶性因子及细胞外基质组份,这些组份的协调使细胞和组织达到动态平衡。但是在肿瘤微环境中[1],这些细胞可以被肿瘤细胞诱导,在其周围产生大量的生长因子、细胞趋化因子、基质降解酶等,从而有利于肿瘤细胞的增殖和侵袭。肝星型细胞(Hepatic stellate cell HSC)是重要的肝基质细胞,肝癌细胞可诱导HSC活化,而活化的HSC又可促进肝细胞癌(Hepatic carcinoma HCC)的浸润和转移。本研究拟了解肝癌细胞与HSC的相互作用对HCC转移的影响。
     NDRG2属于NDRG家族,被定义为抑癌候选基因的它可在许多正常组织中表达。最近的许多研究表明NDRG2除了能抑制肿瘤增值,增加细胞凋亡外,还能抑制肿瘤转移。有研究表明NDRG2表达缺失可引起HCC具有高转移潜力和不良预后,针对100例肝癌患者的免疫组化提示NDRG2降低与淋巴结转移、肿瘤分化程度、门静脉栓塞、肿瘤浸润生长方式及肿瘤复发相关,将肝癌细胞系转染NDRG2后可明显抑制其浸润及转移能力。NDRG2过表达可抑制由TGF-β1引起的肝癌细胞MMP-2及PAI-1表达的增加,从而抑制肿瘤转移。乳腺癌细胞系中过表达NDRG2可诱导BMP4抑制MMP9表达,从而使乳腺癌细胞侵袭及转移能力下降。另外在侵袭性脑膜瘤、黑色素瘤和大肠癌鼠模型中亦发现NDRG2能够抑制肿瘤转移。HCC引起高复发、高转移的特性一直是肿瘤治疗的难点,NDRG2在其转移中的机制研究十分重要。
     已有文献提示NDRG2与MMPs间具有一定相关性,这引起我们对NDRG2是否参与了分泌MMPs的重要间质细胞HSC活化的兴趣。
     CD44是细胞膜上广泛表达的糖蛋白,在细胞与细胞、细胞与基质间作用、淋巴细胞归巢以及肿瘤转移中起重要作用。CD44与透明质酸(hyaluronic acid HA)结合可调节肿瘤细胞的运动信号。通过有效手段抑制CD44可降低肿瘤细胞的侵袭及转移能力。CD24是与P选择素结合的粘附分子与肿瘤生长和转移相关,CD24通过活化alpha3beta1和alpha4beta1整合素促进肿瘤细胞增值及增强对纤连蛋白、I和IV型胶原、层粘连蛋白的粘附,CD24表达会促进细胞快速播散、运动及侵袭。同时HSC活化也会引起粘附分子的表达变化,所以我们也想进一步明确NDRG2是否参与对肝癌细胞及HSC的粘附分子表达调控。
     目的和内容:研究NDRG2与HCC转移相关粘附分子间的作用机制,研究NDRG2是否参与HSC的相关活化基因调节和对粘附分子的表达调控,进一步了解NDRG2是否也参与了HSC的活化与肝癌细胞间的相互作用及对肝癌转移的影响。
     方法:
     1)运用RT-PCR及Western blot方法检测不同转移能力肝癌细胞系的NDRG2表达;通过划痕、侵袭、粘附实验观察不同转移能力细胞系的迁移、侵袭、粘附能力;运用NDRG2基因的重组腺病毒及siRNA感染和转染肝癌细胞系使NDRG2过表达或下调后,观察细胞迁移、侵袭、粘附能力的改变。
     2)运用NDRG2基因的重组腺病毒及siRNA感染和转染肝癌细胞后,通过Real Time PCR观察转移相关粘附分子的改变,进一步通过Weatern blot检测蛋白水平的改变。
     3)继续运用NDRG2基因的重组腺病毒及siRNA感染和转染肝星形细胞系LX2后,通过Real Time PCR观察HSC活化相关分子的改变,进一步通过Weatern blot检测蛋白水平的改变。
     4)建立体外肝癌细胞与HSC的胶内共培养模型和裸鼠荷瘤三维共培养模型,给予NDRG2干扰后,通过HE染色及免疫组化等实验技术观察两细胞间的粘附、趋化性及相应基因的改变。
     结果:
     1)NDRG2随肝癌细胞系转移能力的增强而减弱,细胞迁移、侵袭、粘附能力随NDRG2表达增高而减弱,进一步过表达NDRG2可观察到细胞迁移、侵袭、粘附能力的减弱,下调NDRG2可观察到细胞迁移、侵袭、粘附能力的增强。
     2)过表达NDRG2可观察到粘附分子CD44、CD24在mRNA及蛋白水平的表达减弱;下调NDRG2可观察到粘附分子CD44、CD24在mRNA及蛋白水平的增强;在肝癌患者癌组织病理切片免疫组化也提示NDRG2减低及CD44和CD24表达增高。
     3)HSC中NDRG2过表达后,HSC活化相关基因α-SMA、CD44在mRNA及蛋白水平表达减弱,同时细胞的侵袭能力减弱;下调HSC上的NDRG2表达可使α-SMA、CD44表达增加。
     4)通过肝癌细胞和HSC的共培养模型,发现肝癌细胞过表达NDRG2后减弱了它们对HSC的趋化、粘附;下调肝癌细胞上的NDRG2增加了它们对HSC的趋化、粘附。过表达HSC上的NDRG2使得α-SMA、CD44表达减弱;同时发现过表达NDRG2可使TGF-β1作用HSC后增加的CD44的配体透明质酸含量降低。
     结论:在HCC微环境中NDRG2具有重要的调节作用,NDRG2的过表达和下调会引起肝癌细胞上CD44、CD24表达的相应减弱及增强,会引起HSC活化基因α-SMA、CD44等的相应减弱及增强。NDRG2过表达可减弱TGF-β1诱导的细胞透明质酸的增加。进一步影响两种细胞间的粘附、趋化作用而调控转移。
Background The interaction of epithelial and endothelium, mesenchymal basal cells, fibroblasts, neuroendocrine cells, smooth muscle cells, inflammatory cells and extracellular matrix (ECM) which composes microenvironment regulates cells activities as proliferation, differentiation, and apoptosis as well as secretion and activation of soluble factors and/or deposition of extracellular matrix (ECM) components. The balance of these components results the homeostasis of cells and tissues. But, in tumor microenvironment, the increase of matrix metalloproteinase, growth factors, chemotactic factors induced by many cells promotes cancer progression, metastasis. Our study focused on the interaction of hepatoma carcinoma and stellate cells in tumor microenvironment. Hepatoma carcinoma cells can induce the activation of hepatoma stellate cells which can promote the invasion and metastasis of HCC.
