microRNA-494对肿瘤诱导的髓系抑制性细胞功能调控的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤的免疫逃逸机制是肿瘤研究的热点问题,只有充分揭示肿瘤细胞在各个途径各个水平上逃避免疫攻击的机制,才有可能在设计和实施特异性的治疗方案上取得突破。执行负向免疫调控功能的抑制性细胞亚群在免疫应答的各个环节发挥着举足轻重的作用,比如肿瘤诱导的调节性T细胞(Treg)与肿瘤的发生发展密切相关,是肿瘤逃逸的重要环节,近年被广为研究。而越来越多的证据表明一群具有Gr-1和CD11b标志的髓系来源抑制性细胞(Myeloid derived suppressor cells, MDSCs)与肿瘤进展关系十分密切,近年来在肿瘤免疫学领域倍受关注。
     MDSCs是一个异质性的细胞群体,它主要由不成熟的粒细胞、单核细胞、树突状细胞和处于更早分化阶段的髓系前体细胞组成。在正常生理情况下,在小鼠骨髓中大约有20%比例的CD11b+ Gr-1+不成熟髓系细胞,在脾脏中也有少量分布,可迅速分化为成熟髓系细胞,也无免疫抑制功能。在荷瘤动物以及肿瘤患者体内可见到这群细胞大量产生,并在各种组织器官包括肿瘤局部聚集,并有很强的免疫抑制活性,促进肿瘤的免疫逃逸。小鼠来源的MDSCs共表达Gr-1和CD11b。已有的研究认为肿瘤产生的一些因子以及免疫细胞分泌的一些细胞因子对MDSCs的产生、活化和募集等过程发挥重要作用,主要包括VEGF、COX-2、GM-CSF、IL-4、IL-6等;而浸润于肿瘤组织的MDSCs能通过释放基质金属蛋白酶和分化为内皮细胞等方式促进肿瘤血管生成及肿瘤的浸润转移。MDSCs免疫抑制功能的研究主要集中在抗原特异性CD8+T细胞,主要机制为:增加精氨酸酶(Arginase 1, ARG1)的表达和活性从而耗竭L-精氨酸,下调TCR-CD3复合物ζ链的表达;或提高诱导性一氧化氮合酶(iNOS)活性,增加NO的合成和分泌,诱导T细胞凋亡;也可同时增加ARG1和iNOS的表达和活性,抑制T细胞;另有报道也可通过活性氧族(ROS)以及直接分泌抑制性因子如TGF-β。JAK/STAT是MDSCs扩增和活化的主要信号途径,包括STAT1, STAT3和STAT6和MDSC的聚集和抑制功能相关。目前对Gr-1+ CD11b+ MDSCs的负相免疫功能有所了解,但尚有许多问题需要进一步深入研究。在分子水平,对MDSCs异常聚集的机制及其发挥免疫抑制的主要效应分子如ARG1、iNOS等表达的调控机制(如表观遗传学调控机制)仍知之甚少。
     近年来,随着对基因的转录水平的调控机制认识的增加,基因的转录后调节机制被广泛关注,而microRNA (miRNA)作为主要的转录后调节因子更是成为了当前的研究热点。miRNA长度约为22个核苷酸,它通过结合在靶基因的mRNA的3'UTR抑制其翻译,也有报道可具有一定的降解靶基因mRNA的能力。miRNA参与了机体的各种的生理病理过程,如生长、发育、分化、炎症、肿瘤的发生。越来越多的研究显示miRNA也显著影响着免疫系统的各个方面,从造血、免疫细胞分化发育成熟以及免疫应答功能的发挥,都与miRNA的调控相关。对于这个重要的抑制性细胞亚群Gr-1+ CD11b+ MDSCs而言,miRNA调控很可能在其异常扩增和活化、发挥负向免疫调节中发挥着重要的作用,但目前相关的研究报道甚少。
     基于这一点,我们首先用miRNA表达谱芯片筛选了可能与调控Gr-1+ CD11b+ MDSCs功能相关的miRNAs。分选4T1乳腺癌荷瘤小鼠和对照小鼠骨髓中的Gr-1+CD11b+ MDSCs,通过应用miRNA表达谱芯片对比筛选得到8个miRNAs的表达水平存在显著性差异,我们选择了在肿瘤诱导的MDSCs中表达显著上调的miR-494作为本论文的研究对象。接着,我们进一步检测了来自于两个小鼠品系的共6个肿瘤模型小鼠体内的Gr-1+ CD11b+ MDSCs中miR-494的表达水平,结果显示相比于对照小鼠来源的Gr-1+ CDllb+细胞,所有这6种肿瘤模型诱导的MDSCs都高表达miR-494,提示miR-494表达增加是肿瘤相关的MDSCs的共同特征。
     先前的报道提示,肿瘤细胞通过分泌多种可溶性介质诱导MDSCs的聚集和活化,我们分离出正常小鼠骨髓来源的Gr-1+ CD11b+细胞,加入不同比例的肿瘤细胞培养上清(TCCM),结果显示TCCM可显著诱导miR-494在MDSCs中的表达上调,而且这种诱导作用呈现剂量和时间依赖性。同时,我们检测到伴随着miR-494的上调,MDSCs分泌的抑制性效应分子包括ARG1, iNOS2和促肿瘤转移相关的效应分子一金属蛋白酶(MMP2, MMP13和MMP14)表达剧烈增加。提示miR-494的上调可能和MDSC的聚集或活化相关。为了确认TCCM中何种介质参与诱导了miR-494的上调,我们使用了多种细胞因子和生长因子替代TCCM,结果发现TGF-β1可以部分重现TCCM对MDSCs中miR-494表达的诱导作用,而在TCCM培养组内加入TGF-β1阻断抗体可以部分阻断TCCM诱导的miR-494表达上调。我们进一步发现,相比于同窝对照野生型小鼠,Smad3-/-小鼠来源的Gr-1+ CD11b+细胞中的miR-494上调(TCCM介导)被显著地抑制。上述实验结果提示,肿瘤细胞分泌的可溶性因子尤其是TGF-β1可促进Gr-1+ CD11b+ MDSCs高表达miR-494,并且miR-494的增加可能与促进MDSCs效应分子的表达相关。
     为了探明miR-494在Gr-1+ CD11b+ MDSCs聚集和活化中发挥的可能作用,我们构建了编码pri-miR-494(Lv-494)和miR-494功能抑制序列(Lv-sponge)的慢病毒载体。用其进行体外转染MDSCs,我们发现过表达miR-494显著增加了MDSCs中效应分子的表达(ARG1,iNOS2, MMP2, MMP13和MMP14),而抑制miR-494则明显降低TCCM诱导的MDSCs效应分子的上调。为了确认miR-494介导的MDSCs免疫抑制效应的相关分子,以及MDSCs促肿瘤转移相关效应分子的上调是否直接与MDSCs的功能相关,我们检测了不同病毒处理后的MDSCs对CD8+ T细胞增殖和肿瘤细胞侵袭的影响。结果显示,过表达miR-494的Gr-1+CD11b+ MDSCs显著抑制CD8+ T细胞的增殖,还促进肿瘤细胞的侵袭,而这些效应都能被相关分子的抑制剂阻断。而且,过表达miR-494显著增加了MDSCs的存活,而抑制miR-494可诱导MDSCs发生凋亡;提示miR-494的上调可能是MDSCs大量聚集的一个重要机制。同时,进一步实验还发现过表达miR-494显著增加了MDSC对SDF-1(CXCL12)诱导的趋化的反应性。先前的报道已证实SDF-1介导的趋化是Gr-1+ CD11b+ MDSCs浸润到肿瘤局部的重要机制。上述结果显示miR-494的高表达在Gr-1+ CD11b+ MDSCs的聚集和活化、免疫抑制功能的维持中发挥着非常关键的作用,有可能是一个潜在的治疗相关的靶点。
     接下来,为了验证抑制MDSCs中的miR-494功能是否影响肿瘤的体内生长和转移,我们建立了4T1高转移乳腺癌小鼠模型,用Lv-sponge进行治疗并观察小鼠肿瘤生长、肺转移以及生存期。结果显示Lv-sponge治疗显著抑制原位肿瘤生长和肺转移,而Lv-sponge治疗的同时剔除CD8+T细胞虽然对原位肿瘤的生长无明显抑制作用,但Lv-sponge介导的抑制肺转移的作用仍很明显。荷瘤24天后,联合手术切除原位肿瘤显著提高了小鼠的存活率。而对肿瘤组织的流式和切片的免疫荧光染色分析显示,Lv-sponge显著减少了肿瘤组织内浸润的Gr-1+ CD11b+ MDSCs的数量。上述结果表明miR-494可能成为肿瘤免疫治疗的潜在靶点。
     microRNAs是通过调节靶基因的表达发挥其功能,我们应用了Targetscan和Pictar等对miR-494的靶基因进行分析。在数百个可能的靶基因中,PTEN引起了我们的注意,虽然尚没有报道显示PTEN在MDSCs中发挥调节功能,但是作为PI3K/Akt途径的重要调节分子,以往的报道显示PTEN负向调控SDF-1/CXCR4介导的中性粒细胞趋化和TGF-β1诱导的MMPs的表达。为了验证PTEN是否为miR-494调控MDSCs的功能靶点,我们首先比较了肿瘤小鼠和对照小鼠来源的Gr-1+ CDllb+ MDSCs中PTEN的表达。结果显示PTEN的mRNA水平没有显著性差异,但是肿瘤诱导的Gr-1+ CD11b+ MDSCs中PTEN的蛋白水平显著降低,这符合microRNA介导的转录后调节机制。而报告基因实验显示miR-494 mimic显著抑制PTEN 3'UTR荧光素酶报告基因的活性,转染Lv-494可有效降低PTEN在MDSCs中的表达,而Lv-sponge的作用正相反。以上结果表明miR-494靶向并抑制MDSCs中PTEN的表达。为了明确PTEN的降低是否介导miR-494对MDSCs功能的调节作用,我们构建了编码不含3'UTR区域的PTEN的慢病毒表达载体,通过转染MDSCs,我们发现在MDSCs中过表达PTEN不影响TCCM诱导的miR-494上调,但阻断了TCCM诱导的MDSCs中前述功能相关的所有效应分子的上调。上述结果表明PTEN是miR-494发挥调控MDSCs的功能靶点。
