SRT对微生物代谢产物和生物多样性的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物代谢产物会影响水处理工艺的处理效果和污泥性质。本研究以序批式反应器(SBR)为试验对象,通过两种方式研究污泥停留时间(SRT)对微生物代谢产物和生物多样性的影响。其中一种研究方式是分析微生物代谢产物在SRT变化过程中的变化规律;另一种研究方式是分析不同SRT条件下微生物代谢产物、生物多样性、生物种群结构的异同。
     研究表明不同的SRT条件下微生物代谢产物是具有差异的,而且微生物生物多样性和种群结构的变化为其差异提供了佐证。EPS浓度与蛋白质比重在SRT为5 d和30 d时取得最大和最小值,多糖比重和EPS中非蛋白质、多糖物质的比重分别于SRT为20 d和30 d时取得最大。在不同的SRT条件下EPS浓度与蛋白质比重差异较大,而多糖比重变化较小。
     SRT的变化过程中微生物代谢产物的变化没有明显的规律性。EPS浓度在总体上与SRT的变化趋势呈反比,但其具体变化较为复杂。SRT在10~30 d范围内波动时EPS浓度对SRT的下行趋势具有短时的缓冲能力,但SRT在5~40 d的范围内波动时其缓冲能力被破坏。EPS组分在SRT的变化过程中,其规律性并不明显。SRT的变化对EPS中蛋白质组分的影响明显大于多糖组分。蛋白质组分在SRT的变化初期通常有所下降,但在SRT变小的过程中蛋白质的最终比重有增加的趋势。此外,SMP浓度受SRT影响的规律性不强且在SRT为10~30 d的范围内变化较为平缓。
     不同的SRT条件下生物多样性和种群结构也会有所差异。以SDI值为指示的生物多样性与SRT不呈线性关系,SDI值在SRT为10 d时取得最小值。通过PCR-DGGE图谱分析,发现SRT为40 d时生物多样性最大但优势菌群的活性稍差,而SRT为30 d时优势菌群的活性较强。系统微生物在SRT为40 d和SRT小于40 d时的同源性较差,两者可以较为明显的划分为两个族群。短泥龄系统中SRT对同源性的影响较小。此外,通过切胶回收和克隆测序,发现SRT为40 d时存在以降解硫酸盐获得能源的优势微生物。
Microbial metabolites can influence the treatment effect and sludge properties of water treatment process. In this research, sequencing batch reactor (SBR) is used as a test object. The influence of SRT on microbial metabolites and biodiversity is studied by two ways. The first one is analyzing the changing mechanism of microbial metabolites under various sludge retention time (SRT), the last one is analyzing the similarities and differences of various SRT condition’s microbial metabolites, biodiversity, biological population structure.
     The results showed that under diffefent SRT conditions microbial metabolites may vary. This difference is also approved by biodiversity and biological population structure. The extracellular polymeric substances’(EPS) concentration and protein proportion achieve maximum when the SRT is 5d, and reach minimum when the SRT is 30d. EPS’polysaccharide proportion achieve maximum when the SRT is 20d. The other components of EPS reach maximum when the SRT is 30d. Under various SRT conditions, EPS concentration and protein proportion varied accordingly, but polysaccharide was the other around.
     The change of microbial metabolites has little regularity under the changing process of SRT. Generally, the concentration of EPS is in inverse proportion to the change of SRT, but the detailed changing is complicated. When the SRT fluctuation is in the range of 10~30d, the concentration of EPS has short time buffer capacity aganst SRT’s decreasing tendency. But the buffer capacity will be destroyed, if the fluctuation range is 5~40d. The variation of EPS component is not obviously. The protein and polysaccharide will be affected by the change of SRT, but the effect on protein is more obviously than polysaccharide. The proportion of protein will decreased in the early change of SRT, however, the final proportion of protein can be increased, if the SRT decrease. In addition, the concentration of soluble microbial product (SMP) showed little regularity in the change process of SRT, and the concentration of SMP change slightly when the range of SRT is 10~30d.