     NDRG2 belongs to the NDRG (N-myc downstream-regulated genes) family where it has been reported to function as a tumor suppressor gene. NDRG2, a candidate of tumor suppressor gene (TSG), is expressed in many normal tissues. The aggressive cancers have Low and undetectable levels of NDRG2, along with the poor prognosis of cancer patients. NDRG2 is a gene inhibiting proliferation of tumors can enhance apoptosis of some tumor cell lines. Immunohistochemistry showed that NDRG2 expression was reduced at a late stag. This provoked the attention of the connection of metastasis and NDRG2. In 100 HCC patient tissues, Immunohistochemical analysis of NDRG2 protein indicated that loss of NDRG2 expression is significantly correlated with aggressive tumor behaviors such as late tumor-node-metastasis stage, differentiation grade, portal vein thrombi, infiltrative growth pattern, nodal/distant metastasis, and recurrent tumor, as well as shorter patient survival rates. NDRG2 could antagonize transforming growth factorβ1–mediated tumor cell invasion by specifically down-regulating the expression of matrix metalloproteinase 2 and PAI-1, with concomitant suppression of Rho GTPase activity. It has been demonstrated that loss of NDRG2 expression in hepatocellular carcinomas is significantly correlated with aggressiveness and NDRG2 expression contributes to the suppression of metastatic potential in Hepatic Carcinoma cells. In our study, we want to confirm that low expression levels of NDRG2 increased invasion, metastasis, adhesion ability of hepatic cacinoma cells.
     NDRG2 significantly suppresses tumor invasion by inhibiting MMPs activities. NDRG2 playing an major role in suppressing HCC metastasis can inhibit extracellular matrix– based, Rho-driven tumor cell invasion and migration. BMP-4 induced by NDRG2 expression inhibits the metastatic potential of breast cancer cells, especially via suppression of MMP-9 activity. Our study also suggested loss of NDRG2 expression in HCC is correlated with the increase of metastatic potential.
     NDRG2 expression will be a useful and functionally relevant biomarker to predict aggressive behavior in patients with meningioma、colorectal carcinogenesis and melanoma. It is urgent to study NDRG2 in metastasis of HCC.
     CD44, a widely expressed cell surface glycoprotein, plays a major role in cell-cell adhesion, cell-substrate interaction, lymphocyte homing, and tumor metastasis. CD44, a hyaluronic acid receptor, can promote or inhibit motogenic signaling in tumor cells. It may be possible to suppress CD44 by effective means, and thus potentially cause a reduction in invasive capability and metastasis.CD24, an adhesion molecule for P-selectin, was related with tumor growth and metastasis. CD24 expression increased tumor cell proliferation, adhesion to fibronectin, collagens I and IV, and laminin through the activation of alpha3beta1 and alpha4beta1 integrin activity. Moreover, CD24 expression supported rapid cell spreading and strongly induced cell motility and invasion. We want to know if NDRG2 can control tne expression of CD44 and CD24.
     Objecyives Studies indicated that NDRG2 have relationship with MMPs, PAI-1 and integrins. There isn’t a study revealed the relationship between NDRG2 and adhesion molecules influencing metastasis of HCC. NDRG2 influences not only tumorigenesis, progression, metastasis of cancer cells but also differentiation, stress of cells. So, we want to know if NDRG2 effects the activation of HSC. If NDRG2 participates gene regulation of HSC activation.
     Methods 1) hepatic cacinama cells have defferent metastasis ability. The NDRG2 expression of hepatic cacinama cells were detected by RT-PCR and Western blot. We also detected invasion, metastasis, adhesion ability of defferent hepatic cacinoma cells. Subsequently, we investigated the change of invasion, metastasis, adhesion ability of defferent hepatic cacinama cells using Ad-NDRG2, siRNA-NDRG2 to overexpress, knockdown NDRG2 expression.
     2) We investigated the adhesion molecules influencing metastasis of hepatic cacinoma cells infected by Ad-NDRG2, transfected by NDRG2 siRNA by Real Time PCR and Western blot.
     3) We investigated molecules having relationship with HSC activation of HSC infected by Ad-NDRG2, transfected by NDRG2 siRNA by Real Time PCR and Western blot.
     4) This study investigated whether NDRG2 contributes to the tumor microenviroment. A model of inoculation of tumor cells and activated HSC of mixing glum (including Fibxinogen, Thrombin and Aprotinin) and (nu/nu) mice were created. Changing NDRG2 by Ad-NDRG2 and siRNA-NDRG2, we investigated the ashesion, chemotaxis and gene regulation of two kinds of cells.