     PTEN是PI3K/Akt途径的主要的负性调节分子,我们进一步检测了Akt、mTOR和NF-κB的磷酸化水平,发现肿瘤相关的MDSCs显著高表达磷酸化的Akt、mTOR和NF-κB p65。TCCM也可诱导正常小鼠来源的Gr-1+ CD11b+细胞中该途径的显著活化。而使用P13K和mTOR及NF-κB的特异性抑制剂LY294002和雷帕霉素及BAY-117082则可阻断TCCM诱导的Gr-1+ CDllb+细胞的活化。
     综上,本研究表明肿瘤通过分泌可溶性介质,尤其是TGF-β1,诱导Gr-1+ CDllb+ MDSCs高水平地表达miR-494, miR-494通过靶向抑制PTEN,从而活化PI3K/Akt/mTOR信号途径,促进MDSCs的存活,诱导MDSCs功能相关的效应分子(ARG1,iNOS2, MMPs)的表达,从而促进MDSCs的大量聚集和活化,并趋化到肿瘤局部,通过抑制肿瘤特异性的CD8+ T细胞应答及降解细胞基质等机制促进肿瘤进展和转移。
     上述结果揭示了microRNA介导的调控机制和异常活化的PI3K/Akt信号途径在肿瘤相关MDSCs的聚集和活化中所发挥的重要调控作用,证实了miR-494作为一个关键分子调控Gr-1+ CD11b+ MDSCs的免疫相关和非免疫相关的促肿瘤效应,这可能为进一步深入阐明MDSCs在肿瘤免疫逃逸中的作用机制提出新的观点,并可能为研发针对这群细胞为靶点的治疗策略提供理论依据和实验基础,也可能为其它与MDSCs相关的疾病发病机制和治疗的研究提供启发。
In 1863, Virchow hypothesized that the origin of cancer was at sites of chronic inflammation, in part based on the phenomena that inflammatory cells were present in biopsied samples from tumors. But the causal relationship between inflammation, innate immunity and cancer is generally accepted only in recent years. Mounting evidence indicates tumor-infiltrating inflammatory cells contribute significantly to tumor progression through suppressing the host immunity, facilitating tumor cells invasion and participating in the formation of the new blood vessels.
     The growth and metastasis of solid tumors are often associated with aberrant myelopoiesis, including the significant accumulation of myeloid-derived suppressor cells (MDSCs) in patients and various mouse tumor models that have the potential to promote tumor growth. MDSCs represent a heterogeneous population of myeloid cells comprising immature dendritic cells (DCs), macrophages, granulocytes, and other myeloid cells in early differential stages that can be identified in mice by expression of CD11b and Gr-1. Recent studies classified Gr1+CD11b+ cells as either Granulocytic MDSCs or Monocytic MDSCs based on nuclear morphology and the expression of Ly6G or Ly6C, respectively, and indicated both populations suppress antigen-specific T-cell responses, but through distinct effector molecules and signaling pathways. In addition to their depressive effect on host immune surveillance, MDSCs also facilitate tumor cell invasion and metastasis. We and others have previously reported that Tumor-derived factors mobilize MDSCs from bone marrow into the site of tumor where they produce multiple MMPs that contribute to tumor invasion.
     Previous studies have revealed that, in addition to the complex transcriptional programmes, the existence of potentially widespread post-transcriptional regulatory mechanisms that have crucial roles in regulating the development and function of immune cells. The mediators of these processes are known as microRNAs (miRNAs)—an abundant class of endogenous small non-coding RNAs of approximately 22 nucleotides in length that can form imperfect Watson-Crick base pairs at multiple sites within the 3'-untranslated region (UTR) of their cognate mRNA targets to repress their expression. miRNAs affect all aspects of immune system development from hematopoiesis to activation. At the same time, miRNA dysregulation in immune cells can lead to various immune-related pathological disorders, such as inflammation and cancer. Our previous studies shown microRNAs participate in the regulation of the function of macrophage. Mounting evidence indicates that MDSCs elicited by tumor-derived factors contribute significantly to tumor progression, however, it remains unclear about whether noncoding RNA is involved. In this study, we have reported the increased expression of miR-494 in MDSCs induced by tumor derived factors is critically involved in tumor growth and metastasis. First, we found the expression of miR-494 in MDSCs derived from all 6 tumor models on two different mouse strains was higher than MDSCs from naive mice, indicating the high level of miR-494 expression is the common characteristics of tumor-associated MDSCs. Second, our in vitro assays showed that tumor cells culture medium (TCCM) can induce the overtly level of miR-494 in MDSCs in a dose-dependent manner. Finally, we further found TGF-β1 in TDF was a main cytokine responsible for up-regulation of miR-494 in tumor-expanded MDSCs.