     Biodiversity and biological population structure have discrepancy under Various SRT condition. The article uses SDI to represent Biodiversity. The research shows that SDI and SRT have no linear relationship and SDI take minimum when the SRT is 10d. The result of PCR-DGGE shows that SDI reach maximum when the SRT is 40d, and the dominant microflora take more activity when the SRT is 30d. Because of the poor homology, the system microorganism of SRT for 40d and the system microorganism of other SRT are different ethnic groups. The SRT has little affected on the homology, provided that the system has short sludge age. In addition, though cloning and sequencing, the research shows that the system of SRT for 40d exists the dominant microbes, which can get energy by degrading sulfate.
引文
[1]李军,杨秀山,彭永臻.微生物与水处理工程[M].北京:化学工业出版社,2002.
    [2]文湘华,王建龙.环境生物技术原理与应用[M].北京:清华大学出版社,2004.
    [3]上海市政工程设计研究总院.污水处理厂改扩建设计[M].北京:中国建筑工业出版社,2008.
    [4]张自杰,林荣忱,金儒霖.排水工程(第四版)[M].北京:中国建筑工业出版社,2000.
    [5]尚会来,彭永臻,张静蓉,等.SRT对于污水脱氮过程中N2O产生的影响[J].环境科学学报,2009,29(4):754-758.
    [6]刘秀红,杨庆,吴昌永,等.不同污水生物脱氮工艺中N2O释放量及影响因素[J].环境科学学报,2006,26(12):1940-1947.
    [7]李亚静,孙力平,郑淑平.碳源浓度和污泥龄对反硝化聚磷脱氮影响研究[J].环境科学与技术,2008,31(5):112-115.
    [8] Han,Bea,Jang,et al.Influence of sludge retention time on membrane fouling and bioactivities in membrane bioreactor system[J].Process Biochemistry,2005,40(7):2393-2400.
    [9] How Y Ng,Slawomir W Hermanowicz.Membrane bioreactor operation at short solids retention times : performance and biomass characteristics[J]. Water Research,2005,39(6):981-992.
    [10]李绍峰,刘玉强,崔崇威,等.SRT影响MBR污泥体系去除污染物动力学研究[J].环境工程学报,2007,1(5):105-108.
    [11] Sponza D T.Extracellular polymer substances and physicochemical properties of flocs in steady-state and unsteady-state activated sludge systems[J].Process Biochemistry,2002,37(9):983-998.
    [12] Liao B Q,Allen D G,Droppo I G,el al.Surface properties of sludge and their role in bioflocculation and settleability[J].Water Research,2001,35(2):339-350.
    [13] Andreas Jahn,Nielsen P H.Cell biomass and exopolymer composition in sewer biofilms[J].Water Science and Technology,1998,37(1):17-24.
    [14]多金环,安金辉.可溶性微生物产物的产生及影响因素分析[J].化工环保, 2004,24(3):169-172.
    [15] Pribyl M,Tucek F,Wilderer P A,et al.Amount and nature of soluble refractory organics produced by activated sludge micro-organisms in sequencing batch and continuous flow reactors[J].Water Science and Technology,1997,35(1):27-34.
    [16]金刚.序批式生物反应器出水中溶解性微生物产物(SMP)的研究[D].上海:华东理工大学,2005.
    [17]杨义飞,包常华,周玲玲,等.胞外聚合物的生成特性及其对污水生物处理的影响[J].市政技术,2006,24(6):405-408.
    [18] Dignac M F,Urbain V,Rybacki D,et al.Chemical description of extracelluluar polymers;implication on activated sludge fioc structure[J].Water Science and Technology,1998,38(8-9):45-53.
    [19]王红武,李晓岩,赵庆祥.胞外聚合物对活性污泥沉降和絮凝性能的影响研究[J].中国安全科学学报,2003,13(9):31-34.
    [20] Cigdem E,Kevin J K,Ronald L D.Characterization of soluble organic matter of waster activated sludge before and after thermal pretreatment[J] . Water Research,2006,40(20):3725-3723.