     Results 1) hepatic cacinoma cells have defferent metastasis ability. Decrease of NDRG2 expression was compared with increase of invasion, metastasis and adhesion ability by RT-PCR and Western blot. Invasion, metastasis and adhesion ability decreased when the defferent hepatic cacinoma cells were infected by Ad-NDRG2. Invasion, metastasis and adhesion ability increased when the different hepatic cacinoma cells were tansfected by siRNA-NDRG2. Overexpression NDRG2 suppressed adhesion, invasion and migration of different invasive cell line, whereas small interfering RNA-mediated knockdown resulted in increased invasion and migration of different cell lines.
     2)CD44 and CD24 mRNA and protein decreased when the hepatic cacinoma cells were infected by Ad-NDRG2. CD44 and CD24 mRNA and protein increased when the hepatic cacinoma cells were tansfected by siRNA-NDRG2 by Real Time PCR and Western blot. The down-regulation of NDRG2 and increase of CD44, CD24 expression in the HCC cases were detected by immunohistochemisty.
     3)α-SMA、CD44 are activation marker of HSC.α-SMA、CD44 mRNA and protein decreased when the HSC were infected by Ad-NDRG2. At the same time, invasion ability was reduced.α-SMA、CD44 mRNA and protein increased when the hepatic stellate cells were infected by Ad-NDRG2. At the same time, the invasion ability was raised by siRNA-NDRG2
     4)We investigated that overexpression or knockdown NDRG2 of hepatic cacinoma cells decreased or increased their chemotaxis and adhesion to HSC comparing with reduction or augmentation ofα-SMA and CD44. At the same time, the result indicated that overexpression of NDRG2 could reduce hyaluronic acid(HA) induced by TGF-β1.
     Conclusion As NDRG2 is reported to be a candidate tumor-suppressor gene in a wide variety of cancers, NDRG2 has effect on tumor microenviroment. Our study investigated that the decrease of NDRG2 raised the expression of CD44 and CD24 on hepatic cacinoma cells. NDRG2 Overexpression could decrease CD44 and CD24 on hepatic cacinoma cells. On HSC, reduction or augmentation ofα-SMA and CD44 were detected by NDRG2 Overexpression or knockdown. NDRG2 overexpression could reduce HA induced by TGF-β1 too. These results suggest that NDRG2 can inhibit hepatic cacinoma cells, activated HSC adhesion, invasion, migration and thereby play important role in suppressing HCC metastasis.
引文
1. Sung SY, Hsieh CL, Wu D, et al. Tumor microenvironment promotes cancer progression, metastasis, and therapeutic resistance [J]. Curr Probl Cancer, 2007, 31(2): 36-100.
    2.汤钊猷.试论原发性肝癌复发转移的研究(述评).中华实验外科杂志, 1999, 16: 485-486.
    3. Sugimoto C, Saito A, Kikuzato M, et al. Angioechographic evaluation of tumor thrombi and the effect of transcatheter arterial embolization in patients with hepatocellular carcinoma [J]. J Gastroenterol, 2002, 37(5): 363-368.
    4. Liotta LA. Tumor invasion and metastasis role of the extracellular matrix: Rhoads memorial award lecture. Cancer Res, 1986, 46(1): 1-7.
    5. Montgomery E, A braham SC, F isher C, et al. CD44 loss in gastric stromal tumo rs as a p rogno stic marker [J]. Am J Surg Patho l, 2004, 28 (2): 168-177.
    6. Fox S B, Fawcett J, Jackson D G, et al1 Normal human tissues in addition to some tumors, express multiple difference CD44s forms. Cancer Res, 1994, 54: 4539.
    7. Hwang LH. Gene therapy strategies for hepatocellular carcinoma[J]. J Biomed Sci, 2006, 13(4): 453- 468.
    8. Blaese M, Blankenstein T, Brenner M, et al. Vectors in cancer therapy: how will they deliver? [J]. Cancer Gene Ther, 1995, 2(4): 291-297.
    9. Haecher SE,Stedman HH, Balice-Gordon RJ, et al . In vivo expression of full-length human dystrophin from adenoviral vectors deleted of all viral genes[J]. Hum Gene Ther, 1996, 7(15): 1907-1914.
    10. Patijn GA, Kay MA. Hepatic gene therapy using adeno-associated virus vectors[J]. Semin Liver Dis, 1999, 19(1): 61-69.
    11. Trono D. Lentiviral vectors: turning a deadly foe into a therapeautic agent[J].Gene Ther, 2000, 7(1): 20-23.
    12. Zhang QY, Jin YZ, Zhang HB, et al. Construction and biological activities of CTLA4Ig adenovirus vectors [J]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, 2003, 19 (1): 45-48.
    13.邱峰,陈世知,陈虹.新型腺病毒载体的制备及其特性研究[J].重庆医科大学学报, 2006, 31 (3): 330-333.
    14.张裕东,严煜,蔡平,等.血管内皮生长因子基因重组腺病毒载体的构建[J].南通医学院学报, 2004, 24 (3): 251-253.
    15.仲飞,仲振宇,梁爽,等.腺病毒载体介导gfp基因在树突细胞的转导及其影响因素的分析[J] .中国免疫学杂志, 2006, 22 (11): 991-996.
    16. Sipo I, Hurtado PicóA, Wang X, et al. An improved Tet-On regulatable FasL-adenovirus vector system for lung cancer therapy[J]. J Mol Med Germany, 2006, 84 (3): 215-225.