     We also observed that tumor-infiltrating MDSCs had a significant high level of miR-494 expression compared with splenic MDSCs, more intriguing, the expression level seemed be correlated between miR-494 and ARG1, iNOS2 and MMPs which known as closely related to the activity of MDSCs. Using overexpression or active inhibition of miR-494 approaches, we further determined miR-494 participated in regulating these genes expression and played a pivotal role in regulating both suppressive activity and the ability of facilitating tumor cell invasion and metastasis of MDSCs. The growth of the primary tumors was retarded and colonies of metastatic cells in the lungs were rarely detected when endogenous miR-494 activity in vivo was inhibited. Depletion of CD8+ T cells restored primary tumor growth, suggesting LV-sponge suppressed primary tumor growth mainly by blocking MDSCs-mediated tumor-specific T-cell tolerance. Whereas the phenomenon, that inhibition of miR-494 significantly reduced metastatic cancer cells in lung even CD8+T cells were depleted, in combination with the data from in vitro invasion assays suggested miR-494 regulated the ability of facilitating tumor cell invasion and metastasis of MDSCs via regulating MMPs expression. Interestingly, the number of tumor-infiltrating MDSCs significantly decreases in LV-sponge infected mice even combination of 2.43 mAb treatment that resulted in the primary tumor size comparable with LV-ctrl infected mice. We have further proven that the decrease number of tumor-infiltrating MDSCs due to the increased apoptosis and the decreased migration into tumor site of MDSCs induced by LV-sponge.
     Recent studies have determined that JAK/STAT signalling pathways play crucial roles in the suppressive activity of MDSCs. However, it remains unclear whether another signalling pathways are involved, especially the intracellular signal mechanisms responsible for Non-immunological functions of MDSCs. As a multifunctional tumor suppressor, PTEN is mutated or otherwise inactivated is frequently observed in a wide variety of human cancers. In addition to its tumor suppressive function, PTEN also play a critical role in the maintenance of the normal physiological functions of many organ systems. As far as immune system is concerned, published work has shown that depending on the cell type, PTEN is important for proper development, cell fate and cell function.
     Our study has now shown that PTEN is a functional target of miR-494 in MDSCs and PI3K/Akt pathway plays an "omnipotent" role of the regulation of MDSCs promoting tumor progression. As a functional miR-494 target, PTEN expression in MDSCs was suppressed by up-regulation of miR-494 induced by TDF that resulted in the enhanced ability of infiltrating into tumor site via SDF-1/CXCR4 axe. Moreover, down-regulation of PTEN activates PI3K/Akt pathway that alters the intrinsic apoptotic/survival signal to prolong the lifespan of MDSCs, which further contributed to the accumulation of MDSCs into tumor site. Furthermore, the activated PI3K/Akt pathway promotes the expression of ARG1, iNOS2 and MMPs via mTOR dependent pathway that results in the enhanced inhibitory activity and the ability of facilitating tumor cell invasion and metastasis that is attributed to tumor progress.
     In summary, our results indicate that upregulation of miR-494 promotes tumor growth and metastasis by enhancing the accumulation and activity of MDSCs in tumor tissue via suppressing PTEN expression, thereby resulting in increased Akt activity and subsequent activation of mTOR. By targeting miR-494, not only generated a strong antitumor immunity but also inhibited tumor metastasis, having the effect of "killing two birds with one stone".
引文
[1]F. Ishikawa, S. Yoshida, Y. Saito, A. Hijikata, H. Kitamura, S. Tanaka, R. Nakamura, T. Tanaka, H. Tomiyama, N. Saito, M. Fukata, T. Miyamoto, B. Lyons, K. Ohshima, N. Uchida, S. Taniguchi,O. Ohara, K. Akashi, M. Harada, L.D. Shultz, Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region, Nat Biotechnol 25 (2007) 1315-1321.
    [2]J. Nishihira, T. Ishibashi, T. Fukushima, B. Sun, Y. Sato, S. Todo, Macrophage migration inhibitory factor (MIF):Its potential role in tumor growth and tumor-associated angiogenesis, Ann N Y Acad Sci 995 (2003) 171-182.
    [3]P. Yu, Y. Lee, Y. Wang, X. Liu, S. Auh, T.F. Gajewski, H. Schreiber, Z. You, C. Kaynor, X. Wang, Y.X. Fu, Targeting the primary tumor to generate CTL for the effective eradication of spontaneous metastases, J Immunol 179 (2007) 1960-1968.
    [4]A. Mantovani, P. Allavena, A. Sica, F. Balkwill, Cancer-related inflammation, Nature 454 (2008) 436-444.
    [5]D. Jager, E. Jager, A. Knuth, Vaccination for malignant melanoma:recent developments, Oncology 60 (2001) 1-7.
    [6]I. Marigo, L. Dolcetti, P. Serafini, P. Zanovello, V. Bronte, Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells, Immunol Rev 222 (2008) 162-179.
    [7]D.I. Gabrilovich, V. Bronte, S.H. Chen, M.P. Colombo, A. Ochoa, S. Ostrand-Rosenberg, H. Schreiber, The terminology issue for myeloid-derived suppressor cells, Cancer Res 67 (2007) 425; author reply 426.
    [8]D.I. Gabrilovich, S. Nagaraj, Myeloid-derived suppressor cells as regulators of the immune system, Nat Rev Immunol 9 (2009) 162-174.
    [9]P. Sinha, V.K. Clements, S.K. Bunt, S.M. Albelda, S. Ostrand-Rosenberg, Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response, J Immunol 179 (2007) 977-983.
    [10]S. Nagaraj, K. Gupta, V. Pisarev, L. Kinarsky, S. Sherman, L. Kang, D.L. Herber, J. Schneck, D.I. Gabrilovich, Altered recognition of antigen is a mechanism of CD8 T cell tolerance in cancer, Nat Med 13 (2007) 828-835.
    [11]P. Serafini, S. Mgebroff, K. Noonan, I. Borrello, Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells, Cancer Res 68 (2008) 5439-5449.
    [12]L. Yang, C.M. Edwards, G.R. Mundy, Gr-1+CDllb+ myeloid-derived suppressor cells:formidable partners in tumor metastasis, J Bone Miner Res 25 1701-1706.
    [13]S. Tu, G. Bhagat, G. Cui, S. Takaishi, E.A. Kurt-Jones, B. Rickman, K.S. Betz, M. Penz-Oesterreicher, O. Bjorkdahl, J.G. Fox, T.C. Wang, Overexpression of interleukin-lbeta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice, Cancer Cell 14 (2008) 408-419.
    [14]L. Yang, L.M. DeBusk, K. Fukuda, B. Fingleton, B. Green-Jarvis, Y. Shyr, L.M. Matrisian, D.P. Carbone, P.C. Lin, Expansion of myeloid immune suppressor Gr+CDllb+ cells in tumor-bearing host directly promotes tumor angiogenesis, Cancer Cell 6 (2004) 409-421.
    [15]L. Yang, J. Huang, X. Ren, A.E. Gorska, A. Chytil, M. Aakre, D.P. Carbone, L.M. Matrisian, A. Richmond, P.C. Lin, H.L. Moses, Abrogation of TGFbeta Signaling in Mammary Carcinomas Recruits Gr-1+CD11b+ Myeloid Cells that Promote Metastasis, Cancer Cell 13 (2008) 23-35.
    [16]D.P. Bartel, MicroRNAs:genomics, biogenesis, mechanism, and function, Cell 116(2004)281-297.
    [17]O. Hobert, miRNAs play a tune, Cell 131 (2007) 22-24.