    [21] Tian Yu,Zheng Lei,Sun Dezhi.Functions and behaviors of activated sludge extracellular polymeric substances(EPS):a promising environment interest[J].Journal of Environmental Science,2006,18(3):420-427.
    [22] Li Xiaoyan,Yang Shufang.Influence of loosely bound extracellular polymeric substances(EPS) on the flocculation , sedimentation and dewaterability of activated sludge[J].Water Research,2007,41(5):1022-1030.
    [23] Urbanin V,Block J C,Manem J.Bioflocculation in activated sludge:an analytical approach[J].Water Research,1993,27(5):829-838.
    [24] Morgan J W.A comparative study of the nature of biopolymers extracted from anaerobic and activated sludges[J].Water Research,1990,24(6):743-750.
    [25] Liu H,Fang H H P.Extraction of extracellular polymeric substances(EPS) of sludges[J].Journal of Biotechnology,2002,95(3):249-256.
    [26] Frolund B,Palmgren R,Keiding K,et al.Extraction of extracellular polymers from activated sludge using a cation exchange resin[J].Water Research,1996,30(8):1749-1758.
    [27] Zhang X Q,Paul L B.Biodegradability of biofilm extracellular polymeric substances[J].Chemosphere,2003,50(1):63-69.
    [28] Forster C F,Dallas Newton J.Actived sludge on settlement some suppositions and suggestion[J].Water Pollution Control,1980,79(3):338-351.
    [29]蔡春光,刘军深,蔡伟民.胞外多聚物在好氧颗粒化中的作用机理[J].中国环境科学,2004,24(5):623-626.
    [30] Eskicioglu C,Kennedy K J,Droste R L.Characterization of soluble organic matter of waste activated sludge before and after thermal pretreatment[J].Water Research,2006,40(20):3725-3736.
    [31] Higgins M J,Novak J T.The effect of cations on the settling and dewatering of activated sludges:Laboratory results[J].Water Environment Research,1997,69(2):215-224.
    [32] Houghton J I,Quarmby J,Stephenson T.Municipal wastewater sludge dewaterability and the presence of microbial extrancellular polymer[J].Water Science and Technology,2001,44(2-3):373-379.
    [33]董德明,康春莉,李忠华.天然水中细菌胞外聚合物对重金属的吸附规律[J].吉林大学学报(理学版),2003,41(1):94-96.
    [34] Liu Y,Lam M C,Fang H H P.Adsorption of heavy metals by EPS of activated sludge[J].Water Science and Technology,2001,43(6):59-66.
    [35]余萍,于鑫,戢启宏,等.废水生物处理出水中溶解性微生物产物的形成机制与特征[J].环境污染与防治,2006,28(5):352-355.
    [36] Duncan J B,Daivid C S.A review of soluble microbial product(SMP) in wastewater treatment systems[J].Water Research,1999,33(14):3063-3082.
    [37] Namkung E,Rittmann B E.Effects of SMP on blofilm-reactor performance [J].Journal of Environmental Engineering,1988,114(1):199-210.
    [38] Boero V J,Browers S R,Eckenfelder W W.Molecular weight distribution of soluble microbial products in biological systems[J] . Water Science and Technology,1996,34(5-6):241-248.
    [39]董春娟,吕炳南.污水生物处理中的溶解性微生物产物(SMP)[J].中国给水排水,2004,20(1):22-25.
    [40] Shin H S,Kang S T.Characteristics and fates of soluble microbial products in ceramic membrane bioreactor at various sludge retention times[J] . Water Research,2003,37(1):121-127.
    [41]张海丰,孙宝盛,赵新华,等.溶解性微生物产物对浸没式膜生物反应器运行的影响[J].环境科学,2008,29(1):82-86.
    [42] Huang X,Liu R,Qian Y.Behaviors of soluble microbial products in a membrane bioreactor[J].Process Biochemistry,2000,36(5):401-406.
    [43]刘锐,黄霞,范彬,等.膜-生物反应器中溶解性微生物产物的研究进展[J].环境污染治理技术与设备,2002,3(1):1-7.