    17. Ren XW, Liang M, Meng X, et al. A tumor-specific conditionally replicative adenovirus vector expressing TRAIL for gene therapy of hepatocellular carcinoma[J]. Cancer Gene Ther, 2006, 13 (2): 159-168.
    18. Toth K, Doronin K, Kuppuswamy M, et al. Adenovirus immunoregulatory E3 proteins prolong transplants of human cells in immunocompetent mice [J]. Virus Res, 2005, 108 (122): 149-159.
    19. Fire A,Xu S,Mongonery MK,et al. Potent and specific genetic interference by double-standed RNA in Caenorhabditis elegans. Nature, 1998, 391(6669): 806-811.
    20. Wong SK and Lazinski DW. Replicating hepatits delta virus RNA is edited the uncleus by the small form of ADARI. Proc Natl Acad Sci USA, 2002, 99(23): 15118-15123.
    21. Plasterk RH, RNA silencing: the genome’s immune system. Science, 2002,17: 296(5571): 1283-1285.
    22. Li K, Lin SY, Brunicardi FC, et al. Use of RNA interference to target cyclin E-overexpresing hepacellulay carcinoma. Cancer Rea, 2003, 1: 63(13): 3593-3597.
    23. Kuntzen C, Sonuc N, De Toni EN, et al. Inhibition of c-Jun-N-terminal-kinase sensitizes tumor cells to CD95-induced apoptosis and induces G2/M cell cycle arrest [J]. Cancer Res, 2005, 65(15): 6780- 6788.
    24. Lu X, Qin W, Li J, et al. The growth and metastasis of human hepatocellular carcinoma xenografts are inhibited by small interfering RNA targeting to the subunit ATP6L of proton pump[J]. Cancer Res, 2005, 65(15): 6843- 6849.
    25.邓艳春,药力波,刘新平等.人脑内一含有ACP样结构域新基因的发现[J].生物化学与生物物理进展, 2001, 28(1): 72-76.
    26. Okuda T, Kondoh H. Identification of new genes ndr2 and ndr3 which are related to Ndr1 /RTP /Drg1 but show distinct tissue specificity and response to N-myc[J]. Biochem Biophys Res Commun, 1999, 266(1): 208-215.
    27. NagaseT, IshikawaK, SuyamaM, etal. Prediction of the coding sequences of unidentified human genes X. The complete sequences of 100 new cDNA clones from brain which code for large protein sin vitro. [J]. DNA Res, 1999, 6(1): 63-70.
    28. Qu XH, Zha IY, Weih D, et al. Characterization and exp ression of three novel differentiation-related genes belong to the human NDRG gene family [J]. Mol cell Biochem, 2002, 229 (122): 35-44.
    29. Park MY, Choi SC, Lee HS, et al. A quantitative analysis of N-myc downstream regulated gene 2 (NDRG 2) in human tissues and cell lysates by reverse-phase protein microarray [J]. Clin Chim Acta, 2008, 387(1-2): 84-89.
    30. DengY, YaoL, ChauL,etal. N-Myc downstream-regulated gene2 (NDRG2) inhibits glioblastoma cell proliferation [J]. Int J Cancer, 2003, 106(3): 342-347.
    31. Liu N, Wang L, Liu X, et al. Promotermethylation, mutation, and genomicdeletion are involved in the decreased NDRG2 expression levels in several cancer cell lines [J]. Biochem Biophys Res Commun, 2007, 358 (1): 164-169.
    32. ParkY, Shon SK, Kim A,et al.SOCS1 induced byNDRG2 expression negatively regulatesSTAT3 activation in breastcancer cells [J]. Biochem Biophys Res Commun, 2007, 363 (2): 361-367.
    33. Choi SC, Yoon SR, Park YP, et al. Expression of NDRG2 is related to tumor progression and survival of gastric cancer patients through Fas-mediated cell death [J]. Exp Mol Med, 2007, 39 (6): 705-714.
    34.刘新平,邓艳春,韩炯,等. Ndrg2基因表达对胃癌细胞增殖调控及其机理的研究[J].生物化学与生物物理进展, 2003 ; 30 (1): 116-121.
    35. Lorentzen A, Vogel LK, Lewinsky RH, et al. Expression of NDRG2 is down-regulated in high-risk adenomas and colorectal carcinoma[J]. BMC Cancer, 2007, (7): 192.
    36. Kim YJ, Yoon SY, Kim JT, et al.NDRG2 suppresses cell proliferation through down-regulation of AP-1 activity in human colon carcinoma cells[J]. Int J Cancer. 2008,124(1): 7-15.
    37. Lusis EA, Watson MA, Chicoine MR, et al. Integrative genomic analysis identifies NDRG2 as a candidate tumor suppressor gene frequently inactivated in clinically aggressive meningioma[J]. Cancer Res, 2005, 65(16): 7121-7126.
    38. Hu XL, Liu XP, Lin SX, et al. NDRG2 expression and mutation in human liver and pancreatic cancers [J]. World J Gastroenterol, 2004, 10 (23): 3518-3521.
    39.吴国强,刘新平,王立峰,等.NDRG2对肝癌细胞HepG2凋亡的诱导作用[J].细胞与免疫学杂志, 2003, 19(4): 357-360.
    40. Lee DC, Kang YK, Kim WH, et al. Functional and clinical evidence forNDRG2 as a candidate supp ressor of liver cancer metastasis [J]. Cancer Res,2008, 68 (11): 4210-4220.
    41. Shen L, Fang J, Qiu D, et al.Correlation between DNA methylation and pathologicial changes in hepatoeellular carcinoma [J]. Hepatogastroenterology. 1998, 45(23): 1753.