    [18]A.M. Krichevsky, K.C. Sonntag, O. Isacson, K.S. Kosik, Specific microRNAs modulate embryonic stem cell-derived neurogenesis, Stem Cells 24 (2006) 857-864.
    [19]M.J. Bueno, I. Perez de Castro, M. Malumbres, Control of cell proliferation pathways by microRNAs, Cell Cycle 7 (2008) 3143-3148.
    [20]F. Fazi, S. Racanicchi, G. Zardo, L.M. Starnes, M. Mancini, L. Travaglini, D. Diverio, E. Ammatuna, G. Cimino, F. Lo-Coco, F. Grignani, C. Nervi, Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein, Cancer Cell 12 (2007) 457-466.
    [21]C.Z. Chen, L. Li, H.F. Lodish, D.P. Bartel, MicroRNAs modulate hematopoietic lineage differentiation, Science 303 (2004) 83-86.
    [22]J.B. Johnnidis, M.H. Harris, R.T. Wheeler, S. Stehling-Sun, M.H. Lam, O. Kirak, T.R. Brummelkamp, M.D. Fleming, F.D. Camargo, Regulation of progenitor cell proliferation and granulocyte function by microRNA-223, Nature 451 (2008) 1125-1129.
    [23]H.F. Lodish, B. Zhou, G. Liu, C.Z. Chen, Micromanagement of the immune system by microRNAs, Nat Rev Immunol 8 (2008) 120-130.
    [24]C. Xiao, K. Rajewsky, MicroRNA control in the immune system:basic principles, Cell 136 (2009)26-36.
    [25]J. Lu, S. Guo, B.L. Ebert, H. Zhang, X. Peng, J. Bosco, J. Pretz, R. Schlanger, J.Y. Wang, R.H. Mak, D.M. Dombkowski, F.I. Preffer, D.T. Scadden, T.R. Golub, MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors, Dev Cell 14 (2008) 843-853.
    [26]F. Fazi, A. Rosa, A. Fatica, V. Gelmetti, M.L. De Marchis, C. Nervi, I. Bozzoni, A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis, Cell 123 (2005) 819-831.
    [27]T. Li, M.J. Morgan, S. Choksi, Y. Zhang, Y.S. Kim, Z.G. Liu, MicroRNAs modulate the noncanonical transcription factor NF-kappaB pathway by regulating expression of the kinase IKKalpha during macrophage differentiation, Nat Immunol 11 (2010) 799-805.
    [28]C. Du, C. Liu, J. Kang, G. Zhao, Z. Ye, S. Huang, Z. Li, Z. Wu, G. Pei, MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis, Nat Immunol 10 (2009) 1252-1259.
    [29]A. Annoni, B.D. Brown, A. Cantore, L.S. Sergi, L. Naldini, M.G. Roncarolo, In vivo delivery of a microRNA-regulated transgene induces antigen-specific regulatory T cells and promotes immunologic tolerance, Blood 114 (2009) 5152-5161.
    [30]E. Vigorito, K.L. Perks, C. Abreu-Goodger, S. Bunting, Z. Xiang, S. Kohlhaas, P.P. Das, E.A. Miska, A. Rodriguez, A. Bradley, K.G. Smith, C. Rada, A.J. Enright, K.M. Toellner, I.C. Maclennan, M. Turner, microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells, Immunity 27 (2007) 847-859.
    [31]S. Kusmartsev, D.I. Gabrilovich, Immature myeloid cells and cancer-associated immune suppression, Cancer Immunol Immunother 51 (2002) 293-298.
    [32]I. Marigo, E. Bosio, S. Solito, C. Mesa, A. Fernandez, L. Dolcetti, S. Ugel, N. Sonda, S. Bicciato, E. Falisi, F. Calabrese, G. Basso, P. Zanovello, E. Cozzi, S. Mandruzzato, V. Bronte, Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor, Immunity 32 790-802.
    [33]Z. Li, M. Hannigan, Z. Mo, B. Liu, W. Lu, Y. Wu, A.V. Smrcka, G. Wu, L. Li, M. Liu, C.K. Huang, D. Wu, Directional sensing requires G beta gamma-mediated PAK1 and PIX alpha-dependent activation of Cdc42, Cell 114 (2003)215-227.
    [34]C.B. Knobbe, V. Lapin, A. Suzuki, T.W. Mak, The roles of PTEN in development, physiology and tumorigenesis in mouse models:a tissue-by-tissue survey, Oncogene 27 (2008) 5398-5415.
    [35]L.C. Cantley, B.G. Neel, New insights into tumor suppression:PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway, Proc Natl Acad Sci U S A 96 (1999) 4240-4245.
    [36]D. Zhu, H. Hattori, H. Jo, Y. Jia, K.K. Subramanian, F. Loison, J. You, Y. Le, M. Honczarenko, L. Silberstein, H.R. Luo, Deactivation of phosphatidylinositol 3,4,5-trisphosphate/Akt signaling mediates neutrophil spontaneous death, Proc Natl Acad Sci U S A 103 (2006) 14836-14841.
    [37]D.D. Billadeau, PTEN gives neutrophils direction, Nat Immunol 9 (2008) 716-718.
    [38]P. Gao, R.L. Wange, N. Zhang, J.J. Oppenheim, O.M. Howard, Negative regulation of CXCR4-mediated chemotaxis by the lipid phosphatase activity of tumor suppressor PTEN, Blood 106 (2005) 2619-2626.
    [39]B. Heit, S.M. Robbins, C.M. Downey, Z. Guan, P. Colarusso, B.J. Miller, F.R. Jirik, P. Kubes, PTEN functions to 'prioritize' chemotactic cues and prevent 'distraction' in migrating neutrophils, Nat Immunol 9 (2008) 743-752.
    [40]M. Kato, S. Putta, M. Wang, H. Yuan, L. Lanting, I. Nair, A. Gunn, Y. Nakagawa, H. Shimano, I. Todorov, J.J. Rossi, R. Natarajan, TGF-beta activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN, Nat Cell Biol 11 (2009) 881-889.
    [41]J.I. Youn, S. Nagaraj, M. Collazo, D.I. Gabrilovich, Subsets of myeloid-derived suppressor cells in tumor-bearing mice, J Immunol 181 (2008) 5791-5802.
    [42]P. Serafini, K. Meckel, M. Kelso, K. Noonan, J. Califano, W. Koch, L. Dolcetti, V. Bronte, I. Borrello, Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function, J Exp Med 203 (2006) 2691-2702.
    [43]R. Dai, R.A. Phillips, Y. Zhang, D. Khan, O. Crasta, S.A. Ahmed, Suppression of LPS-induced Interferon-gamma and nitric oxide in splenic lymphocytes by select estrogen-regulated microRNAs:a novel mechanism of immune modulation, Blood 112 (2008) 4591-4597.
    [44]J.B. Opalinska, A. Bersenev, Z. Zhang, A.A. Schmaier, J. Choi, Y. Yao, J. D'Souza, W. Tong, M.J. Weiss, MicroRNA expression in maturing murine megakaryocytes, Blood.
    [45]E. Gottwein, N. Mukherjee, C. Sachse, C. Frenzel, W.H. Majoros, J.T. Chi, R. Braich, M. Manoharan, J. Soutschek, U. Ohler, B.R. Cullen, A viral microRNA functions as an orthologue of cellular miR-155, Nature 450 (2007) 1096-1099.