    [44] Kuo W C,Parkin G F.Characterization of soluble microbial products from anaerobic treatment by molecular weight distribution and nickel-chelating properties[J].Water Research,1996,30(4):915-922.
    [45]王金翠,孙宝盛.污水生物处理中微生物次级代谢产物的研究进展[J].给水排水,2007,33(S1):165-169.
    [46] Barker D J,Mannucchi G A,SalviS M,et al.Characterisation of soluble residual chemical oxygen demand(COD) in anaerobic wastewater treatment effluents [J].Water Research,1999,33(1):100-110.
    [47] Laspidou C S,Rittmann B E.A unified theory for extracellular polymeric substances,soluble microbial products,and active and inert biomass[J].Water Research,2002,36(11):2711-2720.
    [48] Aquino S F,Stuckey D C.Soluble microbial products formation in anaerobic chemostats in the presence of toxic compounds[J].Water Research,2004,38(2):255-266.
    [49] Shin H S,Kang S T,Nam S Y.Effect of carbohydrate and protein in the EPS on sludge settling characteristics[J].Water Science and Technology,2001,43(6):193-196.
    [50]龙向宇,龙腾锐,唐然,等.污泥龄对胞外聚合物组分与表面性质的影响[J].中国给水排水,2008,24(15):1-6.
    [51] Boero V J,Eckenfelder W W,Bowers A R.Soluble microbial product formation in biological systems[J].Water science and technology,1991,23(4-6):1067-1076.
    [52]邹联沛,王国平,董煜,等.SRT对膜生物反应器出水水质的影响及其控制途径的研究[J].水处理技术,2005,31(4):70-73.
    [53]苏欣捷,张强.低浓度有机底物好氧降解趋势及SMP的产出[J].上海环境科学,2002,21(8):503-505.
    [54] Barker D J,Salvi S M L,Langenhoff A A M,et al.Soluble microbial products in ABR treating low-strength wastewater[J] . Journal of Environmental Engineering,2000,126(3):239-249.
    [55] Hao O J,Lao A O.Kinetics of microbial by-product formation in chemostat pure cultures[J].Journal of Environmental Engineering,1988,114(5):1097-1115.
    [56]王爱杰,任南琪.环境中的分子生物学诊断技术[M].北京:化学工业出版社,2004.
    [57] Onuki M,Satoh H,Mino T.Analysis of microbial Community that performs enhanced biological phosphorus removal in activated sludge fed with acetate[J].Water Science and Technology,2002,46(1-2):145-153.
    [58] Ferris M J,Muyaer G,Ward D M.Denaturing gradient gel electrophor esis profiles of 16Sr RNA-defined population inhabiting a hot spring microbial mat community[J].Applied and Environmental Microbiology,1996,62(2):340-346.
    [59] Rowan A K,Snape J R,Fearnside D,et al.Composition and diversity of ammonia-oxidising bacterial communities in wastewater treatment reactors of different design treating identical wastewater[J].FEMS Microbiology Ecology,2003,43(2):195-206.
    [60]邢德峰,任南琪,宫曼丽.PCR-DGGE技术解析生物制氢反应器微生物多样性[J].环境科学,2005,26(2):172-176.
    [61]肖勇,杨朝晖,曾光明,等.PCR-DGGE研究处理垃圾渗滤液序批式生物膜反应器(SBBR)中的细菌多样性[J].环境科学,2007,28(5):1095-1101.
    [62]王弘宇,马放,苏俊峰,等.含硝氮废水的好氧反硝化处理及其系统微生物群落动态分析[J].环境科学,2007,28(12):2856-2860.
    [63]张斌,孙宝盛,刘慧娜,等.处理不同废水MBR系统中微生物群落结构的比较[J].环境科学,2008,29(10):2944-2949.
    [64]赵继红,楼燕,于志晟.城市污水厂(A/O工艺)微生物群落结构及其动态变化[J].生态环境,2008,17(3):898-902.
    [65]韦平和.生物化学实验与指导[M].北京:中国医药科技出版社,2003.
    [66]王盛勇.贫营养条件下微生物代谢产物和生物多样性的研究[D].天津:天津大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700