    42. Soo-Kyung Shon Aeyung Kim Ji Young Kim, et al. Bone morphogenetic protein-4 induced by NDRG2 expression inhibits MMP-9 activity in breast cancer cells. Biochemical and Biophysical Research Communications, 2009; 385(2): 198-203.
    43. Wrana JL, Attisano L, Carcamo J, et al. TGF-β1 signals through a heteromeric protein kinase receptor complex [J]. Cell, 1992, 71: 1003-1014.
    44. Wang M, Zhao D, Spinetti G, et al. Matrix metalloproteinase activation of transforming growth factorh1 (TGF-β1) and TGF-β1-typeⅡreceptor signaling within the aged arterial wall [J]. Arterioscler Thromb Vasc Biol, 2006, 26: 1503-1509.
    45. Marinkovich MP. Tumour microenvironment: laminin 332 in squamous-cell carcinoma [J]. Nat Rev Cancer, 2007, 7 (5): 370-380.
    46. Glannell IG, Fransvea E, Marinosci F, et al. Transforming growth factor-h1 triggers hepatocellular carcinomainvasiveness viaα3β1 integrin [J]. Am J Pathol, 2002, 161: 183-193.
    47. Choi SC, Kim KD, Kim JT, et al. Expression and regulation of NDRG2(N-myc downstream regulated gene 2) during the differentiation of dendritic cells [J]. FEBS Lett, 2003; 553(3): 413-418.
    48. Zhang J, Liu J, LiX,et al.The physical and functional interaction ofNDRG2 with MSP58 in cells [ J]. Biochem Biophys Res Commun, 2007, 352(1): 6-11.
    49. Wanzel M, Herold S, Eilers M. Transcriptional repression by Myc[J]. Trends Cell Biol, 2003, 13 (3): 146 - 150.
    50.徐春盛,施海,张健,等.丁酸钠诱导结肠癌细胞分化过程中NDRG2的表达及意义.第四军医大学学报, 2009, 30 (1): 14-16.
    51. Wielpütz MO, Lee IH, Dinudom A, et al. NDRG2 stimulates amiloride-sensitive Na+ currents in Xenopus laevis oocytes and fisher rat thyroid cells [J]. J Biol Chem, 2007, 282(38): 28264-28273.
    52. Boulkroun S, Fay M, Zennaro MC, et al. Characterization of rat NDRG2(N-Myc downstream regulated gene 2), a novel early mineral ocorticoid-specific induced gene [J]. J Biol Chem, 2002, 277(35): 31506-31515.
    53. WangL, LiuN, YaoL, etal. NDRG2 is a new HIF-1 target gene necessary for hypoxia-induced apoptosis in A549 cells[J]. Cell PhysiolBiochem, 2008, 1(1-3): 239-250.
    54. Nichols NR. NDRG2, a novel gene regulated by adrenal steroids and antidepressants, is highly expressed in astrocytes[J]. Ann N Y Acad Sci, 2003, 1007: 349-356.
    55. Mitchelmore C, Buchmann-Moller S, Rask L, et al. NDRG2: a novel Alzheimer’s disease associated protein[J]. Neurobiol Dis, 2004, 16(1): 48-58.
    56. TakahashiK, YamadaM, OhataH, etal. NDRG2 promotes neurite out growth of NGF-differentiated PC12 cells [J]. Neurosci Lett, 2005, 388(3): 157-162.
    57. Takahashi K, Yamada M, Ohata H, et al. Expression of NDRG2 in the rat frontal cortex after antidepressant and electroconvulsive treatment[J]. Int J Neuropsychopharmaco, 2005, 8(3): 381-389.
    58.沈岚,胡晓兰,刘新平. NDRG2在糖尿病小鼠和正常小鼠胰岛、心肌和肾中的表达.中国组织化学与细胞化学杂志, 2008; 17(5): 407-411.
    59. Higai K, Shibuka WA K, Muto S, et al. Targeted proteoglycomics analysis of Sialyl Lewis X antigen expressing glycoproteins secreted by human hepatoma cell line[J] . Anal Sci, 2003, 19(1): 85-92.
    60. Cervello M,Virruso L ,Lipani G, et al. Serum concentration of E - selectin in patients with chronic hepatitis , liver cirrhosis and hepatocellular carcinoma[J]. J Cancer Res Clin Oncol , 2000 , 126 (6) : 345 -351.
    61. Moriyama M, Matsumura H, Shiodaj , et al. Measurement of human intercellular adhesion molecule 1 in the blood is useful for predicting the occurrence of hepatocellular carcinomas from chronic hepatitis C and liver cirrhosis[J]. Intervirology, 2006, 49(6): 327 - 338.
    62. Gunthert U, Lotraine N, Summer E, et al. Are CD44 vatrant isoforms involved in human tumor progression? Cancer Surv, 1995; 24: 19.
    63. Hêgerkorp CM, Bilke S, Breslin T, et al. CD44-stimulated human B cells express transcript s specifically involved in immunomodulation and inflammation as analyzed by DNA microarrays [J]. Blood, 2003, 101(6): 2307.
    64. Camp RL, Kraus TA, PuréE. Variations in the cytoskeletal interaction and posttranslational modification of t he CD44 homing receptor in macrophages[J]. J Cell Biol, 1991, 115 (5): 1283.
    65. Sneath RJ, Mangham DC. The normal structure and function of CD44 and its role in neoplasia. Mol Pathol. 1998; 51(4): 191-200.
    66. Mook OR, van Marle J, Jonges R, et al. Interactions between colon cancer cells and hepatocytes in rats in relation to metastasis. J Cell Mol Med. 2008; 12(5B): 2052-2061.