    [46]V. Bronte, P. Serafini, C. De Santo, I. Marigo, V. Tosello, A. Mazzoni, D.M. Segal, C. Staib, M. Lowel, G. Sutter, M.P. Colombo, P. Zanovello, IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice, J Immunol 170 (2003) 270-278.
    [47]P. Sinha, V.K. Clements, S. Ostrand-Rosenberg, Interleukin-13-regulated M2 macrophages in combination with myeloid suppressor cells block immune surveillance against metastasis, Cancer Res 65 (2005) 11743-11751.
    [48]A.B. Frey, Myeloid suppressor cells regulate the adaptive immune response to cancer, J Clin Invest 116 (2006) 2587-2590.
    [49]Y. Zhang, Q. Liu, M. Zhang, Y. Yu, X. Liu, X. Cao, Fas signal promotes lung cancer growth by recruiting myeloid-derived suppressor cells via cancer cell-derived PGE2, J Immunol 182 (2009) 3801-3808.
    [50]P. Sinha, V.K. Clements, A.M. Fulton, S. Ostrand-Rosenberg, Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells, Cancer Res 67 (2007) 4507-4513.
    [51]M. Moussavi, L. Fazli, H. Tearle, Y. Guo, M. Cox, J. Bell, C. Ong, W. Jia, P.S. Rennie, Oncolysis of prostate cancers induced by vesicular stomatitis virus in PTEN knockout mice, Cancer Res 70 1367-1376.
    [52]Y. Li, Y. Jia, M. Pichavant, F. Loison, B. Sarraj, A. Kasorn, J. You, B.E. Robson, D.T. Umetsu, J.P. Mizgerd, K. Ye, H.R. Luo, Targeted deletion of tumor suppressor PTEN augments neutrophil function and enhances host defense in neutropenia-associated pneumonia, Blood 113 (2009) 4930-4941.
    [53]M. Vaillancourt, S. Levasseur, M.L. Tremblay, L. Marois, E. Rollet-Labelle, P.H. Naccache, The Src homology 2-containing inositol 5-phosphatase 1 (SHIP1) is involved in CD32a signaling in human neutrophils, Cell Signal 18 (2006) 2022-2032.
    [54]B. Sarraj, S. Massberg, Y. Li, A. Kasorn, K. Subramanian, F. Loison, L.E. Silberstein, U. von Andrian, H.R. Luo, Myeloid-specific deletion of tumor suppressor PTEN augments neutrophil transendothelial migration during inflammation, J Immunol 182 (2009) 7190-7200.
    [55]P. Sinha, C. Okoro, D. Foell, H.H. Freeze, S. Ostrand-Rosenberg, G. Srikrishna, Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells, J Immunol 181 (2008) 4666-4675.
    [56]R.M. O'Connell, D.S. Rao, A.A. Chaudhuri, D. Baltimore, Physiological and pathological roles for microRNAs in the immune system, Nat Rev Immunol 10 111-122.
    [57]D. Iliopoulos, S.A. Jaeger, H.A. Hirsch, M.L. Bulyk, K. Struhl, STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer, Mol Cell 39 493-506.
    [58]L.M. Coussens, Z. Werb, Inflammation and cancer, Nature 420 (2002) 860-867.
    [59]A. Mantovani, Cancer:inflammation by remote control, Nature 435 (2005) 752-753.
    [60]S.A. Rosenberg, Shedding light on immunotherapy for cancer, N Engl J Med 350 (2004)1461-1463.
    [61]S. Ingale, M.A. Wolfert, J. Gaekwad, T. Buskas, G.J. Boons, Robust immune responses elicited by a fully synthetic three-component vaccine, Nat Chem Biol 3 (2007) 663-667.
    [62]Y. Sawanobori, S. Ueha, M. Kurachi, T. Shimaoka, J.E. Talmadge, J. Abe, Y. Shono, M. Kitabatake, K. Kakimi, N. Mukaida, K. Matsushima, Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice, Blood 111 (2008) 5457-5466.
    [63]E. Ambrosino, M. Spadaro, M. Iezzi, C. Curcio, G. Forni, P. Musiani, W.Z. Wei, F. Cavallo, Immunosurveillance of Erbb2 carcinogenesis in transgenic mice is concealed by a dominant regulatory T-cell self-tolerance, Cancer Res 66 (2006) 7734-7740.
    [64]E. Ribechini, P.J. Leenen, M.B. Lutz, Gr-1 antibody induces STAT signaling, macrophage marker expression and abrogation of myeloid-derived suppressor cell activity in BM cells, Eur J Immunol 39 (2009) 3538-3551.
    [65]B. Bierie, H.L. Moses, TGF-beta and cancer, Cytokine Growth Factor Rev 17 (2006) 29-40.
    [66]B. Bierie, H.L. Moses, Transforming growth factor beta (TGF-beta) and inflammation in cancer, Cytokine Growth Factor Rev 21 (2010) 49-59.
    [67]E.F. Saunier, R.J. Akhurst, TGF beta inhibition for cancer therapy, Curr Cancer Drug Targets 6 (2006) 565-578.
    [68]X. Huang, C. Lee, From TGF-beta to cancer therapy, Curr Drug Targets 4 (2003) 243-250.
    [69]J.M. Yingling, K.L. Blanchard, J.S. Sawyer, Development of TGF-beta signalling inhibitors for cancer therapy, Nat Rev Drug Discov 3 (2004) 1011-1022.
    [70]S. Markowitz, J. Wang, L. Myeroff, R. Parsons, L. Sun, J. Lutterbaugh, R.S. Fan, E. Zborowska, K.W. Kinzler, B. Vogelstein, et al., Inactivation of the type Ⅱ TGF-beta receptor in colon cancer cells with microsatellite instability, Science 268(1995)1336-1338.
    [71]P.M. Siegel, J. Massague, Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer, Nat Rev Cancer 3 (2003) 807-821.
    [1]Zhang X,Schwartz JC,Guo X,et al.structural and Functional A-nalysis of the Costimulatory Receptor Programmed Death-1.Immu-nity,2004,20(3):337-347.
    [2]Greenwald R,Freeman G,Shape A,et al.The B7 family revisi-ted.Annu Rev'Immunol,2005,23(1):515-548.
    [3]Keir ME,Butte MJ,Freeman GJ,et al.PD-1 and Its Ligands in Tolerance and Immunity.Annu.Rev.Immunol,2008,26:677. 704.
    [4]Okaxaki T.Honjo T.The PD-1-PD-L pathway in immunological tolerance.Trends immunol,2006,27(4):195-201.
    [5]Liu J,Hamrouni A,Wolowiec D,et al.Plasma cells from multi-ple myeloma patients express B7-H1(PD-L1) and incrase ex-pression after stimulation with IFN-{gamma} and TLR ligands via a MD88-,TRAF6-,and Mek-dependent pathway.Blood,2007, 110(1):296-304.
    [6]Meier A,Bagchi A,Sidhu HK.et al.Upregulation of PD-L1 on monocytes and dendritic cells by HIV-1 derived TLR ligands. AIDS,2008,22(5):655-658.
    [7]Sheppard KA,Fitz L,Lee JM,et al.PD-1 inhibits T-cell recep-tor induced phosphorylation of the ZAP7/CD3zeta signalosome and downstream signaling to PKCtheta.FEBS Lett,2004,574(1-3):37-41.
    [8]Keir M.,Francisco LM,sharpe AH.PD-1 and its ligands in T-cell immunity.Curr Opin Immunol,2007,19(3):309-314.
    [9]Goldberg MV,Maris CH,Hipkiss EL,et al.Role of PD-1 and its ligand,R7-H1,in early fate decisions of CD8 T cells.Blood, 2007,110(1):186-192.
    [10]Probst HC,McCoy K,Okazaki T,et al.Resting dendritic cells induce peritheral CD8+ T cell tolerance through PD-1 and CT-LA-4. Nat Immunol,2005,6(3):280-286.
    [11]Keir ME,Latchman YE,Freeman GJ,et al.Programmed death-1(PD-1):PD-ligand 1 interactions inhibit TCR-mediated posi-tive selection of thymocytes.J Immunol,2005,175(11):7372-7379.
    [12]Goldberg MV,Maris CH,Hipkiss EL,et al.Role of PD-1 and its ligand,B7-H1,in early fate decisions of CD8 T cells.Blood, 2007,110(1):186-192.
    [13]Tsushima F,Yao S, Shin T,et al.Interaction between B7-H1 and PD-1 determines initation and reversal of T-cell anergy. Blood,2007,110(1):180-185.
    [14]Barber DL,Wherry EJ,Masopust D,et al.Restoring function in exhuasted CD8 T cells during Chronic viral infection.Nature 2006,439(7077):682-687.
    [15]Day CL,Kaufmann DE, Kiepiela P,et al.PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and dis-ease progression.Nature,2006,443(7109):350-354.
    [16]Trautmann L,Janbazian L,Chomont N,et al.Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversi-ble immune dysfunction.Nat Med,2006,12(10):1198-1202.
    [17]Zhang J,Zhang Z,Wang X,et al.PD-1 up-regulation is corre-lated with HIV-apecific memory CD8+ T-cell exhaustion in typi- cal progressors,but not in long-term non-progressons.Blood, 2007,109(11):4671-4678. [18]petrovas C,Casszza JD,Brenchley JM,et al.PD-1 is a regula-tor of virus-specific CD8+ T cell survival in HIV infection.J
    Exp Med,2006,203(10):2281-2292.
    [19]Ubani S,Amadei B,Tola D,et al.PD-1 expression in acute hepatitis C virus (HCV) infection is associated with HCV-specif-ic CD8 exhaustion.J Virol,2006,80(22):11398-11403. [20]Radziewicz H,Ibegbu CC,Femandez ML,et al.Liver-infiltra-ting lymphocytes in chronic human hepatitis C virus infection dis-
    play an exhausted phenotype with high levels of PD-1 and low levels of CD127 expression.J Virol,2007,81(6):2545-2533. [21]Hiramo F,Kaneko K,Tamura H,et al.Blockade of B7-H1 and
    PD-1 by monoclonal antibodies potentiates cancer therapeutic im-munity.Cancer Res,2005,65(3):1089-1096. [22]Xiao H, Huang B,Yuan Y,et al.Soluble PD-1 facilitates 4-
    1BBL-triggered antitumor immunity against murine H22 hepato-carcinoma in vivo.Clin Cancer Res,2007,13(6):1823-1830.
    [23]Ohigashi Y,Sho M,Yamada Y,et al.Clinical significance of programmed death-1 ligand-1 and programmed death-1 ligand-2 expression in human esophageal cancer.Clin Cancer Res,2005, 11(8):2947-2943. [24]Thompson R, Dong H,Lohse C,et al.PD-1 is expressed by
    tumor-infiltrating immune cells and is associated with poor out-
    come for patients with renal cell carcinoma.Clin Cancer Res, 2007,13(6):1757-1761. [25]Wu C,Zhu Y,Jiang J,et al.Immunohistochemical localization of programmed death-1 ligand-1(PD-L1) in gastric carcinoma and its clinical significance.Acta Histochem,2006,108(1):
    19-24.
    [26]Wang J,Yoshida T,Nakaki F,et al.Establishment of NOD-Pd-ed1-/- mice as an efficient animal model of type Ⅰ diabetes.Proc Natl Acad Sci USA,2005,102(33):11823-11828. [27]Fife B,Culeria I,Gubbels Bupp M,et al.Insulin-induced re-mission in new-onset NOD mice is maintained by the PD-1-PD-L1 pathway.J Exp Med,2006,203(12):2737-2747. [28]Tsutsumi Y,Jie X,Ihara K,et al.Phenotypic and genetic ana-
    lyses of T-cell-mediated immunoregulation in patients with Type 1
    diabetes.Diabet Med,2006,23(10):1145-1150. [29]Ding H,Wu X,Wu J,et al.Delivering PD-1 inhibitory aignal concomitant with blocking ICOS co-stimulation suppresses lupus-like syndrome in sutoimmune BXSB mice.Clin Immunol,2006, 118(2-3):258-267. [30]Hirata S, Senju S,Matsuyoshi H,et al.Prevention of experi-mental autoimmune encephalomyelitis by transfer of embryonic
    stem cell-derived dendritic cells expressing myelin oligodendro-cyte glycoprotein peptide along with TRAIL or programmed death-I ligand. J Immunol,2005,174(4):1888-1897.
    [1]Tosolini M, Kirilovsky A, Mlecnik B, Fredriksen T, Mauger S, Bindea G, Berger A, Bruneval P, Fridman WH, Pages F, Galon J. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res71(4):1263-1271.
    [2]Chen JJ, Lin YC, Yao PL, Yuan A, Chen HY, Shun CT, Tsai MF, Chen CH, Yang PC. Tumor-associated macrophages:the double-edged sword in cancer progression. J Clin Oncol.2005; 23(5):953-964.
    [3]Chen J, Yao Y, Gong C, Yu F, Su S, Liu B, Deng H, Wang F, Lin L, Yao H, Su F, Anderson KS, Liu Q, Ewen ME, Yao X, Song E. CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell.2011; 19(4):541-555.
    [4]Hagemann T, Wilson J, Burke F, Kulbe H, Li NF, Pluddemann A, Charles K, Gordon S, Balkwill FR. Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. J Immunol.2006; 176(8):5023-5032.
    [5]Jassar AS, Suzuki E, Kapoor V, Sun J, Silverberg MB, Cheung L, Burdick MD, Strieter RM, Ching LM, Kaiser LR, Albelda SM. Activation of tumor-associated macrophages by the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid induces an effective CD8+ T-cell-mediated antitumor immune response in murine models of lung cancer and mesothelioma. Cancer Res.2005; 65(24):11752-11761.
    [6]Young MR, Newby M, Wepsic HT. Hematopoiesis and suppressor bone marrow cells in mice bearing large metastatic Lewis lung carcinoma tumors. Cancer Res.1987; 47(1):100-105.
    [7]Gabrilovich DI, Bronte V, Chen SH, Colombo MP, Ochoa A, Ostrand-Rosenberg S, Schreiber H. The terminology issue for myeloid-derived suppressor cells. Cancer Res.2007; 67(1):425; author reply 426.
    [8]Pak AS, Wright MA, Matthews JP, Collins SL, Petruzzelli GJ, Young MR. Mechanisms of immune suppression in patients with head and neck cancer: presence of CD34(+) cells which suppress immune functions within cancers that secrete granulocyte-macrophage colony-stimulating factor. Clin Cancer Res.1995; 1(1):95-103.
    [9]Gabrilovich DI,Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol.2009; 9(3):162-174.
    [10]Movahedi K, Guilliams M, Van den Bossche J, Van den Bergh R, Gysemans C, Beschin A, De Baetselier P, Van Ginderachter JA. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood.200S; 111(8):4233-4244.
    [11]Haile LA, Gamrekelashvili J, Manns MP, Korangy F, Greten TF. CD49d is a new marker for distinct myeloid-derived suppressor cell subpopulations in mice. J Immunol.2010; 185(1):203-210.