    67. Ouhtit A, Abd Elmageed ZY, Abdraboh ME,et al. In vivo evidence for the role of CD44s in promoting breast cancer metastasis to the liver. Am J Pathol. 2007; 171(6): 2033-2039.
    68. Kopp R, Classen S, Wolf H, et al. Predictive relevance of soluble CD44v6 serum levels for the responsiveness to second line hormone- or chemotherapy in patients with metastatic breast cancer. Anticancer Res. 2001Jul-Aug;21(4B):2995-3000.
    69. Stefani AL, Basso D, Panozzo MP, et al. Cytokines modulate MIA PaCa 2 and CAPAN-1 adhesion to extracellular matrix proteins. Pancreas. 1999 Nov;19(4):362-9.
    70. Paschos KA, Canovas D, Bird NC. The engagement of selectins and their ligands in colorectal cancer liver metastases. J Cell Mol Med. 2010 Jan;14(1-2):165-74.
    71. Xie Z, Choong PF, Poon LF, et al. Inhibition of CD44 expression in hepatocellular carcinoma cells enhances apoptosis, chemosensitivity, and reduces tumorigenesis and invasion. Cancer Chemother Pharmacol. 2008 ; 62(6): 949-957.
    72. Sato K, Murai H, Ueda Y, et al. Intrahepatic sarcomatoid cholangiocarcinoma of round cell variant: a case report and immunohistochemical studies. Virchows Arch. 2006; 449(5): 585-590.
    73. G?r?g D, Reg?ly-Mérei J, Paku S, et al. Alpha-fetoprotein expression is a potential prognostic marker in hepatocellular carcinoma. World J Gastroenterol. 2005; 11(32): 5015-5018.
    74. Iizuka N, Tamesa T, Sakamoto K, et al. Different molecular pathways determining extrahepatic and intrahepatic recurrences of hepatocellular carcinoma. Oncol Rep. 2006; 16(5): 1137-1142.
    75. Liu P, Wu M, Chen H, et al. Expression of splice variants of CD44 mRNA and its significance in human primary hepatocellular carcinoma. Chin Med J (Engl). 1998; 111(7): 603-605.
    76. Goodison S, Urquidi V, Tarin D. CD44 cell adhesion molecules. Mol. Pathol, 1999, 52: 189-196.
    77. Nihei Z, Ichikawa W, Kojima K, et al. The positive relationship between theexpression of CD44 variant6 and prognosis in colorectal cancer. Surg oday, 1996, 26: 760.
    78.谷化平,周翠玲,倪灿荣,等.原发性肝细胞癌中CD44v6和nm23H1基因的转录表达及临床意义[J].临床肝胆病杂志, 2002 , 18 (3): 159-160.
    79.刘鹏飞,吴孟超,陈汉,等.原发性肝癌CD44vmRNA表达与抑癌基因DCC mRNA表达、癌细胞DNA含量的关系.第二军医大学学报, 1997, 18: 215.
    80. Yoon SY, Kim JM, Oh JH, et al. Gene expression profiling of human HBV- and/or HCV-associated hepatocellular carcinoma cells using expressed sequence tags. Int J Oncol. 2006; 29(2): 315-327.
    81. Medico E, Gentile A, Lo Celso C, et al. Osteopontin is an autocrine mediator of hepatocyte growth factor-induced invasive growth. Cancer Res. 2001 Aug 1;61(15):5861-5868.
    82. Yang GH, Fan J, Xu Y, et al. Osteopontin combined with CD44, a novel prognostic biomarker for patients with hepatocellular carcinoma undergoing curative resection. Oncologist. 2008; 13(11):1155-1165.
    83. Mathew J, Hines JE, Obafunwa JO, et al. CD44 is exp ressed in hepatocellular carcinomas showing vascular invasion [J]. J Pathol, 1996, 179: 74-79.
    84. Endo K, Terada T. Protein expression of CD44 (standard and variant isoforms) in hepatocellular carcinoma: relationships with tumor grade, clinicopathologic parameters, p53 expression, and patient survival. J Hepatol. 2000; 32(1): 78-84.
    85. Benetti A, Berenzi A, Gambarotti M, et al. Transforming growth factor-beta1 and CD105 promote the migration of hepatocellular carcinoma-derived endothelium. Cancer Res. 2008; 68(20): 8626-8634.
    86. Meléndez-Alafort L, Nadali A, Zangoni E, e al. Biokinetic and dosimetric studies of 188Re-hyaluronic acid: a new radiopharmaceutical for treatment of hepatocellular carcinoma. Nucl Med Biol. 2009; 36(6):693-701.
    87. Coradini D, Speranza A. Histone deacetylase inhibitors for treatment of hepatocellular carcinoma. Acta Pharmacol Sin. 2005; 26(9): 1025-1033.
    88. Kay R, Rosten P M, Humphries R K. CD24, a singal t ransducermodulating B cell activation responses, is a very short peptide with a glycosyl phosphatidylionositol membrane anchor[J]. J Immunol, 1997, 147 (4): 1412-1416.
    89. Kristiansen G, Sammar M, Altevogt P, et al. Tumour biological aspects of CD24, a mucin-like adhesion molecule[J]. J Mol Histol, 2004, 35(3): 255-262.
    90. Friederichs J, Zeller Y, Hafezi-Moghadam A, et al. The CD24/P-selectin binding pathway initiates lung arrest of human A125 adenocarcinoma cells[J]. Cancer Res, 2000, 60(23): 6714-6722.
    91. Baumann P, Cremers N, Kroese F, et al. CD24 Expression causes the acquisition of multiple cellular properties associated with tumor growth and metastasis[J]. Cancer Res, 2005, 65(23): 10783-10793.
    92. Fogel M, Friederichs J, Zeller Y, et al. CD24 is a marker for human breast carcinoma[J]. Cancer Lett, 1999, 143(1): 87-94.
    93. Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells[J]. Proc Natl Acad Sci USA, 2003, 100(7): 3983-3988.
    94. Baumann P, Cremers N, Kroese F, et al. CD24 Expression causes the acquisition of multiple cellular properties associated with tumor growth and metastasis[J]. Cancer Res, 2005, 65(23): 10783-10793
    95. Kristiansen G, Schlüns K, Yongwei Y, et al. CD24 is an independentprognostic marker of survival in nonsmall cell lung cancer patients[J]. Br J Cancer, 2003, 88(2): 231-236.
    96. Kristiansen G, Denkert C, Schluns K, et al. CD24 is expressed in ovarian cancer and is a new independent p rognostic marker of patient survival[J]. Am J Pathol, 2002, 161(4): 1215-1221.
    97. Choi YL, Kim SH, Shin YK, et al. Cytoplasmic CD24 expression in advanced ovarian serous borderline tumors[J]. Gynecol Oncol, 2005, 97(2): 379-386.
    98. Weichert W, Denkert C, Burkhardt M, et al. Cytoplasmic CD24 expression in colorectal cancer independently correlates with shortened patient survival[J]. Clin Cancer Res, 2005, 11(18): 6574-6581.
    99. Sagiv E, Memeo L, Karin A, et al. CD24 is a new oncogene, early at the multistep process of colorectal cancer carcinogenesis[J]. Gastroenterology, 2006, 131(2): 630-639.
    100. Sagiv E, Kazanov D, Arber N. CD24 plays an important role in the carcinogenesis process of the pancrea[J]. Biomed Pharmacother, 2006, 60(6): 280-284.
    101. Jung KC, Seo JN, Kim TW, et al. CD24 Exp ression in gastric adenocarcinoma is associated with tumor invasiveness [J]. Korean J Pathol, 2004, 38 (6): 388-393.
    102. Yang XR, Xu Y, Yu B,et al. CD24 is a novel predictor for poor prognosis of hepatocellular carcinoma after surgery. Clin Cancer Res. 2009; 15(17): 5518-5527.
    103. Woo HG, Park ES, Cheon JH, e al. Gene expression-based recurrence prediction of hepatitis B virus-related human hepatocellular carcinoma. Clin Cancer Res. 2008; 14(7): 2056-2064.
    104. Huang LR, Hsu HC.Cloning and expression of CD24 gene in human hepatocellular carcinoma: a potential early tumor marker gene correlates with p53 mutation and tumor differentiation. Cancer Res. 1995; 55(20): 4717-4721.
    105. Su MC, Hsu C, Kao HL, et al. CD24 expression is a prognostic factor in intrahepatic cholangiocarcinoma [J]. Cancer Lett, 2006, 235 (1): 34-39.
    106.庄建良,苏子剑,许荣誉. CD24与肿瘤侵袭的关系[J].国际病理科学与临床杂志, 2006, 26 (5): 387-400.
    107. Brenne DA, Waterboer T, Choi SK, et al. New aspects of hepatic fibrosis[J]. J Hepatol, 2000, 32 (Suppl.): 32-38.
    108. Lotersztajn S, Julien B, Teixeira-Clerc F, et a1. Hepatic fibrosis: molecular mechanisms and drug targets[J]. Annual Review of Pharmacology and Toxicology, 2005, 45: 605-628.
    109. Hinz B,Gabbiani G. Mechanisms of force generation and transmission by myofibroblasts[J]. Current Opinion in Biotechnology, 2003,14(5) : 538-546.
    110. Friedman SL. Molecular mechanisms of hepatic fibrosis and principles of therapy[J]. J Gastroenterol, 1997, 32: 424-430.
    111. Bissell DM. Hepatic fibrosis as wound repair: a progress report[J]. J Gastroenterol 1998, 33: 295-302.
    112. Yabe N, matsui H. Ampelopsis brevipedunculata (vitaceae) extract inhibits a progression of carbon tetrachloride-induced hepatic injury in the mice[J]. Phytomedicine, 2000, 7(6): 493-498.
    113. Marra E Gentilini A,Pinzani M, et a1 Phosphatidylinositol 3-kinase is required for platelet-derived growth factor's actions on hepatic stellate cells[J]. Gastroenterology, 1997, 112(4): 1297-l306.
    114. Nakamura T, Arii S, Monden K, et a1. Expression of the Na+/Ca2+ exchanger emerges in hepatic stellate cells after activation in association withliver fibrosis[J]. Proc Natl Acad Sci USA, l998, 95(9): 5389-5394.
    115. Reed R K, Berg A, Gjerde E A, et al. Control of interstitial fluid pressure: role ofβ1-integrins[J]. Semin Nephrol, 2001, 21(3): 222-230.
    116. Shah V. Cellar and molecular basis of portal hypertension. Clin Liver Dis, 2001, 5 (3): 629-644.
    117. Maher JJ. Leukocytes as modulators of stellate cell activation[J]. A1coho1 Clin Exp Res. 1999, 23(5): 917-921.
    118. Kikuchi S, Griffin CT, Wang SS, et al. Role of CD44 in epithelial wound repair: migration of rat hepatic stellate cells utilizes hyaluronic acid and CD44v6. J Biol Chem. 2005; 280(15): 15398-15404.