    [12]Poschke I, Mougiakakos D, Hansson J, Masucci GV, Kiessling R. Immature immunosuppressive CD14+HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res.2010; 70(11): 4335-4345.
    [13]Filipazzi P, Valenti R, Huber V, Pilla L, Canese P, Iero M, Castelli C, Mariani L, Parmiani G, Rivoltini L. Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol.2001; 25(18):2546-2553.
    [14]Liu CY, Wang YM, Wang CL, Feng PH, Ko HW, Liu YH, Wu YC, Chu Y, Chung FT, Kuo CH, Lee KY, Lin SM, Lin HC, Wang CH, Yu CT, Kuo HP. Population alterations of L: -arginase- and inducible nitric oxide synthase-expressed CDllb(+)/CD14 (-)/CD15 (+)/CD33 (+) myeloid-derived suppressor cells and CD8 (+) T lymphocytes in patients with advanced-stage non-small cell lung cancer. J Cancer Res Clin Oncol.2009.
    [15]Srivastava MK, Bosch JJ, Thompson JA, Ksander BR, Edelman MJ, Ostrand-Rosenberg S. Lung cancer patients' CD4(+) T cells are activated in vitro by MHC Ⅱ cell-based vaccines despite the presence of myeloid-derived suppressor cells. Cancer Immunol Immunother.200%; 57(10):1493-1504.
    [16]Yang R, Cai Z, Zhang Y, Yutzy WHt, Roby KF, Roden RB. CD80 in immune suppression by mouse ovarian carcinoma-associated Gr-1+CDllb+ myeloid cells. Cancer Res.2006; 66(13):6807-6815.
    [17]Huang B, Pan PY, Li Q, Sato AI, Levy DE, Bromberg J, Divino CM, Chen SH. Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res.2006; 66(2):1123-1131.
    [18]Gallina G, Dolcetti L, Serafini P, De Santo C, Marigo I, Colombo MP, Basso G, Brombacher F, Borrello I, Zanovello P, Bicciato S, Bronte V. Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Invest.2006; 116(10):2777-2790.
    [19]de Visser KE, Eichten A, Coussens LM. Paradoxical roles of the immune system during cancer development. Nat Rev Cancer.2006; 6(1):24-37.
    [20]Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC, Carbone DP, Gabrilovich DI. Increased production of immature myeloid cells in cancer patients:a mechanism of immunosuppression in cancer. J Immunol.2001; 166(1):678-689.
    [21]Young MR,Wright MA. Myelopoiesis-associated immune suppressor cells in mice bearing metastatic Lewis lung carcinoma tumors:gamma interferon plus tumor necrosis factor alpha synergistically reduces immune suppressor and tumor growth-promoting activities of bone marrow cells and diminishes tumor recurrence and metastasis:Cancer Res.1992; 52(22):6335-6340.
    [22]Morris MA,Ley K. Trafficking of natural killer cells. Curr Mol Med.2004; 4(4): 431-438.
    [23]de Saint-Vis B, Fugier-Vivier I, Massacrier C, Gaillard C, Vanbervliet B, Ait-Yahia S, Banchereau J, Liu YJ, Lebecque S, Caux C. The cytokine profile expressed by human dendritic cells is dependent on cell subtype and mode of activation. J Immunol.1998; 160(4):1666-1676.
    [24]Abdalla AO, Kiaii S, Hansson L, Rossmann ED, Jeddi-Tehrani M, Shokri F, Osterborg A, Mellstedt H, Rabbani H. Kinetics of cytokine gene expression in human CD4+ and CD8+ T-lymphocyte subsets using quantitative real-time PCR. Scand J Immunol.2003; 58(6):601-606.
    [25]Serafini P, Carbley R, Noonan KA, Tan G, Bronte V, Borrello I. High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Res.2004; 64(17):6337-6343.
    [26]Smith CW, Chen Z, Dong G, Loukinova E, Pegram MY, Nicholas-Figueroa L, Van Waes C. The host environment promotes the development of primary and metastatic squamous cell carcinomas that constitutively express proinflammatory cytokines IL-1 alpha, IL-6, GM-CSF, and KC. Clin Exp Metastasis.1998; 16(7):655-664.
    [27]Chornoguz O, Grmai L, Sinha P, Artemenko KA, Zubarev RA, Ostrand-Rosenberg S. Proteomic pathway analysis reveals inflammation increases myeloid-derived suppressor cell resistance to apoptosis. Mol Cell Proteomics.2011; 10(3):M110 002980.
    [28]Bunt SK, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S. Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. J Immunol.2006; 176(1):284-290.
    [29]Song X, Krelin Y, Dvorkin T, Bjorkdahl O, Segal S, Dinarello CA, Voronov E, Apte RN. CD11b+/Gr-1+ immature myeloid cells mediate suppression of T cells in mice bearing tumors of IL-1 beta-secreting cells. J Immunol.2005; 175(12):8200-8208.
    [30]Bunt SK, Yang L, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S. Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res.2001; 67(20):10019-10026.
    [31]Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S. Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res.2001;67(9):4507-4513.
    [32]Tu S, Bhagat G, Cui G, Takaishi S, Kurt-Jones EA, Rickman B, Betz KS, Penz-Oesterreicher M, Bjorkdahl O, Fox JG, Wang TC. Overexpression of interleukin-lbeta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell.2008; 14(5):408-419.
    [33]Wang D,DuBois RN. Pro-inflammatory prostaglandins and progression of colorectal cancer. Cancer Lett.2008; 267(2):197-203.
    [34]Alleva DG, Burger CJ, Elgert KD. Tumor growth increases Ia- macrophage synthesis of tumor necrosis factor-alpha and prostaglandin E2:changes in macrophage suppressor activity. J Leukoc Biol.1993; 53(5):550-558.
    [35]Zhang Y, Liu Q, Zhang M, Yu Y, Liu X, Cao X. Fas signal promotes lung cancer growth by recruiting myeloid-derived suppressor cells via cancer cell-derived PGE2. J Immunol.2009; 182(6):3801-3808.
    [36]Zhang HG,Grizzle WE. Exosomes and cancer:a newly described pathway of immune suppression. Clin Cancer Res.2011; 17(5):959-964.
    [37]Xiang X, Poliakov A, Liu C, Liu Y, Deng ZB, Wang J, Cheng Z, Shah SV, Wang GJ, Zhang L, Grizzle WE, Mobley J, Zhang HG. Induction of myeloid-derived suppressor cells by tumor exosomes. Int J Cancer.2009; 124(11):2621-2633.
    [38]Foell D, Wittkowski H, Vogl T, Roth J. S100 proteins expressed in phagocytes: a novel group of damage-associated molecular pattern molecules.J Leukoc Biol.2007,81(1):28-37.
    [39]Gebhardt C, Nemeth J, Angel P, Hess J. S100A8 and S100A9 in inflammation and cancer. Biochem Pharmacol.2006; 72(11):1622-1631.
    [40]Foell D, Frosch M, Sorg C, Roth J. Phagocyte-specific calcium-binding S100 proteins as clinical laboratory markers of inflammation. Clin Chim Acta.2004; 344(1-2):37-51.
    [41]Sinha P, Okoro C, Foell D, Freeze HH, Ostrand-Rosenberg S, Srikrishna G. Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J Immunol.2008; 181(7):4666-4675.
    [42]Cheng P, Corzo CA, Luetteke N, Yu B, Nagaraj S, Bui MM, Ortiz M, Nacken W, Sorg C, Vogl T, Roth J, Gabrilovich DI. Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. JExp Med.2008; 205(10):2235-2249.