    119. Marra F, Defranco R,Grappone C,et a1. Increased expression of monocyte chemotactic protein1 during active hepatic fibmgenesis : correlation with monocyte infiltration[J]. Am J Pathol, 1998, 152(2): 423-430.
    120. Bedossa P, Paradis V. Transforming growth factor-beta (TGF-beta): A key role in liver fibrogenesis. J Hepatol[J]. 1995, 22: 37-42.
    121. Campbell JS, Hughes SD, Gilbertson DG, et al. Platelet derived growth factor C induces liver fibrosis, steatosis, and hepatocellular carcinoma[J]. Proc Natl Acad Sci USA, 2005, 102 (9): 3389-3394.
    122. Mohla S. Tumor microenvironment [J]. J Cell Biochem, 2007, 101(4): 801 - 804.
    123. Gulubova MV. Ito cell morphology, alpha-smooth muscle actin and collagen type IV expression in the liver of patients with gastric and colorectal tumors[J]. Histochem J. 2000, 32(3): 151-164.
    124. Shimizu S, Yamada N, Sawada T, et al. In vivo and in vitro interactions between human colon carcinoma cells and hepatic stellate cells[J]. Jpn J Cancer Res. 2000, 91(12): 1285-1295.
    125. Jeong WI, Park O, Radaeva S, et al. STAT1 inhibits liver fibrosis in mice by inhibiting stellate cell proliferation and stimulating NK cell cytotoxicity[J]. Hepatology. 2006, 44(6): 1441-1451.
    126. Neil C, Alison C, Sarah L, et al. Galectin-3 regulates myofibroblast activation and hepatic fibrosis[J]. Proc Natl Acad Sci USA, 2006, 103 (13): 5060-5065.
    127. Faouzi S, Lep reux S, Bedin C, et al. Activation of cultured rat hepatic stellate cells by tumoral hepatocytes [J]. Lab Invest, 1999, 79 (4): 485-493.
    128. Sano T, KagawaM, OkunoM, et al. Prevention of rat hepatol carcinogenesis by acyclic retinoid is accompanied by reduction in emergence of both TGF-alpha expressing oval like cells and activated hepatic stellate cells[J]. Nutr Cancer, 2005, 51(2): 197-206.
    129. Theret N, Musso O, Turlin B, et al. Increased extracellular matrix remodeling is associated with tumor progression in human hepatocellular carcinomas[J]. Hepatology, 2001, 34 (1): 82-88.
    130. Le Pabic H, Bonnier D, Wewer U M, et al. ADAM12 in human liver cancers: TGF-beta2 regulated expression in stellate cells is associated with matrix remodeling[J]. Hepatology, 2003, 37(5): 1056-1066.
    131. Jung J O, Gwak G Y, Lim Y S, et al. Role of hepatic stellate cells in the angiogenesis of hepatoma[J]. Korean J Gastroenterol, 2003, 42 (2): 142-148.
    132. Olaso E, Salado C, Egilegor E, et al. Proangiogenic role of tumor-activated hepatic stellate cells in experimental melanoma metastasis. Hepatology. 2003, 37(3): 674-685.
    133.吕丽,陈莉.肝星状细胞激活在肝癌中的意义探讨[J].肝脏, 2004, 9 (3) : 182-183.
    134.谢仕斌,姚集鲁,郑荣琴,等.血清透明质酸、Ⅲ型前胶原肽、层黏蛋白和Ⅳ型胶原水平与肝纤维化的关系[J].中华传染病杂志, 1999 , 4 (2): 238.
    135.刘露,张木坤,何伶俐.肝纤维化血清标志物在肝病诊断中的意义[J].放射免疫学杂志,2004, 17 (1): 23-25.
    136.王波,徐凤英,苏彩女.原发性肝癌患者血清HA测定的临床意义[J].放射免疫学杂志, 1998, 11: 290.
    137.秦娜,邓艳春,车红磊,等. ndrg2基因2种亚型重组腺病毒载体的构建[J].第四军医大学学报, 2009, 30 (9): 771-774.
    138. He TC, Zhou S, da Costa LT, et al. A simplified system for generating recombinant adenoviruses[J]. Pork Natal Accad Sci, 1998, 95(5): 2509-2514.
    139. Miyagishi M, Taira K. U6 promoter2driven siRNAs with four uridine 3’overhangs efficiently suppress targeted gene expression in mammalian cells [J]. Nat Biotechnol, 2002, 20(5): 497-500.
    140. Tsuji N, Asanuma K, Kobayashi D, et al. Introduction of a surviving gene-specific small inhibitory RNA inhibits growth of pancreatic cancer cells[J]. Anricancer Res, 2005; 25 (6B): 3967.
    141. Aloy MT, Hadchity E, Bionda C, et al. Protective role of Hsp27 protein against gamma radiation-induced apoptosis and radiosensitization effects of Hsp27 gene silencing in different human tumor cells [J]. Int J Radiat Oncol Biol Phys, 2008, 70 (2): 543.
    142.倪国华,范钰,陈坚,等. RNAi沉默Polo-like kinase-1基因表达对大肠癌细胞端粒酶活性的影响[J].复旦学报(医学版), 2009, 36 (1): 14.
    143. Wang XM, Yu DM, McCaughan GW, et al. Fibroblast activation protein increases apoptosis, cell adhesion, and migration by the LX-2 human stellate cell line. Hepatology. 2005 Oct; 42(4): 935-945.
    144. Amann T, Bataille F, Spruss T, et al. Activated hepatic stellate cells promote tumorigenicity of hepatocellular carcinoma. Cancer Sci. 2009; 100(4): 646-653.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700