    [43]Ichikawa M, Williams R, Wang L, Vogl T, Srikrishna G. S100A8/A9 Activate Key Genes and Pathways in Colon Tumor Progression. Mol Cancer Res.2011; 9(2):133-148.
    [44]Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother.2009; 58(1):49-59.
    [45]Mazzoni A, Bronte V, Visintin A, Spitzer JH, Apolloni E, Serafini P, Zanovello P, Segal DM. Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. JImmunol.2002; 168(2):689-695.
    [46]Sinha P, Clements VK, Ostrand-Rosenberg S. Reduction of myeloid-derived suppressor cells and induction of Ml macrophages facilitate the rejection of established metastatic disease. J Immunol.2005; 174(2):636-645.
    [47]Gabrilovich DI, Velders MP, Sotomayor EM, Kast WM. Mechanism of immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells. J Immunol.2001; 166(9):5398-5406.
    [48]Bronte V, Wang M, Overwijk WW, Surman DR, Pericle F, Rosenberg SA, Restifo NP. Apoptotic death of CD8+ T lymphocytes after immunization: induction of a suppressive population of Mac-1+/Gr-1+ cells. J Immunol.1998; 161(10):5313-5320.
    [49]Terabe M, Matsui S, Park JM, Mamura M, Noben-Trauth N, Donaldson DD, Chen W, Wahl SM, Ledbetter S, Pratt B, Letterio JJ, Paul WE, Berzofsky JA. Transforming growth factor-beta production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance:abrogation prevents tumor recurrence. J Exp Med.2003; 198(11):1741-1752.
    [50]Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albelda SM. Gemcitabine selectively eliminates splenic Gr-1+/CDllb+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res.2005; 11(18):6713-6721.
    [51]Sinha P, Clements VK, Bunt SK, Albelda SM, Ostrand-Rosenberg S. Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol.2007; 179(2):977-983.
    [52]Kusmartsev S, Cheng F, Yu B, Nefedova Y, Sotomayor E, Lush R, Gabrilovich D. All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination. Cancer Res.2003; 63(15):4441-4449.
    [53]Pan PY, Wang GX, Yin B, Ozao J, Ku T, Divino CM, Chen SH. Reversion of immune tolerance in advanced malignancy:modulation of myeloid-derived suppressor cell development by blockade of stem-cell factor function. Blood.2008; 111(1):219-228.
    [54]Li H, Han Y, Guo Q, Zhang M, Cao X. Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1.J Immunol.2009; 182(1):240-249.
    [55]Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L, Herber DL, Schneck J, Gabrilovich DI. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med.2007; 13(7):828-835.
    [56]Rodriguez PC, Hernandez CP, Morrow K, Sierra R, Zabaleta J, Wyczechowska DD, Ochoa AC. L-arginine deprivation regulates cyclin D3 mRNA stability in human T cells by controlling HuR expression. J Immunol.2010; 185(9): 5198-5204.
    [57]Rodriguez PC, Quiceno DG, Ochoa AC. L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood.2007; 109(4):1568-1573.
    [58]Bronte V,Zanovello P. Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol.2005; 5(8):641-654.
    [59]Bronte V, Serafini P, Mazzoni A, Segal DM, Zanovello P. L-arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends Immunol.2003; 24(6):302-306.
    [60]Ezernitchi AV, Vaknin I, Cohen-Daniel L, Levy O, Manaster E, Halabi A, Pikarsky E, Shapira L, Baniyash M. TCR zeta down-regulation under chronic inflammation is mediated by myeloid suppressor cells differentially distributed between various lymphatic organs. J Immunol.2006; 177(7):4763-4772.
    [61]Rodriguez PC, Zea AH, Culotta KS, Zabaleta J, Ochoa JB, Ochoa AC. Regulation of T cell receptor CD3zeta chain expression by L-arginine. J Biol Chem.2002; 277(24):21123-21129.
    [62]Kusmartsev S,Gabrilovich DI. STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion. JImmunol.2005; 174(8):4880-4891.
    [63]Hanson EM, Clements VK, Sinha P, Ilkovitch D, Ostrand-Rosenberg S. Myeloid-derived suppressor cells down-regulate L-selectin expression on CD4+ and CD8+ T cells. JImmunol.2009; 183(2):937-944.
    [64]Serafini P, Mgebroff S, Noonan K, Borrello I. Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res.2008; 68(13):5439-5449.
    [65]Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S. Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res.2010; 70(1):68-77.
    [66]Gout PW, Buckley AR, Simms CR, Bruchovsky N. Sulfasalazine, a potent suppressor of lymphoma growth by inhibition of the x(c)- cystine transporter:a new action for an old drug. Leukemia.2001; 15(10):1633-1640.
    [67]Mansoor MA, Svardal AM, Ueland PM. Determination of the in vivo redox status of cysteine, cysteinylglycine, homocysteine, and glutathione in human plasma. Anal Biochem.1992; 200(2):218-229.
    [68]Bannai S. Transport of cystine and cysteine in mammalian cells. Biochim Biophys Acta.1984; 779(3):289-306.
    [69]Sato H, Watanabe H, Ishii T, Bannai S. Neutral amino acid transport in mouse peritoneal macrophages. J Biol Chem.1987; 262(27):13015-13019.
    [70]Sica A, Allavena P, Mantovani A. Cancer related inflammation:the macrophage connection. Cancer Lett.2008; 267(2):204-215.
    [71]Sinha P, Clements VK, Ostrand-Rosenberg S. Interleukin-13-regulated M2 macrophages in combination with myeloid suppressor cells block immune surveillance against metastasis. Cancer Res.2005; 65(24):11743-11751.
    [72]Liu C, Yu S, Kappes J, Wang J, Grizzle WE, Zinn KR, Zhang HG. Expansion of spleen myeloid suppressor cells represses NK cell cytotoxicity in tumor-bearing host. Blood.2001; 109(10):4336-4342.
    [73]Elkabets M, Ribeiro VS, Dinarello CA, Ostrand-Rosenberg S, Di Santo JP, Apte RN, Vosshenrich CA. IL-lbeta regulates a novel myeloid-derived suppressor cell subset that impairs NK cell development and function. Eur J Immunol.2010; 40(12):3347-3357.
    [74]Nausch N, Galani IE, Schlecker E, Cerwenka A. Mononuclear myeloid-derived "suppressor" cells express RAE-1 and activate natural killer cells. Blood.2008; 112(10):4080-4089.
    [75]Stewart TJ, Smyth MJ, Fernando GJ, Frazer IH, Leggatt GR. Inhibition of early tumor growth requires J alpha 18-positive (natural killer T) cells. Cancer Res.2003; 63(12):3058-3060.
    [76]De Santo C, Salio M, Masri SH, Lee LY, Dong T, Speak AO, Porubsky S, Booth S, Veerapen N, Besra GS, Grone HJ, Platt FM, Zambon M, Cerundolo V. Invariant NKT cells reduce the immunosuppressive activity of influenza A virus-induced myeloid-derived suppressor cells in mice:and humans. J Clin Invest.2008; 118(12):4036-4048.
    [77]Terabe M, Swann J, Ambrosino E, Sinha P, Takaku S, Hayakawa Y, Godfrey DI, Ostrand-Rosenberg S, Smyth MJ, Berzofsky JA. A nonclassical non-Valphal4Jalphal8 CDld-restricted (type Ⅱ) NKT cell is sufficient for down-regulation of tumor immunosurveillance. J Exp Med.2005; 202(12): 1627-1633.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700